1
|
Yu D, Lin H, Bechthold A, Yu X, Ma Z. RS24090, a TetR family transcriptional repressor, negatively affects the rimocidin biosynthesis in Streptomyces rimosus M527. Int J Biol Macromol 2024; 285:138043. [PMID: 39592035 DOI: 10.1016/j.ijbiomac.2024.138043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
The TetR family of regulators (TFRs), commonly reported as repressors, plays a role in regulating secondary metabolite production in Streptomyces. In this study, we sought to elucidate the relationship between TFRs and rimocidin production of Streptomyces rimosus M527. Through transcriptomic analysis, we identified the protein RS24090, which exhibited significant differential expression. Phylogenetic analysis of its amino acid sequence and structural alignment predicted it to be a TetR family regulator. Thus, RS24090 was named TetR24. The role of TetR24 in biosynthesis of rimocidin was verified through gene-deletion, -complementation, and -overexpression experiments. The TetR24 gene-deletion mutant (ΔTetR24), which was generated using CRISPR/Cas9 technology, produced 38.08 % more rimocidin than the wild-type (WT) strain M527. Complementary expression of the TetR24 gene in the mutant ΔTetR24 restored rimocidin production to levels comparable to the WT strain. In contrast, the recombinant strain M527-TetR24, which harbored an overexpression of the TetR24 gene, exhibited a 40.31 % decrease in rimocidin production compared to the WT strain. A similar trend in the transcription levels of the rim genes (rimA, rimC, rimG, rimR1, and rimR2), all located in the rimocidin biosynthetic gene cluster, was revealed by quantitative RT-PCR analysis in M527-ΔTetR24, M527-ΔTetR24::TetR24, and M527-TetR24. EMSA and DNase I footprinting assays confirmed that TetR24 regulates the transcription of rim genes by binding to promoter regions of rimA and rimR2.
Collapse
Affiliation(s)
- Dan Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Hengyi Lin
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Andreas Bechthold
- University of Freiburg, Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, 79104 Freiburg, Germany
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province 310018, China.
| |
Collapse
|
2
|
Du G, Yang X, Wu Z, Pan M, Dong Z, Zhang Y, Xiang W, Li S. Influence of Cluster-Situated Regulator PteF in Filipin Biosynthetic Cluster on Avermectin Biosynthesis in Streptomyces avermitilis. BIOLOGY 2024; 13:344. [PMID: 38785828 PMCID: PMC11118972 DOI: 10.3390/biology13050344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Crosstalk regulation is widespread in Streptomyces species. Elucidating the influence of a specific regulator on target biosynthetic gene clusters (BGCs) and cell metabolism is crucial for strain improvement through regulatory protein engineering. PteF and PteR are two regulators that control the biosynthesis of filipin, which competes for building blocks with avermectins in Streptomyces avermitilis. However, little is known about the effects of PteF and PteR on avermectin biosynthesis. In this study, we investigated their impact on avermectin biosynthesis and global cell metabolism. The deletion of pteF resulted in a 55.49% avermectin titer improvement, which was 23.08% higher than that observed from pteR deletion, suggesting that PteF plays a more significant role in regulating avermectin biosynthesis, while PteF hardly influences the transcription level of genes in avermectin and other polyketide BGCs. Transcriptome data revealed that PteF exhibited a global regulatory effect. Avermectin production enhancement could be attributed to the repression of the tricarboxylic acid cycle and fatty acid biosynthetic pathway, as well as the enhancement of pathways supplying acyl-CoA precursors. These findings provide new insights into the role of PteF on avermectin biosynthesis and cell metabolism, offering important clues for designing and building efficient metabolic pathways to develop high-yield avermectin-producing strains.
Collapse
Affiliation(s)
- Guozhong Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (G.D.); (X.Y.); (Z.W.); (M.P.); (Z.D.); (Y.Z.)
| | - Xue Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (G.D.); (X.Y.); (Z.W.); (M.P.); (Z.D.); (Y.Z.)
| | - Zhengxiong Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (G.D.); (X.Y.); (Z.W.); (M.P.); (Z.D.); (Y.Z.)
| | - Minghui Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (G.D.); (X.Y.); (Z.W.); (M.P.); (Z.D.); (Y.Z.)
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China
| | - Zhuoxu Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (G.D.); (X.Y.); (Z.W.); (M.P.); (Z.D.); (Y.Z.)
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (G.D.); (X.Y.); (Z.W.); (M.P.); (Z.D.); (Y.Z.)
| | - Wensheng Xiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (G.D.); (X.Y.); (Z.W.); (M.P.); (Z.D.); (Y.Z.)
- School of Life Science, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin 150030, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China; (G.D.); (X.Y.); (Z.W.); (M.P.); (Z.D.); (Y.Z.)
| |
Collapse
|
3
|
Pei X, Lei Y, Zhang H. Transcriptional regulators of secondary metabolite biosynthesis in Streptomyces. World J Microbiol Biotechnol 2024; 40:156. [PMID: 38587708 DOI: 10.1007/s11274-024-03968-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/25/2024] [Indexed: 04/09/2024]
Abstract
In the post-genome era, great progress has been made in metabolic engineering using recombinant DNA technology to enhance the production of high-value products by Streptomyces. With the development of microbial genome sequencing techniques and bioinformatic tools, a growing number of secondary metabolite (SM) biosynthetic gene clusters in Streptomyces and their biosynthetic logics have been uncovered and elucidated. In order to increase our knowledge about transcriptional regulators in SM of Streptomyces, this review firstly makes a comprehensive summary of the characterized factors involved in enhancing SM production and awakening SM biosynthesis. Future perspectives on transcriptional regulator engineering for new SM biosynthesis by Streptomyces are also provided.
Collapse
Affiliation(s)
- Xinwei Pei
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yunyun Lei
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
4
|
Yan X, Dong Y, Gu Y, Cui H. Effect of Precursors and Their Regulators on the Biosynthesis of Antibiotics in Actinomycetes. Molecules 2024; 29:1132. [PMID: 38474644 DOI: 10.3390/molecules29051132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
During the life activities of microorganisms, a variety of secondary metabolites are produced, including antimicrobials and antitumor drugs, which are widely used in clinical practice. In addition to exploring new antibiotics, this makes it one of the research priorities of Actinomycetes to effectively increase the yield of antibiotics in production strains by various means. Most antibiotic-producing strains have a variety of functional regulatory factors that regulate their growth, development, and secondary metabolite biosynthesis processes. Through the study of precursor substances in antibiotic biosynthesis, researchers have revealed the precursor biosynthesis process and the mechanism by which precursor synthesis regulators affect the biosynthesis of secondary metabolites, which can be used to obtain engineered strains with high antibiotic production. This paper summarizes the supply of antibiotic biosynthesis precursors and the progress of research on the role of regulators in the process of precursors in biosynthesis. This lays the foundation for the establishment of effective breeding methods to improve antibiotic yields through the manipulation of precursor synthesis genes and related regulators.
Collapse
Affiliation(s)
- Xu Yan
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Yao Dong
- College of Biology & Food Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Yawen Gu
- Analytical and Testing Center of Hebei Province, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Hao Cui
- College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| |
Collapse
|
5
|
Li GH, Zhang KQ. Natural nematicidal metabolites and advances in their biocontrol capacity on plant parasitic nematodes. Nat Prod Rep 2023; 40:646-675. [PMID: 36597965 DOI: 10.1039/d2np00074a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Covering: 2010 to 2021Natural nematicidal metabolites are important sources of nematode control. This review covers the isolation and structural determination of nematicidal metabolites from 2010 to 2021. We summarise chemical structures, bioactivity, metabolic regulation and biosynthesis of potential nematocides, and structure-activity relationship and application potentiality of natural metabolites in plant parasitic nematodes' biocontrol. In doing so, we aim to provide a comprehensive overview of the potential roles that natural metabolites can play in anti-nematode strategies.
Collapse
Affiliation(s)
- Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650091, China.
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
6
|
Xu Z, Park TJ, Cao H. Advances in mining and expressing microbial biosynthetic gene clusters. Crit Rev Microbiol 2023; 49:18-37. [PMID: 35166616 DOI: 10.1080/1040841x.2022.2036099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Natural products (NPs) especially the secondary metabolites originated from microbes exhibit great importance in biomedical, industrial and agricultural applications. However, mining biosynthetic gene clusters (BGCs) to produce novel NPs has been hindered owing that a large population of environmental microbes are unculturable. In the past decade, strategies to explore BGCs directly from (meta)genomes have been established along with the fast development of high-throughput sequencing technologies and the powerful bioinformatics data-processing tools, which greatly expedited the exploitations of novel BGCs from unculturable microbes including the extremophilic microbes. In this review, we firstly summarized the popular bioinformatics tools and databases available to mine novel BGCs from (meta)genomes based on either pure cultures or pristine environmental samples. Noticeably, approaches rooted from machine learning and deep learning with focuses on the prediction of ribosomally synthesized and post-translationally modified peptides (RiPPs) were dramatically increased in recent years. Moreover, synthetic biology techniques to express the novel BGCs in culturable native microbes or heterologous hosts were introduced. This working pipeline including the discovery and biosynthesis of novel NPs will greatly advance the exploitations of the abundant but unexplored microbial BGCs.
Collapse
Affiliation(s)
- Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Tae-Jin Park
- HME Healthcare Co., Ltd, Suwon-si, Republic of Korea
| | - Huiluo Cao
- Department of Microbiology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Yi JS, Kim JM, Ban YH, Yoon YJ. Modular polyketide synthase-derived insecticidal agents: from biosynthesis and metabolic engineering to combinatorial biosynthesis for their production. Nat Prod Rep 2023; 40:972-987. [PMID: 36691749 DOI: 10.1039/d2np00078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Covering: up to 2022Polyketides derived from actinomycetes are a valuable source of eco-friendly biochemical insecticides. The development of new insecticides is urgently required, as the number of insects resistant to more than one drug is rapidly increasing. Moreover, significant enhancement of the production of such biochemical insecticides is required for economical production. There has been considerable improvement in polyketide insecticidal agent production and development of new insecticides. However, most commercially important biochemical insecticides are synthesized by modular type I polyketide synthases (PKSs), and their structural complexities make chemical modification challenging. A detailed understanding of the biosynthetic mechanisms of potent polyketide insecticides and the structure-activity relationships of their analogs will provide insight into the comprehensive design of new insecticides with improved efficacies. Further metabolic engineering and combinatorial biosynthesis efforts, reinvigorated by synthetic biology, can eventually produce designed analogs in large quantities. This highlight reviews the biosynthesis of representative insecticides produced by modular type I PKSs, such as avermectin, spinosyn, and spectinabilin, and their insecticidal properties. Metabolic engineering and combinatorial biosynthetic strategies for the development of high-yield strains and analogs with insecticidal activities are emphasized, proposing a way to develop a next-generation insecticide.
Collapse
Affiliation(s)
- Jeong Sang Yi
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Jung Min Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Yeon Hee Ban
- College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Yeo Joon Yoon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Ye L, Zhang Y, Li S, He H, Ai G, Wang X, Xiang W. Transcriptome-guided identification of a four-component system, SbrH1-R, that modulates milbemycin biosynthesis by influencing gene cluster expression, precursor supply, and antibiotic efflux. Synth Syst Biotechnol 2022; 7:705-717. [PMID: 35261928 PMCID: PMC8866680 DOI: 10.1016/j.synbio.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/10/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
|
9
|
Seong J, Shin J, Kim K, Cho BK. Microbial production of nematicidal agents for controlling plant-parasitic nematodes. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Xia H, Li X, Li Z, Zhan X, Mao X, Li Y. The Application of Regulatory Cascades in Streptomyces: Yield Enhancement and Metabolite Mining. Front Microbiol 2020; 11:406. [PMID: 32265866 PMCID: PMC7105598 DOI: 10.3389/fmicb.2020.00406] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/26/2020] [Indexed: 12/13/2022] Open
Abstract
Streptomyces is taken as an important resource for producing the most abundant antibiotics and other bio-active natural products, which have been widely used in pharmaceutical and agricultural areas. Usually they are biosynthesized through secondary metabolic pathways encoded by cluster situated genes. And these gene clusters are stringently regulated by interweaved transcriptional regulatory cascades. In the past decades, great advances have been made to elucidate the regulatory mechanisms involved in antibiotic production in Streptomyces. In this review, we summarized the recent advances on the regulatory cascades of antibiotic production in Streptomyces from the following four levels: the signals triggering the biosynthesis, the global regulators, the pathway-specific regulators and the feedback regulation. The production of antibiotic can be largely enhanced by rewiring the regulatory networks, such as overexpression of positive regulators, inactivation of repressors, fine-tuning of the feedback and ribosomal engineering in Streptomyces. The enormous amount of genomic sequencing data implies that the Streptomyces has potential to produce much more antibiotics for the great diversities and wide distributions of biosynthetic gene clusters in Streptomyces genomes. Most of these gene clusters are defined cryptic for unknown or undetectable natural products. In the synthetic biology era, activation of the cryptic gene clusters has been successfully achieved by manipulation of the regulatory genes. Chemical elicitors, rewiring regulatory gene and ribosomal engineering have been employed to crack the potential of cryptic gene clusters. These have been proposed as the most promising strategy to discover new antibiotics. For the complex of regulatory network in Streptomyces, we proposed that the discovery of new antibiotics and the optimization of industrial strains would be greatly promoted by further understanding the regulatory mechanism of antibiotic production.
Collapse
Affiliation(s)
- Haiyang Xia
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Xiaofang Li
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Zhangqun Li
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Xinqiao Zhan
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China
| | - Xuming Mao
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China.,Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongquan Li
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, China.,Institute of Pharmaceutical Biotechnology, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Wei J, He L, Niu G. Regulation of antibiotic biosynthesis in actinomycetes: Perspectives and challenges. Synth Syst Biotechnol 2018; 3:229-235. [PMID: 30417136 PMCID: PMC6215055 DOI: 10.1016/j.synbio.2018.10.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/27/2018] [Accepted: 10/17/2018] [Indexed: 02/08/2023] Open
Abstract
Actinomycetes are the main sources of antibiotics. The onset and level of production of each antibiotic is subject to complex control by multi-level regulators. These regulators exert their functions at hierarchical levels. At the lower level, cluster-situated regulators (CSRs) directly control the transcription of neighboring genes within the gene cluster. Higher-level pleiotropic and global regulators exert their functions mainly through modulating the transcription of CSRs. Advances in understanding of the regulation of antibiotic biosynthesis in actinomycetes have inspired us to engineer these regulators for strain improvement and antibiotic discovery.
Collapse
Affiliation(s)
- Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Lang He
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| | - Guoqing Niu
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
12
|
Guo J, Zhang X, Lu X, Liu W, Chen Z, Li J, Deng L, Wen Y. SAV4189, a MarR-Family Regulator in Streptomyces avermitilis, Activates Avermectin Biosynthesis. Front Microbiol 2018; 9:1358. [PMID: 30013524 PMCID: PMC6036246 DOI: 10.3389/fmicb.2018.01358] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022] Open
Abstract
The bacterial species Streptomyces avermitilis is an important industrial producer of avermectins, which are widely utilized as effective anthelmintic and insecticidal drugs. We used gene deletion, complementation, and overexpression experiments to identify SAV4189, a MarR-family transcriptional regulator (MFR) in this species, as an activator of avermectin biosynthesis. SAV4189 indirectly stimulated avermectin production by altering expression of cluster-situated activator gene aveR, and directly repressed the transcription of its own gene (sav_4189) and adjacent cotranscribed gene sav_4190 (which encodes an unknown transmembrane efflux protein). A consensus 13-bp palindromic sequence, 5'-TTGCCYKHRSCAA-3' (Y = T/C; K = T/G; H = A/C/T; R = A/G; S = C/G), was found within the SAV4189-binding sites of its own promoter region, and shown to be essential for binding. The SAV4189 regulon was thus predicted based on bioinformatic analysis. Night new identified SAV4189 targets are involved in transcriptional regulation, primary metabolism, secondary metabolism, and stress response, reflecting a pleiotropic role of SAV4189. sav_4190, the important target gene of SAV4189, exerted a negative effect on avermectin production. sav_4189 overexpression and sav_4190 deletion in S. avermitilis wild-type and industrial strains significantly increased avermectin production. SAV4189 homologs are widespread in other Streptomyces species. sav_4189 overexpression in the model species S. coelicolor also enhanced antibiotic production. The strategy of increasing yield of important antibiotics by engineering of SAV4189 homologs and target gene may potentially be extended to other industrial Streptomyces species. In addition, SAV4189 bound and responded to exogenous antibiotics hygromycin B and thiostrepton to modulate its DNA-binding activity and transcription of target genes. SAV4189 is the first reported exogenous antibiotic receptor among Streptomyces MFRs.
Collapse
Affiliation(s)
- Jia Guo
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xuan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaorui Lu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wenshuai Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhi Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jilun Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Ying Wen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Learn from microbial intelligence for avermectins overproduction. Curr Opin Biotechnol 2017; 48:251-257. [DOI: 10.1016/j.copbio.2017.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 11/21/2022]
|
14
|
Chen X, Gao C, Guo L, Hu G, Luo Q, Liu J, Nielsen J, Chen J, Liu L. DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chem Rev 2017; 118:4-72. [DOI: 10.1021/acs.chemrev.6b00804] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xiulai Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liang Guo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guipeng Hu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qiuling Luo
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jia Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jens Nielsen
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Lyngby, Denmark
| | - Jian Chen
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State
Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Department
of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg SE-412 96, Sweden
- Key
Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
15
|
Ünsaldı E, Kurt-Kızıldoğan A, Voigt B, Becher D, Özcengiz G. Proteome-wide alterations in an industrial clavulanic acid producing strain of Streptomyces clavuligerus. Synth Syst Biotechnol 2016; 2:39-48. [PMID: 29062960 PMCID: PMC5625738 DOI: 10.1016/j.synbio.2016.10.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/17/2016] [Accepted: 10/23/2016] [Indexed: 11/26/2022] Open
Abstract
The usefulness of genetic/metabolic engineering for further improvement of industrial strains is subject of discussion because of the general lack of knowledge on genetic alterations introduced by iterative cycles of random mutagenesis in such strains. An industrial clavulanic acid (CA)-overproducer Streptomyces clavuligerus DEPA was assessed to understand proteome-wide changes that have occurred in a local industrial CA overproducer developed through succesive mutagenesis programs. The proteins that could be identified corresponded to 33 distinct ORFs for underrepresented ones and 60 ORFs for overrepresented ones. Three CA biosynthetic enzymes were overrepresented in S. clavuligerus DEPA; carboxyethylarginine synthase (Ceas2), clavaldehyde dehydrogenase (Car) and carboxyethyl-arginine beta-lactam-synthase (Bls2) whereas the enzymes of two other secondary metabolites were underrepresented along with two important global regulators [two-component system (TCS) response regulator (SCLAV_2102) and TetR-family transcriptional regulator (SCLAV_3146)] that might be related with CA production and/or differentiation. γ-butyrolactone biosynthetic protein AvaA2 was 2.6 fold underrepresented in S. clavuligerus DEPA. The levels of two glycolytic enzymes, 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase and phosophoglycerate kinase were found decreased while those of dihydrolipoyl dehydrogenase (E3) and isocitrate dehydrogenase, with two isoforms were found as significantly increased. A decrease of amino acid metabolism, methionine biosynthesis in particular, as well as S-adenosylmethionine synthetase appeared as one of the prominent mechanisms of success of S. clavuligerus DEPA strain as a prolific producer of CA. The levels of two enzymes of shikimate pathway that leads to the production of aromatic amino acids and aromatic secondary metabolites were also underrepresented. Some of the overrepresented stress proteins in S. clavuligerus DEPA included polynucleotide phosphorylase/polyadenylase (PNPase), ATP-dependent DNA helicase, two isoforms of an anti-sigma factor and thioredoxin reductase. Downregulation of important proteins of cell wall synthesis and division was recorded and a protein with β-lactamase domain (SCLAV_p1007) appeared in 12 isoforms, 5 of which were drastically overrepresented in DEPA strain. These results described herein provide useful information for rational engineering to improve CA production in Streptomyces clavuligerus.
Collapse
Affiliation(s)
- Eser Ünsaldı
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| | - Aslıhan Kurt-Kızıldoğan
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey.,Department of Agricultural Biotechnology, Ondokuz Mayıs University, 55139, Samsun, Turkey
| | - Birgit Voigt
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald, D-17487, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald, D-17487, Greifswald, Germany
| | - Gülay Özcengiz
- Department of Biological Sciences, Middle East Technical University, 06800, Ankara, Turkey
| |
Collapse
|
16
|
Zhu J, Sun D, Liu W, Chen Z, Li J, Wen Y. AvaR2, a pseudo γ-butyrolactone receptor homologue from Streptomyces avermitilis, is a pleiotropic repressor of avermectin and avenolide biosynthesis and cell growth. Mol Microbiol 2016; 102:562-578. [PMID: 27502190 DOI: 10.1111/mmi.13479] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2016] [Indexed: 11/27/2022]
Abstract
Avermectins produced by Streptomyces avermitilis are effective anthelmintic agents. The autoregulatory signalling molecule that triggers avermectin biosynthesis is a novel butenolide-type molecule, avenolide, rather than common γ-butyrolactones (GBLs). We identified AvaR2, a pseudo GBL receptor homologue, as an important repressor of avermectin and avenolide biosynthesis and cell growth. AvaR2 directly repressed transcription of aveR (the ave cluster-situated activator gene), aco (a key gene for avenolide biosynthesis), its own gene (avaR2) and two other GBL receptor homologous genes (avaR1 and avaR3) by binding to their promoter regions. The aveR promoter had the highest affinity for AvaR2. A consensus 18 bp ARE (autoregulatory element)-like sequence was found in the AvaR2-binding regions of these five target genes. Eleven novel AvaR2 targets were identified, including genes involved in primary metabolism, ribosomal protein synthesis, and stress responses. AvaR2 bound and responded to endogenous avenolide and exogenous antibiotics jadomycin B (JadB) and aminoglycosides to modulate its DNA-binding activity. Our findings help to clarify the roles of pseudo GBL receptors as pleiotropic regulators and as receptors for new type autoregulator and exogenous antibiotic signal. A pseudo GBL receptor-mediated antibiotic signalling transduction system may be a common strategy that facilitates Streptomyces interspecies communication and survival in complex environments.
Collapse
Affiliation(s)
- Jianya Zhu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Di Sun
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenshuai Liu
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhi Chen
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jilun Li
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Ying Wen
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil Microbiology, Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
17
|
Abstract
The 2015 Nobel Prize in Physiology or Medicine has been awarded to avermectins and artemisinin, respectively. Avermectins produced by Streptomyces avermitilis are excellent anthelmintic and potential antibiotic agents. Because wild-type strains only produce low levels of avermectins, much research effort has focused on improvements in avermectin production to meet the ever increasing demand for such compounds. This review describes the strategies that have been widely employed and the future prospects of synthetic biology applications in avermectin yield improvement. With the help of genome sequencing of S. avermitilis and an understanding of the avermectin biosynthetic/regulatory pathways, synthetic and systems biotechnology approaches have been applied for precision engineering. We focus on the design and synthesis of biological chassis, parts, devices, and modules from diverse microbes to reconstruct and optimize their dynamic processes, as well as predict favorable effective overproduction of avermectins by a 4Ms strategy (Mine, Model, Manipulation, and Measurement).
Collapse
Key Words
- APGD, atmospheric pressure glow discharge
- Avermectins
- BCDH, branched-chain alpha-keto acid dehydrogenase
- ChIP, chromatin immunoprecipitation
- DO, dissolved oxygen
- EER, ethanol evolution rate
- GBL, gamma-butyrolactone
- HMGE, high-magnet gravitational environment
- IB-CoA, isobutyryl-CoA
- MB-CoA, 2-methybutyryl-CoA
- MDR-TB, multidrug-resistant tuberculosis
- MM-CoA, methylmalonyl- CoA
- MMS, methyl methanesulphonate
- MRSA, methicillin-resistant Staphylococcus aureus
- MTP, microtiter plates
- Metabolic engineering
- NA, nitrous acid
- NTG, N-methyl-N-nitro-N-nitrosoguanidine
- OUR, oxygen uptake rate
- PBD, Plackett–Burman design
- RF, radio frequency
- RRF, ribosome recycling factor
- SAM, S-adenosylmethionine
- STPK, serine-threonine protein kinases
- Streptomyces avermitilis
- Synthetic biology
- TAR, transformation-assisted recombination
- UV, ultraviolet rays
- XDR-TB, extensively drug-resistant tuberculosis
Collapse
|
18
|
Wu H, Wang Y, Yuan L, Mao Y, Wang W, Zhu L, Wu P, Fu C, Müller R, Weaver DT, Zhang L, Zhang B. Inactivation of SACE_3446, a TetR family transcriptional regulator, stimulates erythromycin production in Saccharopolyspora erythraea. Synth Syst Biotechnol 2016; 1:39-46. [PMID: 29062926 PMCID: PMC5640589 DOI: 10.1016/j.synbio.2016.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/08/2016] [Accepted: 01/10/2016] [Indexed: 11/29/2022] Open
Abstract
Erythromycin A is a widely used antibiotic produced by Saccharopolyspora erythraea; however, its biosynthetic cluster lacks a regulatory gene, limiting the yield enhancement via regulation engineering of S. erythraea. Herein, six TetR family transcriptional regulators (TFRs) belonging to three genomic context types were individually inactivated in S. erythraea A226, and one of them, SACE_3446, was proved to play a negative role in regulating erythromycin biosynthesis. EMSA and qRT-PCR analysis revealed that SACE_3446 covering intact N-terminal DNA binding domain specifically bound to the promoter regions of erythromycin biosynthetic gene eryAI, the resistant gene ermE and the adjacent gene SACE_3447 (encoding a long-chain fatty-acid CoA ligase), and repressed their transcription. Furthermore, we explored the interaction relationships of SACE_3446 and previously identified TFRs (SACE_3986 and SACE_7301) associated with erythromycin production. Given demonstrated relatively independent regulation mode of SACE_3446 and SACE_3986 in erythromycin biosynthesis, we individually and concomitantly inactivated them in an industrial S. erythraea WB. Compared with WB, the WBΔ3446 and WBΔ3446Δ3986 mutants respectively displayed 36% and 65% yield enhancement of erythromycin A, following significantly elevated transcription of eryAI and ermE. When cultured in a 5 L fermentor, erythromycin A of WBΔ3446 and WBΔ3446Δ3986 successively reached 4095 mg/L and 4670 mg/L with 23% and 41% production improvement relative to WB. The strategy reported here will be useful to improve antibiotics production in other industrial actinomycete.
Collapse
Affiliation(s)
- Hang Wu
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Yansheng Wang
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Li Yuan
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Yongrong Mao
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Weiwei Wang
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Lin Zhu
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Panpan Wu
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Chengzhang Fu
- CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.,Helmholtz Institute for Pharmaceutical Research, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, P.O. Box 15115, 66041 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, P.O. Box 15115, 66041 Saarbrücken, Germany
| | - David T Weaver
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| | - Lixin Zhang
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China.,CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Buchang Zhang
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei 230601, China
| |
Collapse
|
19
|
DNA affinity capturing identifies new regulators of the heterologously expressed novobiocin gene cluster in Streptomyces coelicolor M512. Appl Microbiol Biotechnol 2016; 100:4495-509. [PMID: 26795961 DOI: 10.1007/s00253-016-7306-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 10/22/2022]
Abstract
Understanding the regulation of a heterologously expressed gene cluster in a host organism is crucial for activation of silent gene clusters or overproduction of the corresponding natural product. In this study, Streptomyces coelicolor M512(nov-BG1) containing the novobiocin biosynthetic gene cluster from Streptomyces niveus NCIMB 11891 was chosen as a model. An improved DNA affinity capturing assay (DACA), combined with semi-quantitative mass spectrometry, was used to identify proteins binding to the promoter regions of the novobiocin gene cluster. Altogether, 2475 proteins were identified in DACA studies with the promoter regions of the pathway-specific regulators novE (PnovE) and novG (PnovG), of the biosynthetic genes novH-W (PnovH) and of the vegetative σ-factor hrdB (PhrdB) as a negative control. A restrictive classification for specific binding reduced this number to 17 proteins. Twelve of them were captured by PnovH, among them, NovG, two were captured by PnovE, and three by PnovG. Unexpectedly some well-known regulatory proteins, such as the global regulators NdgR, AdpA, SlbR, and WhiA were captured in similar intensities by all four tested promoter regions. Of the 17 promoter-specific proteins, three were studied in more detail by deletion mutagenesis and by overexpression. Two of them, BxlRSc and BxlR2Sc, could be identified as positive regulators of novobiocin production in S. coelicolor M512. Deletion of a third gene, sco0460, resulted in reduced novobiocin production, while overexpression had no effect. Furthermore, binding of BxlRSc to PnovH and to its own promoter region was confirmed via surface plasmon resonance spectroscopy.
Collapse
|
20
|
Gallo G, Renzone G, Palazzotto E, Monciardini P, Arena S, Faddetta T, Giardina A, Alduina R, Weber T, Sangiorgi F, Russo A, Spinelli G, Sosio M, Scaloni A, Puglia AM. Elucidating the molecular physiology of lantibiotic NAI-107 production in Microbispora ATCC-PTA-5024. BMC Genomics 2016; 17:42. [PMID: 26754974 PMCID: PMC4709908 DOI: 10.1186/s12864-016-2369-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 01/06/2016] [Indexed: 11/24/2022] Open
Abstract
Background The filamentous actinomycete Microbispora ATCC-PTA-5024 produces the lantibiotic NAI-107, which is an antibiotic peptide effective against multidrug-resistant Gram-positive bacteria. In actinomycetes, antibiotic production is often associated with a physiological differentiation program controlled by a complex regulatory and metabolic network that may be elucidated by the integration of genomic, proteomic and bioinformatic tools. Accordingly, an extensive evaluation of the proteomic changes associated with NAI-107 production was performed on Microbispora ATCC-PTA-5024 by combining two-dimensional difference in gel electrophoresis, mass spectrometry and gene ontology approaches. Results Microbispora ATCC-PTA-5024 cultivations in a complex medium were characterized by stages of biomass accumulation (A) followed by biomass yield decline (D). NAI-107 production started at 90 h (A stage), reached a maximum at 140 h (D stage) and decreased thereafter. To reveal patterns of differentially represented proteins associated with NAI-107 production onset and maintenance, differential proteomic analyses were carried-out on biomass samples collected: i) before (66 h) and during (90 h) NAI-107 production at A stage; ii) during three time-points (117, 140, and 162 h) at D stage characterized by different profiles of NAI-107 yield accumulation (117 and 140 h) and decrement (162 h). Regulatory, metabolic and unknown-function proteins, were identified and functionally clustered, revealing that nutritional signals, regulatory cascades and primary metabolism shift-down trigger the accumulation of protein components involved in nitrogen and phosphate metabolism, cell wall biosynthesis/maturation, lipid metabolism, osmotic stress response, multi-drug resistance, and NAI-107 transport. The stimulating role on physiological differentiation of a TetR-like regulator, originally identified in this study, was confirmed by the construction of an over-expressing strain. Finally, the possible role of cellular response to membrane stability alterations and of multi-drug resistance ABC transporters as additional self-resistance mechanisms toward the lantibiotic was confirmed by proteomic and confocal microscopy experiments on a Microbispora ATCC-PTA-5024 lantibiotic-null producer strain which was exposed to an externally-added amount of NAI-107 during growth. Conclusion This study provides a net contribution to the elucidation of the regulatory, metabolic and molecular patterns controlling physiological differentiation in Microbispora ATCC-PTA-5024, supporting the relevance of proteomics in revealing protein players of antibiotic biosynthesis in actinomycetes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2369-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giuseppe Gallo
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy.
| | - Giovanni Renzone
- Proteomic and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Naples, Italy
| | - Emilia Palazzotto
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy
| | | | - Simona Arena
- Proteomic and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Naples, Italy
| | - Teresa Faddetta
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy
| | - Anna Giardina
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy
| | - Rosa Alduina
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970, Hørsholm, Denmark.,German Center for Infection Research (DZIF) partner site Tübingen, 72074, Tübingen, Germany
| | - Fabio Sangiorgi
- Sistema Informativo di Ateneo (SIA), Area Servizi di Rete, University of Palermo, 90128, Palermo, Italy
| | - Alessandro Russo
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy
| | - Giovanni Spinelli
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy
| | | | - Andrea Scaloni
- Proteomic and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147, Naples, Italy
| | - Anna Maria Puglia
- Laboratory of Molecular Microbiology and Biotechnology, STEBICEF Department, University of Palermo, 90128, Palermo, Italy
| |
Collapse
|
21
|
Romero-Rodríguez A, Robledo-Casados I, Sánchez S. An overview on transcriptional regulators in Streptomyces. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1017-39. [PMID: 26093238 DOI: 10.1016/j.bbagrm.2015.06.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 06/09/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022]
Abstract
Streptomyces are Gram-positive microorganisms able to adapt and respond to different environmental conditions. It is the largest genus of Actinobacteria comprising over 900 species. During their lifetime, these microorganisms are able to differentiate, produce aerial mycelia and secondary metabolites. All of these processes are controlled by subtle and precise regulatory systems. Regulation at the transcriptional initiation level is probably the most common for metabolic adaptation in bacteria. In this mechanism, the major players are proteins named transcription factors (TFs), capable of binding DNA in order to repress or activate the transcription of specific genes. Some of the TFs exert their action just like activators or repressors, whereas others can function in both manners, depending on the target promoter. Generally, TFs achieve their effects by using one- or two-component systems, linking a specific type of environmental stimulus to a transcriptional response. After DNA sequencing, many streptomycetes have been found to have chromosomes ranging between 6 and 12Mb in size, with high GC content (around 70%). They encode for approximately 7000 to 10,000 genes, 50 to 100 pseudogenes and a large set (around 12% of the total chromosome) of regulatory genes, organized in networks, controlling gene expression in these bacteria. Among the sequenced streptomycetes reported up to now, the number of transcription factors ranges from 471 to 1101. Among these, 315 to 691 correspond to transcriptional regulators and 31 to 76 are sigma factors. The aim of this work is to give a state of the art overview on transcription factors in the genus Streptomyces.
Collapse
Affiliation(s)
- Alba Romero-Rodríguez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Ivonne Robledo-Casados
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico
| | - Sergio Sánchez
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México, D.F. 04510, Mexico.
| |
Collapse
|
22
|
Increasing Avermectin Production in Streptomyces avermitilis by Manipulating the Expression of a Novel TetR-Family Regulator and Its Target Gene Product. Appl Environ Microbiol 2015; 81:5157-73. [PMID: 26002902 DOI: 10.1128/aem.00868-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/18/2015] [Indexed: 11/20/2022] Open
Abstract
Avermectins produced by Streptomyces avermitilis are commercially important anthelmintic agents. The detailed regulatory mechanisms of avermectin biosynthesis remain unclear. Here, we identified SAV3619, a TetR-family transcriptional regulator designated AveT, to be an activator for both avermectin production and morphological differentiation in S. avermitilis. AveT was shown to indirectly stimulate avermectin production by affecting transcription of the cluster-situated activator gene aveR. AveT directly repressed transcription of its own gene (aveT), adjacent gene pepD2 (sav_3620), sav_7490 (designated aveM), and sav_7491 by binding to an 18-bp perfect palindromic sequence (CGAAACGKTKYCGTTTCG, where K is T or G and Y is T or C and where the underlining indicates inverted repeats) within their promoter regions. aveM (which encodes a putative transmembrane efflux protein belonging to the major facilitator superfamily [MFS]), the important target gene of AveT, had a striking negative effect on avermectin production and morphological differentiation. Overexpression of aveT and deletion of aveM in wild-type and industrial strains of S. avermitilis led to clear increases in the levels of avermectin production. In vitro gel-shift assays suggested that C-5-O-B1, the late pathway precursor of avermectin B1, acts as an AveT ligand. Taken together, our findings indicate positive-feedback regulation of aveT expression and avermectin production by a late pathway intermediate and provide the basis for an efficient strategy to increase avermectin production in S. avermitilis by manipulation of AveT and its target gene product, AveM.
Collapse
|
23
|
Wu H, Chen M, Mao Y, Li W, Liu J, Huang X, Zhou Y, Ye BC, Zhang L, Weaver DT, Zhang B. Dissecting and engineering of the TetR family regulator SACE_7301 for enhanced erythromycin production in Saccharopolyspora erythraea. Microb Cell Fact 2014; 13:158. [PMID: 25391994 PMCID: PMC4258057 DOI: 10.1186/s12934-014-0158-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 10/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Saccharopolyspora erythraea was extensively utilized for the industrial-scale production of erythromycin A (Er-A), a macrolide antibiotic commonly used in human medicine. Yet, S. erythraea lacks regulatory genes in the erythromycin biosynthetic gene (ery) cluster, hampering efforts to enhance Er-A production via the engineering of regulatory genes. RESULTS By the chromosome gene inactivation technique based on homologous recombination with linearized DNA fragments, we have inactivated a number of candidate TetR family transcriptional regulators (TFRs) and identified one TFR (SACE_7301) positively controlling erythromycin biosynthesis in S. erythraea A226. qRT-PCR and EMSA analyses demonstrated that SACE_7301 activated the transcription of erythromycin biosynthetic gene eryAI and the resistance gene ermE by interacting with their promoter regions with low affinities, similar to BldD (SACE_2077) previously identified to regulate erythromycin biosynthesis and morphological differentiation. Therefore, we designed a strategy for overexpressing SACE_7301 with 1 to 3 extra copies under the control of PermE* in A226. Following up-regulated transcriptional expression of SACE_7301, eryAI and ermE, the SACE_7301-overexpressed strains all increased Er-A production over A226 proportional to the number of copies. Likewise, when SACE_7301 was overexpressed in an industrial S. erythraea WB strain, Er-A yields of the mutants WB/7301, WB/2×7301 and WB/3×7301 were respectively increased by 17%, 29% and 42% relative to that of WB. In a 5 L fermentor, Er-A accumulation increased to 4,230 mg/L with the highest-yield strain WB/3×7301, an approximately 27% production improvement over WB (3,322 mg/L). CONCLUSIONS We have identified and characterized a TFR, SACE_7301, in S. erythraea that positively regulated erythromycin biosynthesis, and overexpression of SACE_7301 in wild-type and industrial S. erythraea strains enhanced Er-A yields. This study markedly improves our understanding of the unusual regulatory mechanism of erythromycin biosynthesis, and provides a novel strategy towards Er-A overproduction by engineering transcriptional regulators of S. erythraea.
Collapse
Affiliation(s)
- Hang Wu
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - Meng Chen
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - Yongrong Mao
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - Weiwei Li
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - Jingtao Liu
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China. .,Beijing Institute of Cell Biotechnology, Beijing, 100043, China.
| | - Xunduan Huang
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - Ying Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, 200237, China.
| | - Bang-Ce Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, Shanghai, 200237, China.
| | - Lixin Zhang
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China. .,CAS Key Laboratory of Pathogenic Microbiology & Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - David T Weaver
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China.
| | - Buchang Zhang
- Institute of Health Sciences, School of Life Sciences, Anhui University, Hefei, 230601, China.
| |
Collapse
|
24
|
Recent advances in biochemistry and biotechnological synthesis of avermectins and their derivatives. Appl Microbiol Biotechnol 2014; 98:7747-59. [DOI: 10.1007/s00253-014-5926-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/29/2014] [Accepted: 07/01/2014] [Indexed: 10/24/2022]
|
25
|
Wu P, Pan H, Zhang C, Wu H, Yuan L, Huang X, Zhou Y, Ye BC, Weaver DT, Zhang L, Zhang B. SACE_3986, a TetR family transcriptional regulator, negatively controls erythromycin biosynthesis in Saccharopolyspora erythraea. ACTA ACUST UNITED AC 2014; 41:1159-67. [DOI: 10.1007/s10295-014-1449-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 04/17/2014] [Indexed: 11/29/2022]
Abstract
Abstract
Erythromycin, a medically important antibiotic, is produced by Saccharopolyspora erythraea. Unusually, the erythromycin biosynthetic gene cluster lacks a regulatory gene, and the regulation of its biosynthesis remains largely unknown. In this study, through gene deletion, complementation and overexpression experiments, we identified a novel TetR family transcriptional regulator SACE_3986 negatively regulating erythromycin biosynthesis in S. erythraea A226. When SACE_3986 was further inactivated in an industrial strain WB, erythromycin A yield of the mutant was increased by 54.2 % in average compared with that of its parent strain, displaying the universality of SACE_3986 as a repressor for erythromycin production in S. erythraea. qRT-PCR analysis indicated that SACE_3986 repressed the transcription of its adjacent gene SACE_3985 (which encodes a short-chain dehydrogenase/reductase), erythromycin biosynthetic gene eryAI and the resistance gene ermE. As determined by EMSA analysis, purified SACE_3986 protein specifically bound to the intergenic region between SACE_3985 and SACE_3986, whereas it did not bind to the promoter regions of eryAI and ermE. Furthermore, overexpression of SACE_3985 in A226 led to enhanced erythromycin A yield by at least 32.6 %. These findings indicate that SACE_3986 is a negative regulator of erythromycin biosynthesis, and the adjacent gene SACE_3985 is one of its target genes. The present study provides a basis to increase erythromycin production by engineering of SACE_3986 and SACE_3985 in S. erythraea.
Collapse
Affiliation(s)
- Panpan Wu
- grid.252245.6 0000000100854987 Institute of Health Sciences, School of Life Sciences Anhui University Hefei 230601 China
| | - Hui Pan
- grid.252245.6 0000000100854987 Institute of Health Sciences, School of Life Sciences Anhui University Hefei 230601 China
| | - Congming Zhang
- grid.252245.6 0000000100854987 Institute of Health Sciences, School of Life Sciences Anhui University Hefei 230601 China
| | - Hang Wu
- grid.252245.6 0000000100854987 Institute of Health Sciences, School of Life Sciences Anhui University Hefei 230601 China
| | - Li Yuan
- grid.252245.6 0000000100854987 Institute of Health Sciences, School of Life Sciences Anhui University Hefei 230601 China
| | - Xunduan Huang
- grid.252245.6 0000000100854987 Institute of Health Sciences, School of Life Sciences Anhui University Hefei 230601 China
| | - Ying Zhou
- grid.28056.39 0000000121634895 State Key Laboratory of Bioreactor Engineering East China University of Science and Technology 200237 Shanghai China
| | - Bang-ce Ye
- grid.28056.39 0000000121634895 State Key Laboratory of Bioreactor Engineering East China University of Science and Technology 200237 Shanghai China
| | - David T Weaver
- grid.252245.6 0000000100854987 Institute of Health Sciences, School of Life Sciences Anhui University Hefei 230601 China
| | - Lixin Zhang
- grid.252245.6 0000000100854987 Institute of Health Sciences, School of Life Sciences Anhui University Hefei 230601 China
- grid.9227.e 0000000119573309 CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology Chinese Academy of Sciences 100101 Beijing China
| | - Buchang Zhang
- grid.252245.6 0000000100854987 Institute of Health Sciences, School of Life Sciences Anhui University Hefei 230601 China
| |
Collapse
|
26
|
Two adjacent and similar TetR family transcriptional regulator genes, SAV577 and SAV576, co-regulate avermectin production in Streptomyces avermitilis. PLoS One 2014; 9:e99224. [PMID: 24915523 PMCID: PMC4051647 DOI: 10.1371/journal.pone.0099224] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/13/2014] [Indexed: 12/02/2022] Open
Abstract
Streptomyces avermitilis is an important bacterial species used for industrial production of avermectins, a family of broad-spectrum anthelmintic agents. We previously identified the protein SAV576, a TetR family transcriptional regulator (TFR), as a downregulator of avermectin biosynthesis that acts by controlling transcription of its major target gene SAV575 (which encodes cytochrome P450/NADPH-ferrihemoprotein reductase) and ave genes. SAV577, another TFR gene, encodes a SAV577 protein that displays high amino acid homology with SAV576. In this study, we examined the effect of SAV577 on avermectin production and the relationships between SAV576 and SAV577. SAV577 downregulated avermectin biosynthesis indirectly, similarly to SAV576. SAV576 and SAV577 both directly repressed SAV575 transcription, and reciprocally repressed each other's expression. SAV575 transcription levels in various S. avermitilis strains were correlated with avermectin production levels. DNase I footprinting and electrophoretic mobility shift assays indicated that SAV576 and SAV577 compete for the same binding regions, and that DNA-binding affinity of SAV576 is much stronger than that of SAV577. GST pull-down assays revealed no direct interaction between the two proteins. Taken together, these findings suggest that SAV577 regulates avermectin production in S. avermitilis by a mechanism similar to that of SAV576, and that the role of SAV576 is dominant over that of SAV577. This is the first report of two adjacent and similar TFR genes that co-regulate antibiotic production in Streptomyces.
Collapse
|