1
|
Rapid Identification of Drug-Resistant Tuberculosis Genes Using Direct PCR Amplification and Oxford Nanopore Technology Sequencing. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:7588033. [PMID: 35386470 PMCID: PMC8979720 DOI: 10.1155/2022/7588033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/27/2022] [Accepted: 03/14/2022] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis antimicrobial resistance has been continually reported and is a major public health issue worldwide. Rapid prediction of drug resistance is important for selecting appropriate antibiotic treatments, which significantly increases cure rates. Gene sequencing technology has proven to be a powerful strategy for identifying relevant drug resistance information. This study established a sequencing method and bioinformatics pipeline for resistance gene analysis using an Oxford Nanopore Technologies sequencer. The pipeline was validated by Sanger sequencing and exhibited 100% concordance with the identified variants. Turnaround time for the nanopore sequencing workflow was approximately 12 h, facilitating drug resistance prediction several weeks earlier than that of traditional phenotype drug susceptibility testing. This study produced a customized gene panel assay for rapid bacterial identification via nanopore sequencing, which improves the timeliness of tuberculosis diagnoses and provides a reliable method that may have clinical application.
Collapse
|
3
|
Ma Z, Sun T, Bai X, Ji X, Zhang Q, Wu J, Wang Z, Chen C. Drug-sensitivity test and analysis of drug-resistant mutations in Mycobacterium tuberculosis isolates from Kashgar, China. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211041437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Introduction In recent years, drug-resistant Mycobacterium tuberculosis strains have gradually become widespread. Most drug resistance is related to specific mutations. We investigated M. tuberculosis drug resistance in the Kashgar area, China. Methods The drug-susceptibility test was conducted to clinical isolates of M. tuberculosis. Genomic-sequencing technology was used for the drug-resistant strains and the significance of DNA sequencing as a rapid aid for drug-resistance detection and the diagnosis method was evaluated. Results The resistance rates of clinical isolates to rifampicin (RFP), isoniazid (INH), streptomycin (SM), ethambutol (EMB), and ofloxacin (OFX) were, respectively, 4.4%, 12.3%, 8.8%, 2.6%, and 3.5%. The single- and multi-drug resistance rates were, respectively, 80.0% and 20.0%. The resistance genes RopB, katG, InhA, RpsL, rrs, gyrA, and embB displayed codon mutations, while InhA was mutated in its promoter region. Kappa scores, evaluating the consistency between DNA sequencing and the resistance ratio methods for the detection of isolates’ resistance to RFP, INH, SM, OFX, and EMB, were 1, 0.955, 0.721, 0.796, and 1, respectively. Conclusion The resistance rate of INH and SM is relatively high in the Kashgar area. Detection of mutations in RopB, katG, InhA, RpsL, rrs, gyrA, and embB by DNA sequencing can predict drug resistance of M. tuberculosis strains with high sensitivity and specificity, and can be used for diagnosis.
Collapse
Affiliation(s)
- Zhongchen Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for prevention and control of high Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Tianhao Sun
- College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for prevention and control of high Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xinyu Bai
- Kashgar Tuberculosis Prevention and Treatment Center, Kashgar, China
| | - Xiang Ji
- Collaborative Innovation Center for prevention and control of high Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
- College of Life Sciences, Shihezi University, Shihezi, China
| | - Qian Zhang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Jiangdong Wu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases Cooperated by Education Ministry with Xinjiang Province, Shihezi, China
| | - Zhen Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for prevention and control of high Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China
- Collaborative Innovation Center for prevention and control of high Incidence Zoonotic Infectious Diseases in Western China, College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
4
|
Li S, Wang Z, Zhou L, Luo F, Zhao C. Fluorescence polarization-based method with bisulfite conversion-specific one-label extension for quantification of single CpG dinucleotide methylation. Genome 2015; 58:357-63. [DOI: 10.1139/gen-2014-0185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To quantify the methylation at individual CpG dinucleotide sites in large biological or clinical samples, we developed a bisulfite conversion-specific one-label extension (BS-OLE) method using visualization by fluorescence polarization (FP) measurement of methylation at single CpG sites in small amounts of genomic DNA. Genomic DNA was treated with sodium bisulfite to convert unmethylated cytosine to uracil leaving 5-methylcytosine unaltered, and BS-PCR was used to generate DNA template containing target CpG sites. BS-OLE uses a BS-primer hybridized immediately upstream of the target CpG site being examined and then fluorescent dCTP or dUTP is incorporated into the methylated (CpG) or unmethylated (TpG) form of the target site through single-nucleotide chain extension, yielding an FP ratio between the fluorescent dCTP- and dUTP-incorporated products as a measure of methylation. This provides stable estimates of the methylation level of human genomic DNA and of a 250-bp plasmid DNA segment containing a single TCGA TaqI cleavage site, in accordance with the results of a combined bisulfite restriction analysis method. We used BS-OLE to measure dose-dependent DNA hypomethylation in human embryonic kidney 293T cells treated with the DNA methyltransferase inhibitor 5-aza-dC. BS-OLE is well suited to high-throughput multi-sample applications in biological and medical studies.
Collapse
Affiliation(s)
- Shufen Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, No. 1023 Shatai Road, Baiyun District, Guangzhou City, Guangdong Province 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, No. 1023 Shatai Road, Baiyun District, Guangzhou City, Guangdong Province 510515, China
| | - Zhongju Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, No. 1023 Shatai Road, Baiyun District, Guangzhou City, Guangdong Province 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, No. 1023 Shatai Road, Baiyun District, Guangzhou City, Guangdong Province 510515, China
| | - Lin Zhou
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, No. 1023 Shatai Road, Baiyun District, Guangzhou City, Guangdong Province 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, No. 1023 Shatai Road, Baiyun District, Guangzhou City, Guangdong Province 510515, China
| | - Fu Luo
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, No. 1023 Shatai Road, Baiyun District, Guangzhou City, Guangdong Province 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, No. 1023 Shatai Road, Baiyun District, Guangzhou City, Guangdong Province 510515, China
| | - Cunyou Zhao
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, No. 1023 Shatai Road, Baiyun District, Guangzhou City, Guangdong Province 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, No. 1023 Shatai Road, Baiyun District, Guangzhou City, Guangdong Province 510515, China
| |
Collapse
|