1
|
Identification and Characterization of Genes Related to Resistance of Autographa californica Nucleopolyhedrovirus Infection in Bombyx mori. INSECTS 2022; 13:insects13050435. [PMID: 35621772 PMCID: PMC9144136 DOI: 10.3390/insects13050435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/05/2022] [Accepted: 05/05/2022] [Indexed: 02/05/2023]
Abstract
Simple Summary Autographa californica nucleopolyhedrovirus (AcMNPV) is a kind of baculovirus that was initially found and named for its host, but the previous study reveals several silkworm strains are preferentially susceptible to AcMNPV through intrahemocelical injection method. In the following study, genetics analysis showed that a set of potential genes which controlled resistance of AcMNPV was located on chromosome 3. In the present research, we performed Genome-Wide Association Studies to identify the gene that controls the resistance of AcMNPV, results show that the Niemann-Pick C1 (NPC-1) gene is strongly associated with this resistance. Then we found that there are several amino acid mutations in the protein sequence of BmNPC1 between two different resistance strains of Bombyx mori. RNAi results showed that BmNPC1 successfully suppressed virus infection ability and changed the expression pattern of viral genes. Abstract In Bombyx mori, as an important economic insect, it was first found that some strains were completely refractory to infection with Autographa californica nucleopolyhedrovirus (AcMNPV) through intrahemocelical injection; whereas almost all natural strains had difficulty resisting Bombyx mori nucleopolyhedrovirus (BmNPV), which is also a member of the family Baculoviridae. Previous genetics analysis research found that this trait was controlled by a potentially corresponding locus on chromosome 3, but the specific gene and mechanism was still unknown. With the help of the massive silkworm strain re-sequencing dataset, we performed the Genome-Wide Association Studies (GWAS) to identify the gene related to the resistance of AcMNPV in this study. The GWAS results showed that the Niemann-Pick type C1 (NPC-1) gene was the most associated with the trait. The knockdown experiments in BmN cells showed that BmNPC1 has a successful virus suppression infection ability. We found a small number of amino acid mutations among different resistant silkworms, which indicates that these mutations contributed to the resistance of AcMNPV. Furthermore, inhibition of the BmNPC1 gene also changed the viral gene expression of the AcMNPV, which is similar to the expression profile in the transcriptome data of p50 and C108 strains.
Collapse
|
2
|
Li T, Wang X, Qin S, Sun X, Wang S, Li M. The hemolymph melanization response is related to defence against the AcMNPV infection in Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21764. [PMID: 34272769 DOI: 10.1002/arch.21764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 06/13/2023]
Abstract
Melanization is mediated by the prophenoloxidase (proPO) activation cascade and plays an important role in the arthropods immune system. Previously, we found that the hemolymph of the p50 strain does not perform melanization after infection with Autographa californica multiple nucleopolyhedrovirus (AcMNPV). However, this mechanism is still unclear. In this study, the underlying mechanism of the inhibition of hemolymph melanization was investigated by analysing the AcMNPV-susceptible or -resistant silkworm strains after inoculation with AcMNPV. The results showed that the level of hemolymph melanization was higher in resistant strain C108 than in susceptible strain p50 at the late stage (72 to 120 h postinoculation). The PO activity decreased significantly at the late stage of infection (72 to 120 hpi), and the expression of BmPPO1 and BmPPO2 was downregulated in p50. However, the PO activity increased in the resistant strain C108, while the expression level of BmPPO1 and BmPPO2 displayed no significant changes. The expression of the BmPPAE gene was upregulated in two strains during viral infection. In addition, the hemolymph melanization can weaken the viral activity in vitro. Our results suggested that the silkworm hemolymph melanization response is related to defence against the AcMNPV infection.
Collapse
Affiliation(s)
- Tao Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Sericulture and Apiculture Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi, Yunnan, China
| | - Xueyang Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Sheng Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Xia Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Shengpeng Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| | - Muwang Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, China
| |
Collapse
|
3
|
Hosamani M, Basagoudanavar SH, Sreenivasa BP, Inumaru S, Ballal CR, Venkataramanan R. Eri silkworm (Samia ricini), a non-mulberry host system for AcMNPV mediated expression of recombinant proteins. J Biotechnol 2015; 216:76-81. [PMID: 26467714 DOI: 10.1016/j.jbiotec.2015.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/25/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
The baculovirus expression system (BVES) based on Autographa californica nucleopolyhedrovirus (AcMNPV) is widely used for the expression of eukaryotic proteins. Several insect cells/larvae that are permissive to AcMNPV have been routinely used as hosts to express heterologous proteins. Domesticated Eri silkworm (Samia ricini), reared in many parts of India, Japan and China, is a non-mulberry silkworm. The present study shows that the Eri silkworm larvae are susceptible to intra-haemocoelical inoculation of AcMNPV. The virus replicates in the larva, as indicated by an increased viral loads in the haemolymph upon injection of a recombinant AcMNPV carrying green fluorescent protein gene. The virus showed localized replication in different tissues including the fat body, haemocytes, tracheal matrix and in the Malphigian tubules. The larval system was successfully used to express heterologous protein, by infecting with a recombinant AcMNPV carrying the 3ABC coding sequence of foot-and-mouth disease virus (FMDV). The study shows that the Eri silkworm larva can be a potential alternative bioreactor, for scaling up of the recombinant proteins employing the baculovirus system.
Collapse
Affiliation(s)
- Madhusudan Hosamani
- ICAR - Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India.
| | | | - B P Sreenivasa
- ICAR - Indian Veterinary Research Institute, Hebbal, Bengaluru 560024, India
| | - Shigeki Inumaru
- National Institute of Animal Health, 3-1-5 Kan-non-dai, Tsukuba, Ibaraki 305-0856, Japan
| | - Chandish R Ballal
- ICAR-National Bureau of Agricultural Insect Resources, Hebbal, Bengaluru 560024, India
| | | |
Collapse
|
4
|
Xu J, Zhang P, Kusakabe T, Mon H, Li Z, Zhu L, Iiyama K, Banno Y, Morokuma D, Lee JM. Comparative proteomic analysis of hemolymph proteins from Autographa californica multiple nucleopolyhedrovirus (AcMNPV)-sensitive or -resistant silkworm strains during infections. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 16:36-47. [DOI: 10.1016/j.cbd.2015.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/21/2015] [Accepted: 07/26/2015] [Indexed: 01/07/2023]
|