1
|
Duong HL, Paufler S, Harms H, Maskow T, Schlosser D. Biocalorimetry-aided monitoring of fungal pretreatment of lignocellulosic agricultural residues. Appl Microbiol Biotechnol 2024; 108:394. [PMID: 38918217 PMCID: PMC11199272 DOI: 10.1007/s00253-024-13234-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
The present study aimed to investigate whether and how non-invasive biocalorimetric measurements could serve for process monitoring of fungal pretreatment during solid-state fermentation (SSF) of lignocellulosic agricultural residues such as wheat straw. Seven filamentous fungi representing different lignocellulose decay types were employed. Water-soluble sugars being immediately available after fungal pretreatment and those becoming water-extractable after enzymatic digestion of pretreated wheat straw with hydrolysing (hemi)cellulases were considered to constitute the total bioaccessible sugar fraction. The latter was used to indicate the success of pretreatments and linked to corresponding species-specific metabolic heat yield coefficients (YQ/X) derived from metabolic heat flux measurements during fungal wheat straw colonisation. An YQ/X range of about 120 to 140 kJ/g was seemingly optimal for pretreatment upon consideration of all investigated fungi and application of a non-linear Gaussian fitting model. Upon exclusion from analysis of the brown-rot basidiomycete Gloeophyllum trabeum, which differs from all other here investigated fungi in employing extracellular Fenton chemistry for lignocellulose decomposition, a linear relationship where amounts of total bioaccessible sugars were suggested to increase with increasing YQ/X values was obtained. It remains to be elucidated whether an YQ/X range being optimal for fungal pretreatment could firmly be established, or if the sugar accessibility for post-treatment generally increases with increasing YQ/X values as long as "conventional" enzymatic, i.e. (hemi)cellulase-based, lignocellulose decomposition mechanisms are operative. In any case, metabolic heat measurement-derived parameters such as YQ/X values may become very valuable tools supporting the assessment of the suitability of different fungal species for pretreatment of lignocellulosic substrates. KEY POINTS: • Biocalorimetry was used to monitor wheat straw pretreatment with seven filamentous fungi. • Metabolic heat yield coefficients (YQ/X) seem to indicate pretreatment success. • YQ/X values may support the selection of suitable fungal strains for pretreatment.
Collapse
Affiliation(s)
- Hieu Linh Duong
- Department of Applied Microbial Ecology, Helmholtz-Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
- Vietnamese-German University (VGU), Ring Road 4, Quarter 4, Thoi Hoa Ward, Ben Cat City, Binh Duong Province, Vietnam
| | - Sven Paufler
- Department of Applied Microbial Ecology, Helmholtz-Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Hauke Harms
- Department of Applied Microbial Ecology, Helmholtz-Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Thomas Maskow
- Department of Applied Microbial Ecology, Helmholtz-Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany
| | - Dietmar Schlosser
- Department of Applied Microbial Ecology, Helmholtz-Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| |
Collapse
|
2
|
Duong HL, Paufler S, Harms H, Schlosser D, Maskow T. Fungal Lignocellulose Utilisation Strategies from a Bioenergetic Perspective: Quantification of Related Functional Traits Using Biocalorimetry. Microorganisms 2022; 10:1675. [PMID: 36014092 PMCID: PMC9415514 DOI: 10.3390/microorganisms10081675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
In the present study, we investigated whether a non-invasive metabolic heat flux analysis could serve the determination of the functional traits in free-living saprotrophic decomposer fungi and aid the prediction of fungal influences on ecosystem processes. For this, seven fungi, including ascomycete, basidiomycete, and zygomycete species, were investigated in a standardised laboratory environment, employing wheat straw as a globally relevant lignocellulosic substrate. Our study demonstrates that biocalorimetry can be employed successfully to determine growth-related fungal activity parameters, such as apparent maximum growth rates (AMGR), cultivation times until the observable onset of fungal growth at AMGR (tAMGR), quotients formed from the AMGR and tAMGR (herein referred to as competitive growth potential, CGP), and heat yield coefficients (YQ/X), the latter indicating the degree of resource investment into fungal biomass versus other functional attributes. These parameters seem suitable to link fungal potentials for biomass production to corresponding ecological strategies employed during resource utilisation, and therefore may be considered as fungal life history traits. A close connection exists between the CGP and YQ/X values, which suggests an interpretation that relates to fungal life history strategies.
Collapse
Affiliation(s)
- Hieu Linh Duong
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318 Leipzig, Germany
- Faculty of Engineering, Vietnamese-German University (VGU), Le Lai Street, Hoa Phu Ward, Thủ Dầu Một 7500, Binh Duong, Vietnam
| | - Sven Paufler
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318 Leipzig, Germany
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318 Leipzig, Germany
| | - Dietmar Schlosser
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318 Leipzig, Germany
| | - Thomas Maskow
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ, Permoserstraβe 15, 04318 Leipzig, Germany
| |
Collapse
|
3
|
Duong HL, Paufler S, Harms H, Maskow T, Schlosser D. Applicability and information value of biocalorimetry for the monitoring of fungal solid-state fermentation of lignocellulosic agricultural by-products. N Biotechnol 2021; 66:97-106. [PMID: 34767975 DOI: 10.1016/j.nbt.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/30/2022]
Abstract
The applicability of biocalorimetry for monitoring fungal conversion of lignocellulosic agricultural by-products during solid-state fermentation (SSF) was substantiated through linking the non-invasive measurement of metabolic heat fluxes to conventional invasive determination of fungal activity (growth, substrate degradation, enzyme activity) parameters. For this, the fast-growing, cellulose-utilising ascomycete Stachybotrys chlorohalonata and the comparatively slow-growing litter-decay basidiomycete Stropharia rugosoannulata were investigated as model organisms during growth on solid wheat straw. Both biocalorimetric and non-calorimetric data may suggest R (ruderal)- and C (combative)-selected life history strategies in S. chlorohalonata and S. rugosoannulata, respectively. For both species, a strong linear correlation of the released metabolic heat with the corresponding fungal biomass was observed. Species-specific YQ/X values (metabolic heat released per fungal biomass unit) were obtained, which potentially enable use of biocalorimetric signals for the quantification of fungal biomass during single-species SSF processes. Moreover, YQ/X values may also indicate different fungal life history strategies and therefore be considered as useful parameters aiding fungal ecology research.
Collapse
Affiliation(s)
- Hieu Linh Duong
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraβe 15, 04318, Leipzig, Germany; Vietnamese-German University (VGU), Le Lai Street, Hoa Phu Ward, Thu Dau Mot City, Binh Duong Province, Viet Nam.
| | - Sven Paufler
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| | - Thomas Maskow
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| | - Dietmar Schlosser
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| |
Collapse
|
4
|
Enhanced Biogas Production by Ligninolytic Strain Enterobacter hormaechei KA3 for Anaerobic Digestion of Corn Straw. ENERGIES 2021. [DOI: 10.3390/en14112990] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lignin-feeding insect gut is a natural ligninolytic microbial bank for the sustainable conversion of crop straw to biogas. However, limited studies have been done on highly efficient microbes. Here, an efficient ligninolytic strain Enterobacter hormaechei KA3 was isolated from the gut microbiomes of lignin-feeding Hypomeces squamosus Fabricius, and its effects on lignin degradation and anaerobic digestion were investigated. No research has been reported. Results showed that strain KA3 had better lignin-degrading ability for corn straw with a higher lignin-degrading rate (32.05%) and lignin peroxidase activity (585.2 U/L). Furthermore, the highest cumulative biogas yield (59.19 L/kg-VS) and methane yield (14.76 L/kg-VS) were obtained for KA3 inoculation, which increased by 20% and 31%, respectively, compared to CK. Higher removal rates of COD, TS, and vs. of 41.6%, 43.11%, and 66.59% were also found. Moreover, microbial community diversity increased as digestion time prolonged in TG, and bacteria were more diverse than archaea. The dominant genus taxon, for methanogens, was Methanosate in TG, while in CK was Methanosarcina. For bacteria, dominant taxa were similar for all groups, which were Solibacillus and Clostridium. Therefore, strain KA3 improved the methane conversion of the substrate. This study could provide a new microbial resource and practical application base for lignin degradation.
Collapse
|
5
|
Fungal Pretreatments on Non-Sterile Solid Digestate to Enhance Methane Yield and the Sustainability of Anaerobic Digestion. SUSTAINABILITY 2020. [DOI: 10.3390/su12208549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fungi can run feedstock pretreatment to improve the hydrolysis and utilization of recalcitrant lignocellulose-rich biomass during anaerobic digestion (AD). In this study, three fungal strains (Coprinopsis cinerea MUT 6385, Cyclocybe aegerita MUT 5639, Cephalotrichum stemonitis MUT 6326) were inoculated in the non-sterile solid fraction of digestate, with the aim to further (re)use it as a feedstock for AD. The application of fungal pretreatments induced changes in the plant cell wall polymers, and different profiles were observed among strains. Significant increases (p < 0.05) in the cumulative biogas and methane yields with respect to the untreated control were observed. The most effective pretreatment was carried out for 20 days with C. stemonitis, causing the highest hemicellulose, lignin, and cellulose reduction (59.3%, 9.6%, and 8.2%, respectively); the cumulative biogas and methane production showed a 182% and 214% increase, respectively, compared to the untreated control. The increase in AD yields was ascribable both to the addition of fungal biomass, which acted as an organic feedstock, and to the lignocellulose transformation due to fungal activity during pretreatments. The developed technologies have the potential to enhance the anaerobic degradability of solid digestate and untap its biogas potential for a further digestion step, thus allowing an improvement in the environmental and economic sustainability of the AD process and the better management of its by-products.
Collapse
|
6
|
Degradative Ability of Mushrooms Cultivated on Corn Silage Digestate. Molecules 2020; 25:molecules25133020. [PMID: 32630357 PMCID: PMC7412174 DOI: 10.3390/molecules25133020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/16/2022] Open
Abstract
The current management practice of digestate from biogas plants involves its use for land application as a fertilizer. Nevertheless, the inadequate handling of digestate may cause environmental risks due to losses of ammonia, methane and nitrous oxide. Therefore, the key goals of digestate management are to maximize its value by developing new digestate products, reducing its dependency on soil application and the consequent air pollution. The high nitrogen and lignin content in solid digestate make it a suitable substrate for edible and medicinal mushroom cultivation. To this aim, the mycelial growth rate and degradation capacity of the lignocellulosic component from corn silage digestate, undigested wheat straw and their mixture were investigated on Cyclocybe aegerita, Coprinus comatus, Morchella importuna, Pleurotus cornucopiae and Pleurotus ostreatus. The structural modification of the substrates was performed by using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Preliminary in vitro results demonstrated the ability of P. ostreatus, P. cornucopiae and M. importuna to grow and decay hemicellulose and lignin of digestate. Cultivation trials were carried out on C. aegerita, P. cornucopiae and P. ostreatus. Pleurotus ostreatus showed the highest biological efficiency and fruiting body production in the presence of the digestate; moreover, P. ostreatus and P. cornucopiae were able to degrade the lignin. These results provide attractive perspectives both for more sustainable digestate management and for the improvement of mushroom cultivation efficiency.
Collapse
|
7
|
de Oliveira DT, da Costa AAF, Costa FF, da Rocha Filho GN, do Nascimento LAS. Advances in the Biotechnological Potential of Brazilian Marine Microalgae and Cyanobacteria. Molecules 2020; 25:molecules25122908. [PMID: 32599827 PMCID: PMC7356545 DOI: 10.3390/molecules25122908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022] Open
Abstract
Due the worldwide need to improve care for the environment and people, there is a great demand for the development of new renewable, sustainable, and less polluting technologies for food, health, and environmental industries. The marine environment is one of the main areas investigated in the search for alternatives to the raw materials currently used. Thereby, cyanobacteria and marine microalgae are microorganisms that are capable of producing a diverse range of metabolites useful for their cellular maintenance, but that also represent a great biotechnological potential. Due its great potential, they have an enormous appeal in the scientific research where, the biological activity of metabolites produced by these microorganisms, such as the antioxidant action of sterols are, some examples of biotechnological applications investigated around the world. Thereby, Brazil due to its extensive biodiversity, has high potential as a raw material supplier of marine waters, researching cyanobacteria and microalgae metabolites and their applications. Thus, this rapid review intends to present some important contributions and advances from Brazilian researchers, using the biomass of Brazilian cyanobacteria and marine microalgae, in order to illustrate the value of what has already been discovered and the enormous potential of what remains unexplored so far.
Collapse
Affiliation(s)
- Deborah Terra de Oliveira
- Institute of Biological Sciences, Graduation Program in Biotechnology, Universidade Federal do Pará, Augusto Corrêa Street, Guamá, Belém, PA 66075-110, Brazil
- Laboratory of Oils of the Amazon, Universidade Federal do Pará, Perimetral Avenue, Guamá, Belém, PA 66075-750, Brazil; (A.A.F.d.C.); (G.N.d.R.F.)
- Correspondence: (D.T.d.O.); (L.A.S.d.N.); Tel.: +55-919-8171-4947
| | - Ana Alice Farias da Costa
- Laboratory of Oils of the Amazon, Universidade Federal do Pará, Perimetral Avenue, Guamá, Belém, PA 66075-750, Brazil; (A.A.F.d.C.); (G.N.d.R.F.)
- Institute of Exact and Natural Sciences, Graduation Program in Chemistry, Universidade Federal do Pará, Augusto Corrêa Street, Guamá, Belém, PA 66075-110, Brazil
| | - Fabíola Fernandes Costa
- Campus of Salinópolis, Universidade Federal do Pará, Salinópolis, Pará, CEP 68721-000, Brazil;
| | - Geraldo Narciso da Rocha Filho
- Laboratory of Oils of the Amazon, Universidade Federal do Pará, Perimetral Avenue, Guamá, Belém, PA 66075-750, Brazil; (A.A.F.d.C.); (G.N.d.R.F.)
- Institute of Exact and Natural Sciences, Graduation Program in Chemistry, Universidade Federal do Pará, Augusto Corrêa Street, Guamá, Belém, PA 66075-110, Brazil
| | - Luís Adriano Santos do Nascimento
- Institute of Biological Sciences, Graduation Program in Biotechnology, Universidade Federal do Pará, Augusto Corrêa Street, Guamá, Belém, PA 66075-110, Brazil
- Laboratory of Oils of the Amazon, Universidade Federal do Pará, Perimetral Avenue, Guamá, Belém, PA 66075-750, Brazil; (A.A.F.d.C.); (G.N.d.R.F.)
- Institute of Exact and Natural Sciences, Graduation Program in Chemistry, Universidade Federal do Pará, Augusto Corrêa Street, Guamá, Belém, PA 66075-110, Brazil
- Correspondence: (D.T.d.O.); (L.A.S.d.N.); Tel.: +55-919-8171-4947
| |
Collapse
|
8
|
Arredondo-Santoyo M, Herrera-Camacho J, Vázquez-Garcidueñas MS, Vázquez-Marrufo G. Corn stover induces extracellular laccase activity in Didymosphaeria sp. (syn. = Paraconiothyrium sp.) and exhibits increased in vitro ruminal digestibility when treated with this fungal species. Folia Microbiol (Praha) 2020; 65:849-861. [DOI: 10.1007/s12223-020-00795-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/27/2020] [Indexed: 11/28/2022]
|
9
|
Tanney J, Seifert K. Mollisiaceae: An overlooked lineage of diverse endophytes. Stud Mycol 2020; 95:293-380. [PMID: 32855742 PMCID: PMC7426276 DOI: 10.1016/j.simyco.2020.02.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 01/04/2023] Open
Abstract
Mollisia is a taxonomically neglected discomycete genus (Helotiales, Leotiomycetes) of commonly encountered saprotrophs on decaying plant tissues throughout temperate regions. The combination of indistinct morphological characters, more than 700 names in the literature, and lack of reference DNA sequences presents a major challenge when working with Mollisia. Unidentified endophytes, including strains that produced antifungal or antiinsectan secondary metabolites, were isolated from conifer needles in New Brunswick and placed with uncertainty in Phialocephala and Mollisia, necessitating a more comprehensive treatment of these genera. In this study, morphology and multigene phylogenetic analyses were used to explore the taxonomy of Mollisiaceae, including Mollisia, Phialocephala, and related genera, using new field collections, herbarium specimens, and accessioned cultures and sequences. The phylogeny of Mollisiaceae was reconstructed and compared using the nuc internal transcribed spacer rDNA (ITS) barcode and partial sequences of the 28S nuc rDNA (LSU) gene, largest subunit of RNA polymerase II (RPB1), DNA topoisomerase I (TOP1), and the hypothetical protein Lipin/Ned1/Smp2 (LNS2). The results show that endophytism is common throughout the Mollisiaceae lineage in a diverse range of hosts but is infrequently attributed to Mollisia because of a paucity of reference sequences. Generic boundaries within Mollisiaceae are poorly resolved and based on phylogenetic evidence the family included species placed in Acephala, Acidomelania, Barrenia, Bispora, Cheirospora, Cystodendron, Fuscosclera, Hysteronaevia, Loramyces, Mollisia, Neopyrenopeziza, Obtectodiscus, Ombrophila, Patellariopsis, Phialocephala, Pulvinata, Tapesia (=Mollisia), and Trimmatostroma. Taxonomic novelties included the description of five novel Mollisia species and five novel Phialocephala species and the synonymy of Fuscosclera with Phialocephala, Acidomelania with Mollisia, and Loramycetaceae with Mollisiaceae.
Collapse
Affiliation(s)
- J.B. Tanney
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 Burnside Road, Victoria, British Columbia, V8Z 1M5, Canada
| | - K.A. Seifert
- Ottawa Research and Development Centre, Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
10
|
Carstens L, Cowan AR, Seiwert B, Schlosser D. Biotransformation of Phthalate Plasticizers and Bisphenol A by Marine-Derived, Freshwater, and Terrestrial Fungi. Front Microbiol 2020; 11:317. [PMID: 32180766 PMCID: PMC7059612 DOI: 10.3389/fmicb.2020.00317] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/13/2020] [Indexed: 12/22/2022] Open
Abstract
Phthalate esters (PEs, Phthalates) are environmentally ubiquitous as a result of their extensive use as plasticizers and additives in diverse consumer products. Considerable concern relates to their reported xenoestrogenicity and consequently, microbial-based attenuation of environmental PE concentrations is of interest to combat harmful downstream effects. Fungal PE catabolism has received less attention than that by bacteria, and particularly fungi dwelling within aquatic environments remain largely overlooked in this respect. We have compared the biocatalytic and biosorptive removal rates of di-n-butyl phthalate (DBP) and diethyl phthalate (DEP), chosen to represent two environmentally prominent PEs of differing structure and hydrophobicity, by marine-, freshwater-, and terrestrial-derived fungal strains. Bisphenol A, both an extensively used plastic additive and prominent environmental xenoestrogen, was included as a reference compound due to its well-documented fungal degradation. Partial pathways of DBP metabolization by the ecophysiologically diverse asco- and basidiomycete strains tested were proposed with the help of UPLC-QTOF-MS analysis. Species specific biochemical reaction steps contributing to DBP metabolism were also observed. The involved reactions include initial cytochrome P450-dependent monohydroxylations of DBP with subsequent further oxidation of related metabolites, de-esterification via either hydrolytic cleavage or cytochrome P450-dependent oxidative O-dealkylation, transesterification, and demethylation steps - finally yielding phthalic acid as a central intermediate in all pathways. Due to the involvement of ecophysiologically and phylogenetically diverse filamentous and yeast-like fungi native to marine, freshwater, and terrestrial habitats the results of this study outline an environmentally ubiquitous pathway for the biocatalytic breakdown of plastic additives. Beyond previous research into fungal PE metabolism which emphasizes hydrolytic de-esterification as the primary catabolic step, a prominent role of cytochrome P450 monooxygenase-catalyzed reactions is established.
Collapse
Affiliation(s)
- Lena Carstens
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- Institute for Environmental Microbiology and Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Andrew R. Cowan
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Bettina Seiwert
- Department of Analytical Chemistry, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Dietmar Schlosser
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
11
|
Tkacz A, Bestion E, Bo Z, Hortala M, Poole PS. Influence of Plant Fraction, Soil, and Plant Species on Microbiota: a Multikingdom Comparison. mBio 2020; 11:e02785-19. [PMID: 32019791 PMCID: PMC7002342 DOI: 10.1128/mbio.02785-19] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/11/2019] [Indexed: 11/20/2022] Open
Abstract
Plant roots influence the soil microbiota via physical interaction, secretion, and plant immunity. However, it is unclear whether the root fraction or soil is more important in determining the structure of the prokaryotic or eukaryotic community and whether this varies between plant species. Furthermore, the leaf (phyllosphere) and root microbiotas have a large overlap; however, it is unclear whether this results from colonization of the phyllosphere by the root microbiota. Soil, rhizosphere, rhizoplane, and root endosphere prokaryote-, eukaryote-, and fungus-specific microbiotas of four plant species were analyzed with high-throughput sequencing. The strengths of factors controlling microbiota structure were determined using permutational multivariate analysis of variance (PERMANOVA) statistics. The origin of the phyllosphere microbiota was investigated using a soil swap experiment. Global microbial kingdom analysis conducted simultaneously on multiple plants shows that cereals, legumes, and Brassicaceae establish similar prokaryotic and similar eukaryotic communities inside and on the root surface. While the bacterial microbiota is recruited from the surrounding soil, its profile is influenced by the root itself more so than by soil or plant species. However, in contrast, the fungal microbiota is most strongly influenced by soil. This was observed in two different soils and for all plant species examined. Microbiota structure is established within 2 weeks of plant growth in soil and remains stable thereafter. A reciprocal soil swap experiment shows that the phyllosphere is colonized from the soil in which the plant is grown.IMPORTANCE Global microbial kingdom analysis conducted simultaneously on multiple plants shows that cereals, legumes, and Brassicaceae establish similar prokaryotic and similar eukaryotic communities inside and on the root surface. While the bacterial microbiota is recruited from the surrounding soil, its profile is influenced by the root fraction more so than by soil or plant species. However, in contrast, the fungal microbiota is most strongly influenced by soil. This was observed in two different soils and for all plant species examined, indicating conserved adaptation of microbial communities to plants. Microbiota structure is established within 2 weeks of plant growth in soil and remains stable thereafter. We observed a remarkable similarity in the structure of a plant's phyllosphere and root microbiotas and show by reciprocal soil swap experiments that both fractions are colonized from the soil in which the plant is grown. Thus, the phyllosphere is continuously colonized by the soil microbiota.
Collapse
Affiliation(s)
- Andrzej Tkacz
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Eloïne Bestion
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Zhiyan Bo
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Marion Hortala
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Philip S Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Basic Mechanism of Lignocellulose Mycodegradation. Fungal Biol 2019. [DOI: 10.1007/978-3-030-23834-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Ortiz-Vera MP, Olchanheski LR, da Silva EG, de Lima FR, Martinez LRDPR, Sato MIZ, Jaffé R, Alves R, Ichiwaki S, Padilla G, Araújo WL. Influence of water quality on diversity and composition of fungal communities in a tropical river. Sci Rep 2018; 8:14799. [PMID: 30287878 PMCID: PMC6172213 DOI: 10.1038/s41598-018-33162-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/21/2018] [Indexed: 11/09/2022] Open
Abstract
Freshwater fungi are key decomposers of organic material and play important roles in nutrient cycling, bio-remediation and ecosystem functioning. Although aquatic fungal communities respond to pollution, few studies have quantitatively assessed the effect of freshwater contamination on fungal diversity and composition; and knowledge is scarcer for tropical systems. Here we help fill this knowledge gap by studying a heavily-contaminated South American river spanning a biodiversity hotspot. We collected 30 water samples scattered across a quality gradient over two seasons and analyzed them using Terminal Restriction Fragment Length Polymorphisms (T-RFLP) coupled with 454 Pyrosequencing. Using T-RFLP we identified 451 and 442 Operational Taxonomy Units (OTUs) in the dry and rainy seasons respectively, whereas Pyrosequencing revealed 48,553 OTUs from which 11% were shared between seasons. Although 68% of all identified OTUs and 51% of all identified phyla remained unidentified, dominant fungal phyla included the Ascomycota, Basidiomycota, Chytridiomycota, Glomeromycota, Zygomycota and Neocallimastigomycota, while Calcarisporiella, Didymosphaeria, Mycosphaerella (Ascomycota) and Rhodotorula (Basidiomycota) were the most abundant genera. Fungal diversity was affected by pH and dissolved iron, while community composition was influenced by dissolved oxygen, pH, nitrate, biological oxygen demand, total aluminum, total organic carbon, total iron and seasonality. The presence of potentially pathogenic species was associated with high pH. Furthermore, geographic distance was positively associated with community dissimilarity, suggesting that local conditions allowed divergence among fungal communities. Overall, our findings raise potential concerns for human health and the functioning of tropical river ecosystems and they call for improved water sanitation systems.
Collapse
Affiliation(s)
- Mabel Patricia Ortiz-Vera
- NAP-BIOP, LABMEM, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes, 1374, Ed. Biomédicas II, Cidade Universitária, São Paulo, SP, Brazil
| | - Luiz Ricardo Olchanheski
- NAP-BIOP, LABMEM, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes, 1374, Ed. Biomédicas II, Cidade Universitária, São Paulo, SP, Brazil
| | - Eliane Gonçalves da Silva
- NAP-BIOP, LABMEM, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes, 1374, Ed. Biomédicas II, Cidade Universitária, São Paulo, SP, Brazil
| | - Felipe Rezende de Lima
- NAP-BIOP, LABMEM, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes, 1374, Ed. Biomédicas II, Cidade Universitária, São Paulo, SP, Brazil
| | - Lina Rocío Del Pilar Rada Martinez
- NAP-BIOP, LABMEM, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes, 1374, Ed. Biomédicas II, Cidade Universitária, São Paulo, SP, Brazil
| | - Maria Inês Zanoli Sato
- Department of Environmental Analysis, Environmental Company of São Paulo State (CETESB), Av. Prof. Frederico Hermann Jr., 345, São Paulo, SP, Brazil
| | - Rodolfo Jaffé
- Instituto Tecnológico Vale - Desenvolvimento Sustentável. Rua Boaventura da Silva, 955, Nazaré, 66055-090, Belém, PA, Brazil
| | - Ronnie Alves
- Instituto Tecnológico Vale - Desenvolvimento Sustentável. Rua Boaventura da Silva, 955, Nazaré, 66055-090, Belém, PA, Brazil
| | - Simone Ichiwaki
- NAP-BIOP, LABMEM, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes, 1374, Ed. Biomédicas II, Cidade Universitária, São Paulo, SP, Brazil
| | - Gabriel Padilla
- NAP-BIOP, LABMEM, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes, 1374, Ed. Biomédicas II, Cidade Universitária, São Paulo, SP, Brazil
| | - Welington Luiz Araújo
- NAP-BIOP, LABMEM, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Lineu Prestes, 1374, Ed. Biomédicas II, Cidade Universitária, São Paulo, SP, Brazil.
| |
Collapse
|
14
|
Pozdnyakova N, Schlosser D, Dubrovskaya E, Balandina S, Sigida E, Grinev V, Turkovskaya O. The degradative activity and adaptation potential of the litter-decomposing fungus Stropharia rugosoannulata. World J Microbiol Biotechnol 2018; 34:133. [PMID: 30109517 DOI: 10.1007/s11274-018-2516-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/09/2018] [Indexed: 11/24/2022]
Abstract
The ability of the litter-decomposing basidiomycete Stropharia rugosoannulata DSM 11372 to degrade a wide range of structurally different environmental pollutants such as polycyclic aromatic hydrocarbons (PAHs: phenanthrene, anthracene, fluorene, pyrene, and fluoranthene), synthetic anthraquinone dyes containing condensed aromatic rings, environmentally relevant alkylphenol and oxyethylated alkylphenol representatives, and oil was demonstrated within the present study. 9,10-Anthraquinone, phenanthrene-9,10-quinone, and 9-fluorenone were identified as products of anthracene, phenanthrene, and fluorene degradation, respectively. Fungal degradation was accompanied by the production of the ligninolytic enzymes: laccase and Mn peroxidase, suggesting their involvement in pollutant degradation. Extracellular polysaccharide(s) (EPS) and emulsifying compound(s) were concomitantly produced. EPS composed of mannose, glucose, and galactose was isolated from the cultivation medium, and its effects on catalytic properties of purified laccase from S. rugosoannulata (the dominating ligninolytic enzyme under the applied conditions) were studied. A simultaneous decrease of KM and Vmax values observed for the enzymatic oxidation of non-phenolic (2,2-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) diammonium salt; ABTS) and phenolic compounds (2,6-dimethoxyphenol) in presence of EPS suggest an interaction of EPS and laccase resulting in a modulation of the catalytic performance of the enzyme, which has, to the best of our knowledge, not been reported before. In line with such a modulation, the laccase-catalyzed oxidation of natural aromatic compounds (veratryl alcohol, adlerol) and environmental pollutants (the alkylphenol representative nonylphenol, the diphenylmethane derivative bisphenol A, and the PAH representative anthracene) was found to be enhanced in presence of EPS. The relevance of such effects for real environmental processes and their implications remain to be investigated.
Collapse
Affiliation(s)
- Natalia Pozdnyakova
- Environmental Biotechnology Laboratory, Institute of Biochemistry and Physiology of Plants and Microorganisms Russian Academy of Sciences, Prospect Entuziastov 13, Saratov, Russia, 410049.
| | - Dietmar Schlosser
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318, Leipzig, Germany
| | - Ekaterina Dubrovskaya
- Environmental Biotechnology Laboratory, Institute of Biochemistry and Physiology of Plants and Microorganisms Russian Academy of Sciences, Prospect Entuziastov 13, Saratov, Russia, 410049
| | - Svetlana Balandina
- Environmental Biotechnology Laboratory, Institute of Biochemistry and Physiology of Plants and Microorganisms Russian Academy of Sciences, Prospect Entuziastov 13, Saratov, Russia, 410049
| | - Elena Sigida
- Environmental Biotechnology Laboratory, Institute of Biochemistry and Physiology of Plants and Microorganisms Russian Academy of Sciences, Prospect Entuziastov 13, Saratov, Russia, 410049
| | - Vyacheslav Grinev
- Environmental Biotechnology Laboratory, Institute of Biochemistry and Physiology of Plants and Microorganisms Russian Academy of Sciences, Prospect Entuziastov 13, Saratov, Russia, 410049
| | - Olga Turkovskaya
- Environmental Biotechnology Laboratory, Institute of Biochemistry and Physiology of Plants and Microorganisms Russian Academy of Sciences, Prospect Entuziastov 13, Saratov, Russia, 410049
| |
Collapse
|
15
|
Krueger MC, Bergmann M, Schlosser D. Widespread ability of fungi to drive quinone redox cycling for biodegradation. FEMS Microbiol Lett 2016; 363:fnw105. [DOI: 10.1093/femsle/fnw105] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2016] [Indexed: 11/13/2022] Open
|
16
|
|
17
|
ZHANG C, LI W, WANG D, GUO X, MA L, XIAO D. Production of 2,3-butanediol by Enterobacter cloacae from corncob-derived xylose. Turk J Biol 2016. [DOI: 10.3906/biy-1506-66] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
18
|
Biochemical and physicochemical processes contributing to the removal of endocrine-disrupting chemicals and pharmaceuticals by the aquatic ascomycete Phoma sp. UHH 5-1-03. Appl Microbiol Biotechnol 2015; 100:2381-99. [DOI: 10.1007/s00253-015-7113-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/07/2015] [Accepted: 10/16/2015] [Indexed: 12/21/2022]
|
19
|
Otto B, Beuchel C, Liers C, Reisser W, Harms H, Schlosser D. Laccase-like enzyme activities from chlorophycean green algae with potential for bioconversion of phenolic pollutants. FEMS Microbiol Lett 2015; 362:fnv072. [DOI: 10.1093/femsle/fnv072] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2015] [Indexed: 01/18/2023] Open
|