1
|
Structure of an Alkaline Pectate Lyase and Rational Engineering with Improved Thermo-Alkaline Stability for Efficient Ramie Degumming. Int J Mol Sci 2022; 24:ijms24010538. [PMID: 36613981 PMCID: PMC9820310 DOI: 10.3390/ijms24010538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Alkaline pectate lyases have biotechnological applications in plant fiber processing, such as ramie degumming. Previously, we characterized an alkaline pectate lyase from Bacillus clausii S10, named BacPelA, which showed potential for enzymatic ramie degumming because of its high cleavage activity toward methylated pectins in alkaline conditions. However, BacPelA displayed poor thermo-alkaline stability. Here, we report the 1.78 Å resolution crystal structure of BacPelA in apo form. The enzyme has the characteristic right-handed β-helix fold of members of the polysaccharide lyase 1 family and shows overall structural similarity to them, but it displays some differences in the details of the secondary structure and Ca2+-binding site. On the basis of the structure, 10 sites located in flexible regions and showing high B-factor and positive ΔTm values were selected for mutation, aiming to improve the thermo-alkaline stability of the enzyme. Following site-directed saturation mutagenesis and screening, mutants A238C, R150G, and R216H showed an increase in the T5015 value at pH 10.0 of 3.0 °C, 6.5 °C, and 7.0 °C, respectively, compared with the wild-type enzyme, interestingly accompanied by a 24.5%, 46.6%, and 61.9% increase in activity. The combined mutant R150G/R216H/A238C showed an 8.5 °C increase in the T5015 value at pH 10.0, and an 86.1% increase in the specific activity at 60 °C, with approximately doubled catalytic efficiency, compared with the wild-type enzyme. Moreover, this mutant retained 86.2% activity after incubation in ramie degumming conditions (4 h, 60 °C, pH 10.0), compared with only 3.4% for wild-type BacPelA. The combined mutant increased the weight loss of ramie fibers in degumming by 30.2% compared with wild-type BacPelA. This work provides a thermo-alkaline stable, highly active pectate lyase with great potential for application in the textile industry, and also illustrates an effective strategy for rational design and improvement of pectate lyases.
Collapse
|
2
|
Nezhad NG, Rahman RNZRA, Normi YM, Oslan SN, Shariff FM, Leow TC. Thermostability engineering of industrial enzymes through structure modification. Appl Microbiol Biotechnol 2022; 106:4845-4866. [PMID: 35804158 DOI: 10.1007/s00253-022-12067-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 01/14/2023]
Abstract
Thermostability is an essential requirement of enzymes in the industrial processes to catalyze the reactions at high temperatures; thus, enzyme engineering through directed evolution, semi-rational design and rational design are commonly employed to construct desired thermostable mutants. Several strategies are implemented to fulfill enzymes' thermostability demand including decreasing the entropy of the unfolded state through substitutions Gly → Xxx or Xxx → Pro, hydrogen bond, salt bridge, introducing two different simultaneous interactions through single mutant, hydrophobic interaction, filling the hydrophobic cavity core, decreasing surface hydrophobicity, truncating loop, aromatic-aromatic interaction and introducing positively charged residues to enzyme surface. In the current review, horizons about compatibility between secondary structures and substitutions at preferable structural positions to generate the most desirable thermostability in industrial enzymes are broadened. KEY POINTS: • Protein engineering is a powerful tool for generating thermostable industrial enzymes. • Directed evolution and rational design are practical approaches in enzyme engineering. • Substitutions in preferable structural positions can increase thermostability.
Collapse
Affiliation(s)
- Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
3
|
Zhou Z, Wang X. Rational design and structure-based engineering of alkaline pectate lyase from Paenibacillus sp. 0602 to improve thermostability. BMC Biotechnol 2021; 21:32. [PMID: 33941157 PMCID: PMC8091735 DOI: 10.1186/s12896-021-00693-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ramie degumming is often carried out at high temperatures; therefore, thermostable alkaline pectate lyase (PL) is beneficial for ramie degumming for industrial applications. Thermostable PLs are usually obtained by exploring new enzymes or reconstructing existing enzyme by rational design. Here, we improved the thermostability of an alkaline pectate lyase (PelN) from Paenibacillus sp. 0602 with rational design and structure-based engineering. RESULTS From 26 mutants, two mutants of G241A and G241V showed a higher thermostability compared with the wild-type PL. The mutant K93I showed increasing specific activity at 45 °C. Subsequently, we obtained combinational mutations (K93I/G241A) and found that their thermostability and specific activity improved simultaneously. The K93I/G241A mutant showed a half-life time of 15.9 min longer at 60 °C and a melting temperature of 1.6 °C higher than those of the wild PL. The optimum temperature decreased remarkably from 67.5 °C to 60 °C, accompanied by a 57% decrease in Km compared with the Km value of the wild-type strain. Finally, we found that the intramolecular interaction in PelN was the source in the improvements of molecular properties by comparing the model structures. Rational design of PelN was performed by stabilizing the α-helices with high conservation and increasing the stability of the overall structure of the protein. Two engineering strategies were applied by decreasing the mutation energy calculated by Discovery Studio and predicting the free energy in the process of protein folding by the PoPMuSiC algorithm. CONCLUSIONS The results demonstrated that the K93I/G241A mutant was more suitable for industrial production than the wild-type enzyme. Furthermore, the two forementioned strategies could be extended to reveal engineering of other kinds of industrial enzymes.
Collapse
Affiliation(s)
- Zhanping Zhou
- Tianjin Sinonocy Biological Technology Co. Ltd., Tianjin, 300308, China
| | - Xiao Wang
- Nanfang College of Sun Yat-Sen University, Guangzhou, 510970, China.
| |
Collapse
|
4
|
Li H, Tan X, Xia X, Zang J, El-Seedi H, Wang Z, Du M. Improvement of thermal stability of oyster (Crassostrea gigas) ferritin by point mutation. Food Chem 2020; 346:128879. [PMID: 33406454 DOI: 10.1016/j.foodchem.2020.128879] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 11/17/2020] [Accepted: 12/13/2020] [Indexed: 11/26/2022]
Abstract
Ferritin can be widely used as functional nanomaterial. But the physiological activity of ferritin can be damaged under excessive temperatures, which affect the self-assembly property. In this study, point mutation was produced in Asp120 to Gly120 of ferritin amino acid sequence and the heat resistance was improved significantly. The thermal denaturation temperature of mutated ferritin is 89.17 °C and has increased by 13 °C more than the wild-type oyster ferritin. The effect of thermal treatment on the denaturation, aggregation state, particle size and the structure of ferritin was not changed before 90 °C. The computational modeling and analysis indicated that mutated ferritin promotes the overall structural stability assembly via decreasing the interaction energies of 62 percent energies in 3-fold interface. Improving the thermal stability of oyster ferritin by point mutation enhances its applications as a food ingredient.
Collapse
Affiliation(s)
- Han Li
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaoyi Tan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyu Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hesham El-Seedi
- Department of Medicinal Chemistry, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Zhenyu Wang
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
5
|
Small design from big alignment: engineering proteins with multiple sequence alignment as the starting point. Biotechnol Lett 2020; 42:1305-1315. [PMID: 32430802 DOI: 10.1007/s10529-020-02914-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023]
Abstract
Multiple sequence alignment (MSA) is a fundamental way to gain information that cannot be obtained from the analysis of any individual sequence included in the alignment. It provides ways to investigate the relationship between sequence and function from a perspective of evolution. Thus, the MSA of proteins can be employed as a reference for protein engineering. In this paper, we reviewed the recent advances to highlight how protein engineering was benefited from the MSA of proteins. These methods include (1) engineering the thermostability or solubility of proteins by making it closer to the consensus sequence of the alignment through introducing site mutations; (2) structure-based engineering proteins with comparative modeling; (3) creating paleoenzymes featured with high thermostability and promiscuity by constructing the ancestral sequences derived from multiple sequence alignment; and (4) incorporating site-mutations targeting the evolutionarily coupled sites identified from multiple sequence alignment.
Collapse
|
6
|
Georgoulis A, Louka M, Mylonas S, Stavros P, Nounesis G, Vorgias CE. Consensus protein engineering on the thermostable histone-like bacterial protein HUs significantly improves stability and DNA binding affinity. Extremophiles 2020; 24:293-306. [PMID: 31980943 DOI: 10.1007/s00792-020-01154-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/06/2020] [Indexed: 11/28/2022]
Abstract
Consensus-based protein engineering strategy has been applied to various proteins and it can lead to the design of proteins with enhanced biological performance. Histone-like HUs comprise a protein family with sequence variety within a highly conserved 3D-fold. HU function includes compacting and regulating bacterial DNA in a wide range of biological conditions in bacteria. To explore the possible impact of consensus-based design in the thermodynamic stability of HU proteins, the approach was applied using a dataset of sequences derived from a group of 40 mesostable, thermostable, and hyperthermostable HUs. The consensus-derived HU protein was named HUBest, since it is expected to perform best. The synthetic HU gene was overexpressed in E. coli and the recombinant protein was purified. Subsequently, HUBest was characterized concerning its correct folding and thermodynamic stability, as well as its ability to interact with plasmid DNA. A substantial increase in HUBest stability at high temperatures is observed. HUBest has significantly improved biological performance at ambience temperature, presenting very low Kd values for binding plasmid DNA as indicated from the Gibbs energy profile of HUBest. This Kd may be associated to conformational changes leading to decreased thermodynamic stability and, therefore, higher flexibility at ambient temperature.
Collapse
Affiliation(s)
- Anastasios Georgoulis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Maria Louka
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Stratos Mylonas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece
| | - Philemon Stavros
- Biomolecular Physics Laboratory, INRASTES, National Centre for Scientific Research "Demokritos", 153 10, Agia Paraskevi, Greece
| | - George Nounesis
- Biomolecular Physics Laboratory, INRASTES, National Centre for Scientific Research "Demokritos", 153 10, Agia Paraskevi, Greece
| | - Constantinos E Vorgias
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, 157 01, Zografou, Greece.
| |
Collapse
|
7
|
Samson M, Yang T, Omar M, Xu M, Zhang X, Alphonse U, Rao Z. Improved thermostability and catalytic efficiency of overexpressed catalase from B. pumilus ML 413 (KatX2) by introducing disulfide bond C286-C289. Enzyme Microb Technol 2018; 119:10-16. [DOI: 10.1016/j.enzmictec.2018.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 06/25/2018] [Accepted: 08/08/2018] [Indexed: 01/14/2023]
|
8
|
Qian H, Zhang C, Lu Z, Xia B, Bie X, Zhao H, Lu F, Yang GY. Consensus design for improved thermostability of lipoxygenase from Anabaena sp. PCC 7120. BMC Biotechnol 2018; 18:57. [PMID: 30236091 PMCID: PMC6148764 DOI: 10.1186/s12896-018-0468-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/06/2018] [Indexed: 01/21/2023] Open
Abstract
Background Lipoxygenase (LOX) from Anabaena sp. PCC 7120 (Ana-rLOX) offers important applications in the food industry, especially for improving aroma and dough rheological properties. However, industrial applications of LOXs have been limited by their poor thermostability. Herein, we report a bioinformatics-based consensus concept approach for the engineering of thermostable Ana-rLOX. Results A series of mutations (N130D, G260A, S437T, N130D/G260Q, N130D/S437Y) showed higher thermostability and activity than the wild-type enzyme. Thus, N130D/G260Q exhibited a 6.6-fold increase in half-life and 2.45 °C increase in unfolding temperature; N130D/S437Y showed a 10 °C increase in optimal temperature. The secondary structure did not change much that contributed to improved thermostability were investigated in detail using circular dichroism. Homology modeling suggested that enhanced thermostability and specific activity may result from favorable hydrophobic interactions. Conclusions A series of mutations were achieved, showing higher thermostability and activity than the wild-type enzyme by semi-rational mutagenesis with limited structure information. Our findings provide important new insights into molecular modifications aimed at improving Ana-rLOX thermostability and activity. Electronic supplementary material The online version of this article (10.1186/s12896-018-0468-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Qian
- College of Food Science and Technology, Nanjing Agricultural University, 1st Weigang, Nanjing, 210095, People's Republic of China
| | - Chong Zhang
- College of Food Science and Technology, Nanjing Agricultural University, 1st Weigang, Nanjing, 210095, People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1st Weigang, Nanjing, 210095, People's Republic of China
| | - Bingjie Xia
- College of Food Science and Technology, Nanjing Agricultural University, 1st Weigang, Nanjing, 210095, People's Republic of China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, 1st Weigang, Nanjing, 210095, People's Republic of China
| | - Haizhen Zhao
- College of Food Science and Technology, Nanjing Agricultural University, 1st Weigang, Nanjing, 210095, People's Republic of China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, 1st Weigang, Nanjing, 210095, People's Republic of China.
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, College of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
9
|
Li XQ, Wu Q, Hu D, Wang R, Liu Y, Wu MC, Li JF. Improving the temperature characteristics and catalytic efficiency of a mesophilic xylanase from Aspergillus oryzae, AoXyn11A, by iterative mutagenesis based on in silico design. AMB Express 2017; 7:97. [PMID: 28508385 PMCID: PMC5432455 DOI: 10.1186/s13568-017-0399-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/02/2017] [Indexed: 11/10/2022] Open
Abstract
To improve the temperature characteristics and catalytic efficiency of a glycoside hydrolase family (GHF) 11 xylanase from Aspergillus oryzae (AoXyn11A), its variants were predicted based on in silico design. Firstly, Gly21 with the maximum B-factor value, which was confirmed by molecular dynamics (MD) simulation on the three-dimensional structure of AoXyn11A, was subjected to site-saturation mutagenesis. Thus, one variant with the highest thermostability, AoXyn11AG21I, was selected from the mutagenesis library, E. coli/Aoxyn11AG21X (X: any one of 20 amino acids). Secondly, based on the primary structure multiple alignment of AoXyn11A with seven thermophilic GHF11 xylanases, AoXyn11AY13F or AoXyn11AG21I–Y13F, was designed by replacing Tyr13 in AoXyn11A or AoXyn11AG21I with Phe. Finally, three variant-encoding genes, Aoxyn11AG21I, Aoxyn11AY13F and Aoxyn11AG21I–Y13F, were constructed by two-stage whole-plasmid PCR method, and expressed in Pichia pastoris GS115, respectively. The temperature optimum (Topt) of recombinant (re) AoXyn11AG21I–Y13F was 60 °C, being 5 °C higher than that of reAoXyn11AG21I or reAoXyn11AY13F, and 10 °C higher than that of reAoXyn11A. The thermal inactivation half-life (t1/2) of reAoXyn11AG21I–Y13F at 50 °C was 240 min, being 40-, 3.4- and 2.5-fold longer than those of reAoXyn11A, reAoXyn11AG21I and reAoXyn11AY13F. The melting temperature (Tm) values of reAoXyn11A, reAoXyn11AG21I, reAoXyn11AY13F and reAoXyn11AG21I–Y13F were 52.3, 56.5, 58.6 and 61.3 °C, respectively. These findings indicated that the iterative mutagenesis of both Gly21Ile and Tyr13Phe improved the temperature characteristics of AoXyn11A in a synergistic mode. Besides those, the catalytic efficiency (kcat/Km) of reAoXyn11AG21I–Y13F was 473.1 mL mg−1 s−1, which was 1.65-fold higher than that of reAoXyn11A.
Collapse
|
10
|
Broom A, Jacobi Z, Trainor K, Meiering EM. Computational tools help improve protein stability but with a solubility tradeoff. J Biol Chem 2017; 292:14349-14361. [PMID: 28710274 DOI: 10.1074/jbc.m117.784165] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/11/2017] [Indexed: 01/18/2023] Open
Abstract
Accurately predicting changes in protein stability upon amino acid substitution is a much sought after goal. Destabilizing mutations are often implicated in disease, whereas stabilizing mutations are of great value for industrial and therapeutic biotechnology. Increasing protein stability is an especially challenging task, with random substitution yielding stabilizing mutations in only ∼2% of cases. To overcome this bottleneck, computational tools that aim to predict the effect of mutations have been developed; however, achieving accuracy and consistency remains challenging. Here, we combined 11 freely available tools into a meta-predictor (meieringlab.uwaterloo.ca/stabilitypredict/). Validation against ∼600 experimental mutations indicated that our meta-predictor has improved performance over any of the individual tools. The meta-predictor was then used to recommend 10 mutations in a previously designed protein of moderate thermodynamic stability, ThreeFoil. Experimental characterization showed that four mutations increased protein stability and could be amplified through ThreeFoil's structural symmetry to yield several multiple mutants with >2-kcal/mol stabilization. By avoiding residues within functional ties, we could maintain ThreeFoil's glycan-binding capacity. Despite successfully achieving substantial stabilization, however, almost all mutations decreased protein solubility, the most common cause of protein design failure. Examination of the 600-mutation data set revealed that stabilizing mutations on the protein surface tend to increase hydrophobicity and that the individual tools favor this approach to gain stability. Thus, whereas currently available tools can increase protein stability and combining them into a meta-predictor yields enhanced reliability, improvements to the potentials/force fields underlying these tools are needed to avoid gaining protein stability at the cost of solubility.
Collapse
Affiliation(s)
- Aron Broom
- From the Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Zachary Jacobi
- From the Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Kyle Trainor
- From the Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | |
Collapse
|
11
|
Engineering the thermostability of β-glucuronidase from Penicillium purpurogenum Li-3 by loop transplant. Appl Microbiol Biotechnol 2016; 100:9955-9966. [DOI: 10.1007/s00253-016-7630-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/18/2016] [Accepted: 05/11/2016] [Indexed: 12/21/2022]
|
12
|
Diao H, Zhang C, Wang S, Lu F, Lu Z. Enhanced Thermostability of Lipoxygenase from Anabaena sp. PCC 7120 by Site-Directed Mutagenesis Based on Computer-Aided Rational Design. Appl Biochem Biotechnol 2015; 178:1339-50. [DOI: 10.1007/s12010-015-1950-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 12/07/2015] [Indexed: 01/23/2023]
|
13
|
Li SF, Xu JY, Bao YJ, Zheng HC, Song H. Structure and sequence analysis-based engineering of pullulanase from Anoxybacillus sp. LM18-11 for improved thermostability. J Biotechnol 2015; 210:8-14. [DOI: 10.1016/j.jbiotec.2015.06.406] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 06/16/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
|
14
|
Improvement in the thermostability of a type A feruloyl esterase, AuFaeA, from Aspergillus usamii by iterative saturation mutagenesis. Appl Microbiol Biotechnol 2015; 99:10047-56. [PMID: 26266754 DOI: 10.1007/s00253-015-6889-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/05/2015] [Accepted: 07/28/2015] [Indexed: 10/23/2022]
Abstract
Feruloyl or ferulic acid esterase (Fae, EC 3.1.1.73) catalyzes the hydrolysis of ester bonds between polysaccharides and phenolic acid compounds in xylan side chain. In this study, the thermostability of a type A feruloyl esterase (AuFaeA) from Aspergillus usamii was increased by iterative saturation mutagenesis (ISM). Two amino acids, Ser33 and Asn92, were selected for saturation mutagenesis according to the B-factors analyzed by B-FITTER software and ΔΔG values predicted by PoPMuSiC algorithm. After screening the saturation mutagenesis libraries constructed in Pichia pastoris, 15 promising variants were obtained. The best variant S33E/N92-4 (S33E/N92R) produced a T m value of 44.5 °C, the half-lives (t1/2) of 35 and 198 min at 55 and 50 °C, respectively, corresponding to a 4.7 °C, 2.33- and 3.96-fold improvement compared to the wild type. Additionally, the best S33 variant S33-6 (S33E) was thermostable at 50 °C with a t1/2 of 82 min, which was 32 min longer than that of the wild type. All the screened S33E/N92 variants were more thermostable than the best S33 variant S33-6 (S33E). This work would contribute to the further studies on higher thermostability modification of type A feruloyl esterases, especially those from fungi. The thermostable feruloyl esterase variants were expected to be potential candidates for industrial application in prompting the enzymic degradation of plant biomass materials at elevated temperatures.
Collapse
|
15
|
Rhamnogalacturonan I modifying enzymes: an update. N Biotechnol 2015; 33:41-54. [PMID: 26255130 DOI: 10.1016/j.nbt.2015.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/22/2015] [Accepted: 07/29/2015] [Indexed: 11/20/2022]
Abstract
Rhamnogalacturonan I (RGI) modifying enzymes catalyse the degradation of the RGI backbone and encompass enzymes specific for either the α1,2-bond linking galacturonic acid to rhamnose or the α1,4-bond linking rhamnose to galacturonic acid in the RGI backbone. The first microbial enzyme found to be able to catalyse the degradation of the RGI backbone, an endo-hydrolase (EC 3.2.1.171) derived from Aspergillus aculeatus, was discovered 25 years ago. Today the group of RGI modifying enzymes encompasses endo- and exo-hydrolases as well as lyases. The RGI hydrolases, EC 3.2.1.171-EC 3.2.1.174, have been described to be produced by Aspergillus spp. and Bacillus subtilis and are categorized in glycosyl hydrolase families 28 and 105. The RGI lyases, EC 4.2.2.23-EC 4.2.2.24, have been isolated from different fungi and bacterial species and are categorized in polysaccharide lyase families 4 and 11. This review brings together the available knowledge of the RGI modifying enzymes and provides a detailed overview of biocatalytic reaction characteristics, classification, structure-function traits, and analyses the protein properties of these enzymes by multiple sequence alignments in neighbour-joining phylogenetic trees. Some recently detected unique structural features and dependence of calcium for activity of some of these enzymes (notably the lyases) are discussed and newly published results regarding improvement of their thermostability by protein engineering are highlighted. Knowledge of these enzymes is important for understanding microbial plant cell wall degradation and for advancing enzymatic processing and biorefining of pectinaceous plant biomass.
Collapse
|
16
|
Directed Evolution and Structural Analysis of Alkaline Pectate Lyase from the Alkaliphilic Bacterium Bacillus sp. Strain N16-5 To Improve Its Thermostability for Efficient Ramie Degumming. Appl Environ Microbiol 2015; 81:5714-23. [PMID: 26070675 DOI: 10.1128/aem.01017-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/07/2015] [Indexed: 11/20/2022] Open
Abstract
Thermostable alkaline pectate lyases have potential applications in the textile industry as an alternative to chemical-based ramie degumming processes. In particular, the alkaline pectate lyase from Bacillus sp. strain N16-5 (BspPelA) has potential for enzymatic ramie degumming because of its high specific activity under extremely alkaline conditions without the requirement for additional Ca(2+). However, BspPelA displays poor thermostability and is inactive after incubation at 50°C for only 30 min. Here, directed evolution was used to improve the thermostability of BspPelA for efficient and stable degumming. After two rounds of error-prone PCR and screening of >12,000 mutants, 10 mutants with improved thermostability were obtained. Sequence analysis and site-directed mutagenesis revealed that single E124I, T178A, and S271G substitutions were responsible for improving thermostability. Structural and molecular dynamic simulation analysis indicated that the formation of a hydrophobic cluster and new H-bond networks was the key factor contributing to the improvement in thermostability with these three substitutions. The most thermostable combined mutant, EAET, exhibited a 140-fold increase in the t50 (time at which the enzyme loses 50% of its initial activity) value at 50°C, accompanied by an 84.3% decrease in activity compared with that of wild-type BspPelA, while the most advantageous combined mutant, EA, exhibited a 24-fold increase in the t50 value at 50°C, with a 23.3% increase in activity. Ramie degumming with the EA mutant was more efficient than that with wild-type BspPelA. Collectively, our results suggest that the EA mutant, exhibiting remarkable improvements in thermostability and activity, has the potential for applications in ramie degumming in the textile industry.
Collapse
|
17
|
Song L, Tsang A, Sylvestre M. Engineering a thermostable fungal GH10 xylanase, importance of N-terminal amino acids. Biotechnol Bioeng 2015; 112:1081-91. [DOI: 10.1002/bit.25533] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Letian Song
- Institut National de la Recherche Scientifique; INRS-Institut Armand-Frappier; Laval QC H7V 1B7 Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics; Concordia University; Sherbrooke Canada
| | - Michel Sylvestre
- Institut National de la Recherche Scientifique; INRS-Institut Armand-Frappier; Laval QC H7V 1B7 Canada
| |
Collapse
|
18
|
Jers C, Guo Y, Kepp K, Mikkelsen J. Mutants of Micromonospora viridifaciens sialidase have highly variable activities on natural and non-natural substrates. Protein Eng Des Sel 2015; 28:37-44. [DOI: 10.1093/protein/gzu054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
19
|
Thermostability enhancement of an endo-1,4-β-galactanase from Talaromyces stipitatus by site-directed mutagenesis. Appl Microbiol Biotechnol 2014; 99:4245-53. [DOI: 10.1007/s00253-014-6244-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/14/2014] [Accepted: 11/17/2014] [Indexed: 11/25/2022]
|
20
|
Liang C, Gui X, Zhou C, Xue Y, Ma Y, Tang SY. Improving the thermoactivity and thermostability of pectate lyase from Bacillus pumilus for ramie degumming. Appl Microbiol Biotechnol 2014; 99:2673-82. [PMID: 25287558 DOI: 10.1007/s00253-014-6091-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/27/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022]
Abstract
Thermostable alkaline pectate lyases can be potentially used for enzymatically degumming ramie in an environmentally sustainable manner and as an alternative to the currently used chemical-based ramie degumming processes. To assess its potential applications, pectate lyase from Bacillus pumilus (ATCC 7061) was cloned and expressed in Escherichia coli. Evolutionary strategies were applied to generate efficient ramie degumming enzymes. Obtained from site-saturation mutagenesis and random mutagenesis, the best performing mutant enzyme M3 exhibited a 3.4-fold higher specific activity on substrate polygalacturonic acid, compared with the wild-type enzyme. Furthermore, the half-life of inactivation at 50 °C for M3 mutant extended to over 13 h. In contrast, the wild-type enzyme was completely inactivated in less than 10 min under the same conditions. An upward shift in the optimal reaction temperature of M3 mutant, to 75 °C, was observed, which was 10 °C higher than that of the wild-type enzyme. Kinetic parameter data revealed that the catalysis efficiency of M3 mutant was higher than that of the wild-type enzyme. Ramie degumming with M3 mutant was also demonstrated to be more efficient than that with the wild-type enzyme. Collectively, our results suggest that the M3 mutant, with remarkable improvements in thermoactivity and thermostability, has potential applications for ramie degumming in the textile industry.
Collapse
Affiliation(s)
- Chaoning Liang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, 100101, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
21
|
Cao W, Kang Z, Liu S, Liu L, Du G, Chen J. Improved catalytic efficiency of catalase from Bacillus subtilis by rational mutation of Lys114. Process Biochem 2014. [DOI: 10.1016/j.procbio.2014.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Characterization of an extensin-modifying metalloprotease: N-terminal processing and substrate cleavage pattern of Pectobacterium carotovorum Prt1. Appl Microbiol Biotechnol 2014; 98:10077-89. [DOI: 10.1007/s00253-014-5877-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 05/27/2014] [Accepted: 05/29/2014] [Indexed: 11/26/2022]
|
23
|
Feng T, Yan KP, Mikkelsen MD, Meyer AS, Schols HA, Westereng B, Mikkelsen JD. Characterisation of a novel endo-xyloglucanase (XcXGHA) from Xanthomonas that accommodates a xylosyl-substituted glucose at subsite -1. Appl Microbiol Biotechnol 2014; 98:9667-79. [PMID: 24898632 DOI: 10.1007/s00253-014-5825-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 05/08/2014] [Accepted: 05/10/2014] [Indexed: 11/26/2022]
Abstract
A xyloglucan-specific endo-1,4β-glucanase (XcXGHA) from Xanthomonas citri pv. mangiferaeindicae has been cloned, expressed in Escherichia coli, purified and characterised. The XcXGHA enzyme belongs to CAZy family GH74 and has catalytic site residues conserved with other xyloglucanases in this family. At its optimal reaction conditions, pH 7.0 and 40 °C, the enzyme has a k cat/K M value of 2.2 × 10(7) min(-1) M(-1) on a tamarind seed xyloglucan substrate. XcXGHA is relatively stable within a broad pH range (pH 4-9) and up to 50 °C (t 1/2, 50 °C of 74 min). XcXGHA is proven to be xyloglucan-specific, and a glycan microarray study verifies that XcXGHA catalyses cleavage of xyloglucan extracted from both monocot and dicot plant species. The enzyme catalyses hydrolysis of tamarind xyloglucan in a unique way by cleaving XXXG into XX and XG (X is xylosyl-substituted glucose; G is unsubstituted glucose), is able to degrade more complex xyloglucans and notably is able to cleave near more substituted xyloglucan motifs such as L [i.e. α-L-Fucp-(1 → 2)-β-D-Galp-(1 → 2)-α-D-Xylp-(1 → 6)-β-D-Glcp]. LC-MS/MS analysis of product profiles of tamarind xyloglucan which had been catalytically degraded by XcXGHA revealed that XcXGHA has specificity for X in subsite -1. The 3D model suggests that XcXGHA consists of two seven-bladed β-propeller domains with the catalytic center formed by the interface of these two domains, which is conserved in xyloglucanases in the GH74 family. However, the XcXGHA has two amino acids (D264 and R472) that differ from the conserved residues of other GH74 xyloglucanases. These two amino acids were predicted to be located on the opposite side of the active site pocket, facing each other and forming a closing surface above the active site pocket. These two amino acids may contribute to the unique substrate specificity of the XcXGHA enzyme.
Collapse
Affiliation(s)
- Tao Feng
- Center for BioProcess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, 2800 Kgs, Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|