1
|
Kuthiala T, Thakur K, Sharma D, Singh G, Khatri M, Arya SK. The eco-friendly approach of cocktail enzyme in agricultural waste treatment: A comprehensive review. Int J Biol Macromol 2022; 209:1956-1974. [PMID: 35500773 DOI: 10.1016/j.ijbiomac.2022.04.173] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/17/2022] [Accepted: 04/24/2022] [Indexed: 12/26/2022]
Abstract
Agricultural development over the past decade has majorly contributed to the world's bioeconomy, but is the rise in agricultural activities just resulting in the best? Farming, food processing, livestock handling and other agro-based actions show an incremental rise in environmental deterioration by generating millions of tonnes of organic and inorganic solid waste across the globe. Incautious waste handling practices (incineration and landfilling) is resulting in greenhouse gas emissions, land pollution, groundwater contamination, soil erosion and chronic health hazards. Lately the concept of bioconversion has gained importance in valorising agro-waste (lignocellulosic biomasses) into value added products like biofuels, biogas, single cell proteins and biochar to effectively control waste and reduce the dependency on non-renewable feedstocks (fossil fuels). Biomass hydrolysis via enzymes is improved in terms of cost, efficiency, catalysis, stability and specificity by enrolling the use of enzyme cocktails to synergistically degrade lignocellulose into monomeric sugars and further into valued products. Enzyme blends like that of Xylanase + Pectinase + Cellulase shows 76.5% fermentation within 30 h by using banana peel as substrate for biofuel production. Other sectors like paper industries have also explored the use of enzyme blends of Xylanase + Pectinase + α-amylase + Protease+ lipase for bio-bleaching showing reduction in 50% chemical usage and 19.5% kappa number with adjacent increase in tensile strength by 23.55%. The scope of the present review is to highlight the technicalities of the concepts mentioned above, include qualitative data from different relatable studies and prove how the use of enzyme cocktails is an eco-friendly approach towards agro-waste management.
Collapse
Affiliation(s)
- Tanya Kuthiala
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, INDIA
| | - Kritika Thakur
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, INDIA
| | - Dharini Sharma
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, INDIA
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, INDIA
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, INDIA.
| |
Collapse
|
2
|
Chestnut Shells as Waste Material for Succinic Acid Production from Actinobacillus succinogenes 130Z. FERMENTATION 2020. [DOI: 10.3390/fermentation6040105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Currently, the full exploitation of waste materials for the production of value-added compounds is one of the potential solutions to lower costs and increase the sustainability of industrial processes. In this respect, the aim of this work was to evaluate the potential of chestnut shells (CSH) as substrate for the growth of Actinobacillus succinogenes 130Z, a natural producer of succinic acid that is a precursor of several bulk chemicals with diverse applications, such as bioplastics production. Hydrolysis of ammonia pretreated CSH in citrate buffer with the Cellic CTec2 enzyme mix was optimized and strain performance was studied in bottle experiments. Data showed co-consumption of citrate, glucose and xylose, which resulted in a change of the relative ratio of produced acids, providing an insight into the metabolism of A. succinogenes that was never described to date. Furthermore, high C:N ratios seems to have a favorable impact on succinic acid production by decreasing byproduct formation. Finally, yield and volumetric production rate of succinic acid were studied in controlled 2 L bioreactors demonstrating the potential use of CSH as renewable raw material.
Collapse
|
3
|
Ventrone M, Schiraldi C, Squillaci G, Morana A, Cimini D. Chestnut Shells as Waste Material for Succinic Acid Production from Actinobacillus succinogenes 130Z. FERMENTATION 2020. [DOI: 10.339/fermentation604010510.3390/fermentation6040105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Currently, the full exploitation of waste materials for the production of value-added compounds is one of the potential solutions to lower costs and increase the sustainability of industrial processes. In this respect, the aim of this work was to evaluate the potential of chestnut shells (CSH) as substrate for the growth of Actinobacillus succinogenes 130Z, a natural producer of succinic acid that is a precursor of several bulk chemicals with diverse applications, such as bioplastics production. Hydrolysis of ammonia pretreated CSH in citrate buffer with the Cellic CTec2 enzyme mix was optimized and strain performance was studied in bottle experiments. Data showed co-consumption of citrate, glucose and xylose, which resulted in a change of the relative ratio of produced acids, providing an insight into the metabolism of A. succinogenes that was never described to date. Furthermore, high C:N ratios seems to have a favorable impact on succinic acid production by decreasing byproduct formation. Finally, yield and volumetric production rate of succinic acid were studied in controlled 2 L bioreactors demonstrating the potential use of CSH as renewable raw material.
Collapse
|
4
|
Jiménez-Villota DS, Acosta-Pavas JC, Betancur-Ramírez KJ, Ruiz-Colorado AA. Modeling and Kinetic Parameter Estimation of the Enzymatic Hydrolysis Process of Lignocellulosic Materials for Glucose Production. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David Sebastián Jiménez-Villota
- Departamento de Procesos y Energı́a, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellı́n, Medellı́n 050034, Colombia
| | - Juan Camilo Acosta-Pavas
- Departamento de Procesos y Energı́a, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellı́n, Medellı́n 050034, Colombia
| | - Kelly Johana Betancur-Ramírez
- Departamento de Procesos y Energı́a, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellı́n, Medellı́n 050034, Colombia
| | - Angela Adriana Ruiz-Colorado
- Departamento de Procesos y Energı́a, Facultad de Minas, Universidad Nacional de Colombia—Sede Medellı́n, Medellı́n 050034, Colombia
| |
Collapse
|
5
|
Liao Y, Koelewijn SF, Van den Bossche G, Van Aelst J, Van den Bosch S, Renders T, Navare K, Nicolaï T, Van Aelst K, Maesen M, Matsushima H, Thevelein JM, Van Acker K, Lagrain B, Verboekend D, Sels BF. A sustainable wood biorefinery for low–carbon footprint chemicals production. Science 2020; 367:1385-1390. [DOI: 10.1126/science.aau1567] [Citation(s) in RCA: 354] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 10/17/2019] [Accepted: 02/04/2020] [Indexed: 01/05/2023]
Abstract
The profitability and sustainability of future biorefineries are dependent on efficient feedstock use. Therefore, it is essential to valorize lignin when using wood. We have developed an integrated biorefinery that converts 78 weight % (wt %) of birch into xylochemicals. Reductive catalytic fractionation of the wood produces a carbohydrate pulp amenable to bioethanol production and a lignin oil. After extraction of the lignin oil, the crude, unseparated mixture of phenolic monomers is catalytically funneled into 20 wt % of phenol and 9 wt % of propylene (on the basis of lignin weight) by gas-phase hydroprocessing and dealkylation; the residual phenolic oligomers (30 wt %) are used in printing ink as replacements for controversial para-nonylphenol. A techno-economic analysis predicts an economically competitive production process, and a life-cycle assessment estimates a lower carbon dioxide footprint relative to that of fossil-based production.
Collapse
Affiliation(s)
- Yuhe Liao
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Steven-Friso Koelewijn
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Gil Van den Bossche
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Joost Van Aelst
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Sander Van den Bosch
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Tom Renders
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Kranti Navare
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| | - Thomas Nicolaï
- Laboratory of Molecular Cell Biology, KU Leuven, and Center for Microbiology, VIB, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Korneel Van Aelst
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Maarten Maesen
- Lawter bvba, Ketenislaan 1C, Haven 1520, 9130 Kallo, Belgium
| | | | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, KU Leuven, and Center for Microbiology, VIB, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | - Karel Van Acker
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, 3001 Leuven, Belgium
- Center for Economics and Corporate Sustainability, KU Leuven, Warmoesberg 26, 1000 Brussels, Belgium
| | - Bert Lagrain
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Danny Verboekend
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Bert F. Sels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| |
Collapse
|
6
|
Multi-Step Exploitation of Raw Arundo donax L. for the Selective Synthesis of Second-Generation Sugars by Chemical and Biological Route. Catalysts 2020. [DOI: 10.3390/catal10010079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Lignocellulosic biomass represents one of the most important feedstocks for future biorefineries, being a precursor of valuable bio-products, obtainable through both chemical and biological conversion routes. Lignocellulosic biomass has a complex matrix, which requires the careful development of multi-step approaches for its complete exploitation to value-added compounds. Based on this perspective, the present work focuses on the valorization of hemicellulose and cellulose fractionsof giant reed (Arundo donax L.) to give second-generation sugars, minimizing the formation of reaction by-products. The conversion of hemicellulose to xylose was undertaken in the presence of the heterogeneous acid catalyst Amberlyst-70 under microwave irradiation. The effect of the main reaction parameters, such as temperature, reaction time, catalyst, and biomass loadings on sugars yield was studied, developing a high gravity approach. Under the optimised reaction conditions (17 wt% Arundo donax L. loading, 160 °C, Amberlyst-70/Arundo donax L. weight ratio 0.2 wt/wt), the xylose yield was 96.3 mol%. In the second step, the cellulose-rich solid residue was exploited through the chemical or enzymatic route, obtaining glucose yields of 32.5 and 56.2 mol%, respectively. This work proves the efficiency of this innovative combination of chemical and biological catalytic approaches, for the selective conversion of hemicellulose and cellulose fractions of Arundo donax L. to versatile platform products.
Collapse
|
7
|
Fahmy M, Sohel MI, Vaidya AA, Jack MW, Suckling ID. Does sugar yield drive lignocellulosic sugar cost? Case study for enzymatic hydrolysis of softwood with added polyethylene glycol. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Lambert E, Aguié-Béghin V, Dessaint D, Foulon L, Chabbert B, Paës G, Molinari M. Real Time and Quantitative Imaging of Lignocellulosic Films Hydrolysis by Atomic Force Microscopy Reveals Lignin Recalcitrance at Nanoscale. Biomacromolecules 2018; 20:515-527. [DOI: 10.1021/acs.biomac.8b01539] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Eléonore Lambert
- LRN EA 4682, Université de Reims Champagne-Ardenne, 51685 Reims, France
| | | | - Delphine Dessaint
- FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100, Reims, France
| | - Laurence Foulon
- FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100, Reims, France
| | - Brigitte Chabbert
- FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100, Reims, France
| | - Gabriel Paës
- FARE Laboratory, INRA, Université de Reims Champagne-Ardenne, 51100, Reims, France
| | - Michaël Molinari
- LRN EA 4682, Université de Reims Champagne-Ardenne, 51685 Reims, France
| |
Collapse
|
9
|
Raghavendran V, Nitsos C, Matsakas L, Rova U, Christakopoulos P, Olsson L. A comparative study of the enzymatic hydrolysis of batch organosolv-pretreated birch and spruce biomass. AMB Express 2018; 8:114. [PMID: 29992363 PMCID: PMC6039347 DOI: 10.1186/s13568-018-0643-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/05/2018] [Indexed: 01/09/2023] Open
Abstract
A shift towards a sustainable and green society is vital to reduce the negative effects of climate change associated with increased CO2 emissions. Lignocellulosic biomass is both renewable and abundant, but is recalcitrant to deconstruction. Among the methods of pretreatment available, organosolv (OS) delignifies cellulose efficiently, significantly improving its digestibility by enzymes. We have assessed the hydrolysability of the cellulose-rich solid fractions from OS-pretreated spruce and birch at 2% w/v loading (dry matter). Almost complete saccharification of birch was possible with 80 mg enzyme preparation/gsolids (12 FPU/gsolids), while the saccharification yield for spruce was only 70%, even when applying 60 FPU/gsolids. As the cellulose content is enriched by OS, the yield of glucose was higher than in their steam-exploded counterparts. The hydrolysate was a transparent liquid due to the absence of phenolics and was also free from inhibitors. OS pretreatment holds potential for use in a large-scale, closed-loop biorefinery producing fuels from the cellulose fraction and platform chemicals from the hemicellulose and lignin fractions respectively.
Collapse
|
10
|
Sorokina KN, Samoylova YV, Piligaev AV, Sivakumar U, Parmon VN. New methods for the one-pot processing of polysaccharide components (cellulose and hemicelluloses) of lignocellulose biomass into valuable products. Part 2: Biotechnological approaches to the conversion of polysaccharides and monosaccharides into the valuable industrial chemicals. CATALYSIS IN INDUSTRY 2017. [DOI: 10.1134/s2070050417030126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Arslan B, Egerton K, Zhang X, Abu-Lail NI. Effects of the Surface Morphology and Conformations of Lignocellulosic Biomass Biopolymers on Their Nanoscale Interactions with Hydrophobic Self-Assembled Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6857-6868. [PMID: 28617601 DOI: 10.1021/acs.langmuir.7b01470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The effects of the morphology and conformations of the surface biopolymers present on lignocellulosic biomass as well as their steric hindrance on enzymatic adsorption to biomass surfaces remain elusive. In a step to better understand these effects, nanoscale steric forces between a model surface that represents the hydrophobic residues of a cellulase enzyme and a set of reference lignocellulosic substrates were measured using atomic force microscopy (AFM) in liquid media. The reference substrates investigated were prepared by kraft, sulfite, and organosolv pulping pretreatment methods and varied in their surface lignin, xylan, and acetone extractives' contents. Measured steric forces were quantified through fitting to a model developed to describe polyelectrolytes brushes in terms of a brush thickness and a brush grafting density. Our data indicated that cellulose microfibrils extend from the microfibril matrix leading to a long-range steric repulsion and low attractive forces to the hydrophobic model of the enzyme, suggesting that steric hindering can be a possible mechanism for nonproductive binding of enzymes to cellulose. When the amount of xylan increased in the absence of lignin, steric repulsions between the hydrophobic model of the enzyme, and biomass biopolymers decreased as a result of collapsed cellulose microfibrils and adhesion forces increased. This suggests that leaving a small amount of xylan after biomass pretreatment can help improve enzymatic binding to cellulose. Irrespective of the type of lignin present on biomass, grafting densities increased and brush thicknesses decreased compared to those of lignin-free substrates. When compared to lignin-free substrates, lignin-containing substrates had higher attractive forces and lower steric repulsive forces. In addition, AFM images of the reference substrates in the wet and dry states showed that lignin precipitates on the biomass surface where kraft lignin had the highest particle size leading to a limited accessibility of the enzyme to the cellulose in biomass. When the effects of lignin precipitate size, the adhesion force, and steric forces on nonproductive enzymatic binding were all considered, our results indicate that organosolv pretreatment should be the treatment of choice to minimize enzymatic nonproductive binding to lignin.
Collapse
Affiliation(s)
- Baran Arslan
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington 99164-6515, United States
| | - Kirstin Egerton
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington 99164-6515, United States
| | - Xiao Zhang
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Bioproducts' Science and Engineering Laboratory, Washington State University , Richland, Washington 99354-1670, United States
| | - Nehal I Abu-Lail
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington 99164-6515, United States
| |
Collapse
|
12
|
|
13
|
Arslan B, Colpan M, Ju X, Zhang X, Kostyukova A, Abu-Lail NI. The Effects of Noncellulosic Compounds on the Nanoscale Interaction Forces Measured between Carbohydrate-Binding Module and Lignocellulosic Biomass. Biomacromolecules 2016; 17:1705-15. [PMID: 27065303 DOI: 10.1021/acs.biomac.6b00129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The lack of fundamental understanding of the types of forces that govern how cellulose-degrading enzymes interact with cellulosic and noncellulosic components of lignocellulosic surfaces limits the design of new strategies for efficient conversion of biomass to bioethanol. In a step to improve our fundamental understanding of such interactions, nanoscale forces acting between a model cellulase-a carbohydrate-binding module (CBM) of cellobiohydrolase I (CBH I)-and a set of lignocellulosic substrates with controlled composition were measured using atomic force microscopy (AFM). The three model substrates investigated were kraft (KP), sulfite (SP), and organosolv (OPP) pulped substrates. These substrates varied in their surface lignin coverage, lignin type, and xylan and acetone extractives' content. Our results indicated that the overall adhesion forces of biomass to CBM increased linearly with surface lignin coverage with kraft lignin showing the highest forces among lignin types investigated. When the overall adhesion forces were decoupled into specific and nonspecific component forces via the Poisson statistical model, hydrophobic and Lifshitz-van der Waals (LW) forces dominated the binding forces of CBM to kraft lignin, whereas permanent dipole-dipole interactions and electrostatic forces facilitated the interactions of lignosulfonates to CBM. Xylan and acetone extractives' content increased the attractive forces between CBM and lignin-free substrates, most likely through hydrogen bonding forces. When the substrates treated differently were compared, it was found that both the differences in specific and nonspecific forces between lignin-containing and lignin-free substrates were the least for OPP. Therefore, cellulase enzymes represented by CBM would weakly bind to organosolv lignin. This will facilitate an easy enzyme recovery compared to other substrates treated with kraft or sulfite pulping. Our results also suggest that altering the surface hydrophobicity and the surface energy of lignin that facilitates the LW forces should be a priori to avoid nonproductive binding of cellulase to kraft lignin.
Collapse
Affiliation(s)
- Baran Arslan
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington 99164-6515, United States
| | - Mert Colpan
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington 99164-6515, United States
| | - Xiaohui Ju
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Bioproducts' Science and Engineering Laboratory, Washington State University , Richland, Washington 99354-1670, United States
| | - Xiao Zhang
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Bioproducts' Science and Engineering Laboratory, Washington State University , Richland, Washington 99354-1670, United States
| | - Alla Kostyukova
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington 99164-6515, United States
| | - Nehal I Abu-Lail
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington 99164-6515, United States
| |
Collapse
|
14
|
Arslan B, Ju X, Zhang X, Abu-Lail NI. Heterogeneity and Specificity of Nanoscale Adhesion Forces Measured between Self-Assembled Monolayers and Lignocellulosic Substrates: A Chemical Force Microscopy Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10233-10245. [PMID: 26339982 DOI: 10.1021/acs.langmuir.5b02633] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Lack of fundamental understanding of cellulase interactions with different plant cell wall components during cellulose saccharification hinders progress toward achieving an economic production of biofuels from renewable plant biomass. Here, chemical force microscopy (CFM) was utilized to quantify the interactions between two surfaces that model either hydrophilic or hydrophobic functional groups of cellulases and a set of lignocellulosic substrates prepared through Kraft, sulfite, or organosolv pulping with defined chemical composition. The measured forces were then decoupled into specific and nonspecific components using the Poisson statistical approach. Heterogeneities in the distributions of forces as a function of the pretreatment method were mapped. Our results showed that hydrophobic domains and chemical moieties involved in hydrogen bonding and polar interactions were homogeneously distributed on all substrates but with distribution densities that varied with the type of the pretreatment method used to prepare substrates. In addition, we showed that increasing surface lignin coverage increased the heterogeneity of the substrates. When forces were decoupled, our results indicated that xylan reduced the strength of hydrogen bonding between the hydrophilic model surface and substrates. Permanent dipole-dipole interactions dominated the adhesion of the hydrophilic model surface to lignosulfonates, whereas hydrophobic interactions facilitated the adhesion of the hydrophobic model surface to Kraft lignin. We further showed that the structure of lignin determines the type of forces that dominate lignocellulosic interactions with other surfaces. Our findings suggest that nonproductive binding of cellulases to lignocellulosic biomass can be reduced by altering the hydrophobicity and/or chemical moieties involved in the polar interactions and by utilizing organosolv as a pretreatment method.
Collapse
Affiliation(s)
- Baran Arslan
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington 99164-6515, United States
| | - Xiaohui Ju
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Bioproducts' Science and Engineering Laboratory, Washington State University , Richland, Washington 99354-1670, United States
| | - Xiao Zhang
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Bioproducts' Science and Engineering Laboratory, Washington State University , Richland, Washington 99354-1670, United States
| | - Nehal I Abu-Lail
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University , Pullman, Washington 99164-6515, United States
| |
Collapse
|
15
|
Ju X, Bowden M, Brown EE, Zhang X. An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydr Polym 2015; 123:476-81. [DOI: 10.1016/j.carbpol.2014.12.071] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 12/05/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
|
16
|
Adsul M, Sharma B, Singhania RR, Saini JK, Sharma A, Mathur A, Gupta R, Tuli DK. Blending of cellulolytic enzyme preparations from different fungal sources for improved cellulose hydrolysis by increasing synergism. RSC Adv 2014. [DOI: 10.1039/c4ra08129c] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A prepared enzyme cocktail from different fungal enzyme preparations increases the hydrolysis of avicel/wheat straw by increasing synergism between the same or different types of cellulases.
Collapse
Affiliation(s)
- Mukund Adsul
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil R and D Centre
- Faridabad-121007, India
| | - Bhawna Sharma
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil R and D Centre
- Faridabad-121007, India
| | - Reeta Rani Singhania
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil R and D Centre
- Faridabad-121007, India
| | - Jitendra Kumar Saini
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil R and D Centre
- Faridabad-121007, India
| | - Ankita Sharma
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil R and D Centre
- Faridabad-121007, India
| | - Anshu Mathur
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil R and D Centre
- Faridabad-121007, India
| | - Ravi Gupta
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil R and D Centre
- Faridabad-121007, India
| | - Deepak Kumar Tuli
- DBT-IOC Centre for Advanced Bioenergy Research
- Indian Oil R and D Centre
- Faridabad-121007, India
| |
Collapse
|