1
|
Liu HS, Wang YP, Lin PW, Chu ML, Lan SH, Wu SY, Lee YR, Chang HY. The role of Atg5 gene in tumorigenesis under autophagy deficiency conditions. Kaohsiung J Med Sci 2024; 40:631-641. [PMID: 38826147 DOI: 10.1002/kjm2.12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/04/2024] Open
Abstract
Autophagy is a self-recycling machinery to maintain cellular homeostasis by degrading harmful materials in the cell. Autophagy-related gene 5 (Atg5) is required for autophagosome maturation. However, the role of Atg5 in tumorigenesis under autophagy deficient conditions remains unclear. This study focused on the autophagy-independent role of Atg5 and the underlying mechanism in tumorigenesis. We demonstrated that knockout of autophagy-related genes including Atg5, Atg7, Atg9, and p62 in mouse embryonic fibroblast (MEF) cells consistently decreased cell proliferation and motility, implying that autophagy is required to maintain diverse cellular functions. An Atg7 knockout MEF (Atg7-/- MEF) cell line representing deprivation of autophagy function was used to clarify the role of Atg5 transgene in tumorigenesis. We found that Atg5-overexpressed Atg7-/-MEF (clone A) showed increased cell proliferation, colony formation, and migration under autophagy deficient conditions. Accordingly, rescuing the autophagy deficiency of clone A by overexpression of Atg7 gene shifts the role of Atg5 from pro-tumor to anti-tumor status, indicating the dual role of Atg5 in tumorigenesis. Notably, the xenograft mouse model showed that clone A of Atg5-overexpressed Atg7-/- MEF cells induced temporal tumor formation, but could not prolong further tumor growth. Finally, biomechanical analysis disclosed increased Wnt5a secretion and p-JNK expression along with decreased β-catenin expression. In summary, Atg5 functions as a tumor suppressor to protect the cell under normal conditions. In contrast, Atg5 shifts to a pro-tumor status under autophagy deprivation conditions.
Collapse
Affiliation(s)
- Hsiao-Sheng Liu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Tropical Medicine College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Teaching and Research Center, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medial University, Kaohsiung, Taiwan
| | - Yin-Ping Wang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Wen Lin
- Tropical Medicine College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Man-Ling Chu
- Tropical Medicine College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sheng-Hui Lan
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shan-Ying Wu
- Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ying-Ray Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hong-Yi Chang
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| |
Collapse
|
2
|
Xiao J, Huang X, Wang H, Peng Y, Liu H, Huang H, Ma L, Wang C, Wang X, Cao Z. CKIP-1 Promotes P. gingivalis-Induced Inflammation of Periodontal Soft Tissues by Inhibiting Autophagy. Inflammation 2023; 46:1997-2010. [PMID: 37351817 DOI: 10.1007/s10753-023-01856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/17/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
As a chronic inflammatory disease, periodontitis involves many biological processes including autophagy. At the same time, casein kinase 2 interacting protein-1 (CKIP-1) was reported to play a role in regulation of inflammation. But whether CKIP-1 and autophagy interact in periodontitis remains unclear. In this paper, our research team verified the levels of CKIP-1 expression and autophagy increase in the periodontal tissues of a ligature-induced periodontitis mouse model. And this result was also confirmed in Porphyromonas gingivalis (Pg)-induced human gingival fibroblasts (HGF) and human periodontal ligament cells (PDLC). We also showed the autophagy level in periodontal tissues is higher in Ckip-1 knockout (KO) mice than wild type (WT). At the same time, CKIP-1 knockdown lentivirus was used in PDLC and HGF, and it was found that silencing CKIP-1 significantly activated autophagy. Unfortunately, the regulatory role of autophagy in periodontitis is still unclear. Then, the autophagy agonist Rapamycin and inhibitor 3-MA were used in a periodontitis mouse model to investigate periodontal tissue destruction. We found the inflammation in periodontal tissue was reduced when autophagy activated. All these conclusions have been verified both in vivo and in vitro experiments. Finally, our research proved that silencing CKIP-1 reduces the expression of inflammatory cytokines in Pg-induced PDLC and HGF by regulating autophagy. Overall, a new role for CKIP-1 in regulating periodontal tissue inflammation was demonstrated in our study, and it is possible to treat periodontitis by targeting the CKIP-1 gene.
Collapse
Affiliation(s)
- Junhong Xiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xin Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Huiyi Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yan Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Heyu Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Hantao Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Li Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Chuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Xiaoxuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
- Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
3
|
Weng HR, Taing K, Chen L, Penney A. EZH2 Methyltransferase Regulates Neuroinflammation and Neuropathic Pain. Cells 2023; 12:1058. [PMID: 37048131 PMCID: PMC10093242 DOI: 10.3390/cells12071058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Recent studies by us and others have shown that enhancer of zeste homolog-2 (EZH2), a histone methyltransferase, in glial cells regulates the genesis of neuropathic pain by modulating the production of proinflammatory cytokines and chemokines. In this review, we summarize recent advances in this research area. EZH2 is a subunit of polycomb repressive complex 2 (PRC2), which primarily serves as a histone methyltransferase to catalyze methylation of histone 3 on lysine 27 (H3K27), ultimately resulting in transcriptional repression. Animals with neuropathic pain exhibit increased EZH2 activity and neuroinflammation of the injured nerve, spinal cord, and anterior cingulate cortex. Inhibition of EZH2 with DZNep or GSK-126 ameliorates neuroinflammation and neuropathic pain. EZH2 protein expression increases upon activation of Toll-like receptor 4 and calcitonin gene-related peptide receptors, downregulation of miR-124-3p and miR-378 microRNAs, or upregulation of Lncenc1 and MALAT1 long noncoding RNAs. Genes suppressed by EZH2 include suppressor of cytokine signaling 3 (SOCS3), nuclear factor (erythroid-derived 2)-like-2 factor (NrF2), miR-29b-3p, miR-146a-5p, and brain-specific angiogenesis inhibitor 1 (BAI1). Pro-inflammatory mediators facilitate neuronal activation along pain-signaling pathways by sensitizing nociceptors in the periphery, as well as enhancing excitatory synaptic activities and suppressing inhibitory synaptic activities in the CNS. These studies collectively reveal that EZH2 is implicated in signaling pathways known to be key players in the process of neuroinflammation and genesis of neuropathic pain. Therefore, targeting the EZH2 signaling pathway may open a new avenue to mitigate neuroinflammation and neuropathic pain.
Collapse
Affiliation(s)
- Han-Rong Weng
- Department of Basic Sciences, California Northstate University College of Medicine, Elk Grove, CA 95757, USA
| | | | | | | |
Collapse
|
4
|
Luo Y, Gou H, Chen X, Li L, Wang X, Xu Y. Lactate inhibits osteogenic differentiation of human periodontal ligament stem cells via autophagy through the MCT1-mTOR signaling pathway. Bone 2022; 162:116444. [PMID: 35589065 DOI: 10.1016/j.bone.2022.116444] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/02/2022]
Abstract
BACKGROUND Periodontal ligament stem cells (PDLSCs) play a crucial role in periodontal bone regeneration. Lactate used to be considered a waste product of glucose metabolism. In recent years, a few pieces of evidence revealed its roles in regulating the osteogenic differentiation of stem cells, but the standpoints were controversial. This study aims to investigate the effects and the mechanisms of lactate on the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs). METHODS The hPDLSCs were treated with different concentrations of lactic acid and lactate to differentiate the effects of the acidic PH and ion lactate. Proliferation and cytotoxicity were measured by Cell Counting Kit-8 (CCK8) assay and Live/Dead assay. The osteogenic differentiation of hPDLSCs was analyzed by alizarin red staining, alkaline phosphatase (ALP) staining, and then osteogenic proteins and genes were measured by western blot and reverse transcription-quantitative PCR (qRT-PCR). To investigate the potential signaling pathways, MCT1 inhibitor, G-protein inhibitors, and rapamycin were used, and then autophagy-related proteins and osteogenic proteins were measured by western blot. RESULTS The inhibition of lactic acid on the osteogenic differentiation of hPDLSCs was more significant than lactate at the same concentration. Lactate inhibited the expression of ALP which can be rescued by Gα inhibitor. Alizarin red staining, the protein expression levels of osteocalcin (OCN), osteoprotegerin (OPN), osterix (OSX), and beclin1, LC3-II/LC3-I were decreased by lactate and partly rescued by MCT1 inhibitor. Rapamycin restored the protein expression levels of beclin1, LC3-II/LC3-I and OCN, OPN, OSX under the high lactate conditions. CONCLUSIONS Lactate inhibits the expression of ALP via Gα subunit signaling, and inhibits mineralized nodules formation and the expression of osteogenic-related proteins via reducing autophagy through the MCT1-mTOR signaling pathway.
Collapse
Affiliation(s)
- Ying Luo
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China; Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People's Republic of China
| | - Huiqing Gou
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China; Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People's Republic of China
| | - Xu Chen
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China; Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People's Republic of China
| | - Lu Li
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China; Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People's Republic of China
| | - Xiaoqian Wang
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China; Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People's Republic of China
| | - Yan Xu
- Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China; Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, People's Republic of China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, People's Republic of China.
| |
Collapse
|
5
|
Liu Y, Sun Y, Kang J, He Z, Liu Q, Wu J, Li D, Wang X, Tao Z, Guan X, She W, Xu H, Deng Y. Role of ROS-Induced NLRP3 Inflammasome Activation in the Formation of Calcium Oxalate Nephrolithiasis. Front Immunol 2022; 13:818625. [PMID: 35154136 PMCID: PMC8828488 DOI: 10.3389/fimmu.2022.818625] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/11/2022] [Indexed: 01/18/2023] Open
Abstract
Calcium oxalate nephrolithiasis is a common and highly recurrent disease in urology; however, its precise pathogenesis is still unknown. Recent research has shown that renal inflammatory injury as a result of the cell-crystal reaction plays a crucial role in the development of calcium oxalate kidney stones. An increasing amount of research have confirmed that inflammation mediated by the cell-crystal reaction can lead to inflammatory injury of renal cells, promote the intracellular expression of NADPH oxidase, induce extensive production of reactive oxygen species, activate NLRP3 inflammasome, discharge a great number of inflammatory factors, trigger inflammatory cascading reactions, promote the aggregation, nucleation and growth process of calcium salt crystals, and ultimately lead to the development of intrarenal crystals and even stones. The renal tubular epithelial cells (RTECs)-crystal reaction, macrophage-crystal reaction, calcifying nanoparticles, endoplasmic reticulum stress, autophagy activation, and other regulatory factors and mechanisms are involved in this process.
Collapse
Affiliation(s)
- Yunlong Liu
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Sun
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Juening Kang
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ziqi He
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Quan Liu
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jihua Wu
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Derong Li
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiang Wang
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiwei Tao
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaofeng Guan
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wusheng She
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hua Xu
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yaoliang Deng
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Lee SJ, Choi Y, Kim HI, Moon HE, Paek SH, Kim TY, Ko S. Platycodin D inhibits autophagy and increases glioblastoma cell death via LDLR upregulation. Mol Oncol 2022; 16:250-268. [PMID: 33931944 PMCID: PMC8732342 DOI: 10.1002/1878-0261.12966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/30/2021] [Accepted: 04/13/2021] [Indexed: 01/07/2023] Open
Abstract
Targeting autophagy is a promising therapeutic approach in cancer therapy. Here, we screened 30 traditional herbal medicines to identify novel autophagy regulators and found that Platycodon grandiflorus (PG) and platycodin D (PD), a triterpenoid saponin from PG, inhibited autophagy in glioblastoma multiforme (GBM) cells. Mechanistically, PD prevented lysosomal degradation and the fusion between autophagosomes and lysosomes by inducing sequestration of free cholesterol in lysosomes. The autophagy inhibitory effect of PD was mimicked by both genetic and pharmacological inhibition of Niemann-Pick C1 (NPC1), which exports low-density lipoprotein (LDL)-derived cholesterol from lysosomes. Moreover, PD promoted the uptake of exogenous LDL cholesterol via upregulation of LDL receptor (LDLR), leading to further accumulation of cholesterol within lysosomes and GBM cell death. Importantly, these phenomena were more pronounced in LDLR-overexpressing GBM cells than in normal astrocytes. Finally, blockade of cholesterol uptake by LDLR knockdown reversed the PD-induced inhibition of autophagy and GBM cell growth. Our study proposes that PD could be a potent anti-GBM drug by disrupting cholesterol trafficking and autophagy.
Collapse
Affiliation(s)
- Sol Ji Lee
- Department of Science in Korean MedicineGraduate SchoolKyung Hee UniversitySeoulKorea
- Center for Cognition and SocialityInstitute for Basic ScienceDaejeonKorea
| | - Yu‐Jeong Choi
- Department of Science in Korean MedicineGraduate SchoolKyung Hee UniversitySeoulKorea
| | - Hyo In Kim
- Department of Science in Korean MedicineGraduate SchoolKyung Hee UniversitySeoulKorea
| | - Hyo Eun Moon
- Department of NeurosurgeryAdvanced Institute of Convergence Technology (AICT)Cancer Research Institute, and Ischemic/Hypoxic Disease InstituteSeoul National University College of MedicineKorea
| | - Sun Ha Paek
- Department of NeurosurgeryAdvanced Institute of Convergence Technology (AICT)Cancer Research Institute, and Ischemic/Hypoxic Disease InstituteSeoul National University College of MedicineKorea
| | - Tai Young Kim
- Center for Cognition and SocialityInstitute for Basic ScienceDaejeonKorea
- Department of Preventive MedicineCollege of Korean MedicineKyung Hee UniversitySeoulKorea
| | - Seong‐Gyu Ko
- Department of Preventive MedicineCollege of Korean MedicineKyung Hee UniversitySeoulKorea
| |
Collapse
|
7
|
Abdullah ML, Al-Shabanah O, Hassan ZK, Hafez MM. Eugenol-Induced Autophagy and Apoptosis in Breast Cancer Cells via PI3K/AKT/FOXO3a Pathway Inhibition. Int J Mol Sci 2021; 22:ijms22179243. [PMID: 34502165 PMCID: PMC8430664 DOI: 10.3390/ijms22179243] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
The use of natural compounds is promising in approaches to prevent and treat cancer. The long-term application of most currently employed chemotherapy techniques has toxic side effects. Eugenol, a phenolic phytochemical extracted from certain essential oils, has an anti-cancer effect. The modulation of autophagy can promote either the survival or apoptosis of cancer cells. Triple-negative (MDA-MB-231) and HER2 positive (SK-BR-3) breast cancer cell lines were treated with different doses of eugenol. Apoptosis was detected by a flow-cytometry technique, while autophagy was detected by acridine orange. Real-time PCR and Western blot assays were applied to investigate the effect of eugenol on the gene and protein expression levels of autophagy and apoptotic genes. Treating cells with different concentrations of eugenol significantly inhibited cell proliferation. The protein levels of AKT serine/threonine kinase 1 (AKT), forkhead box O3 (FOXO3a), cyclin dependent kinase inhibitor 1A (p21), cyclin-dependent kinase inhibitor (p27), and Caspase-3 and -9 increased significantly in Eugenol-treated cells. Eugenol also induced autophagy by upregulating the expression levels of microtubule-associated protein 1 light chain 3 (LC3) and downregulating the expression of nucleoporin 62 (NU p62). Eugenol is a promising natural anti-cancer agent against triple-negative and HER2-positive breast cancer. It appears to work by targeting the caspase pathway and by inducing autophagic cell death.
Collapse
Affiliation(s)
- Mashan L. Abdullah
- Experimental Medicine Department, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, MNGHA, Riyadh 11426, Saudi Arabia
- Pharmacology and Toxicology Department, King Saud University, Riyadh 11426, Saudi Arabia;
- Correspondence: (M.L.A.); (M.M.H.)
| | - Othman Al-Shabanah
- Pharmacology and Toxicology Department, King Saud University, Riyadh 11426, Saudi Arabia;
| | - Zeinab K. Hassan
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt;
| | - Mohamed M. Hafez
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 12613, Egypt;
- Correspondence: (M.L.A.); (M.M.H.)
| |
Collapse
|
8
|
Kim WJ, Park SY, Kim OS, Park HS, Jung JY. Autophagy upregulates inflammatory cytokines in gingival tissue of patients with periodontitis and lipopolysaccharide-stimulated human gingival fibroblasts. J Periodontol 2021; 93:380-391. [PMID: 34213019 PMCID: PMC9290715 DOI: 10.1002/jper.21-0178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/18/2022]
Abstract
Background Periodontitis is an inflammatory disease caused by multiple disease‐associated bacterial species in periodontal tissues. Autophagy is known to modulate various inflammation‐driven diseases and inflammatory responses, but the role of autophagy related to the pathogenesis of periodontitis is not fully established. We investigated whether autophagic flux regulated the expression of inflammatory cytokines in the gingiva of periodontitis patients and lipopolysaccharide (LPS)‐stimulated human gingival fibroblasts (HGFs) and the underlying mechanism. Methods The mRNA and protein expression of proinflammatory cytokines was assessed in human gingival tissues collected from patients with periodontitis and HGFs treated with LPS. The expression of signaling molecules related to autophagy was evaluated by immunofluorescence and Western blot analyses. Results The expression of interleukin (IL)‐6, tumor necrosis factor‐α (TNF‐α), cyclooxygenase‐2 (COX‐2), and intercellular adhesion molecule‐1 (ICAM‐1) was increased in the gingival tissues of patients with periodontitis. LC3B‐positive cells, a typical autophagic marker, were increased in the gingival tissues of periodontitis patients and LPS‐treated HGFs. The conversion ratio of LC3‐I to LC3‐II was higher in the gingival tissues associated with periodontitis and LPS‐treated HGFs compared to the controls. The autophagy inhibitor 3‐methyladenine (3MA) significantly abrogated the LPS‐sustained inflammatory effect by reducing the expression of IL‐6, TNF‐α, COX‐2, and ICAM‐1 in HGFs. The phosphorylation of protein kinase B (AKT) and protein S6K1 (S6), signals involved in the mTOR‐dependent mechanism, was decreased in gingiva derived from periodontitis patients and LPS‐treated HGFs. Conclusions Autophagy augmented the production of inflammatory cytokines by mTOR inactivation via the AKT signaling pathway in the gingival tissues of patients with periodontitis and LPS‐stimulated HGFs. These findings would provide a better understanding of the mechanism by which autophagy regulates the inflammatory response associated with periodontal pathogenesis.
Collapse
Affiliation(s)
- Won Jae Kim
- Department of Oral Physiology, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Sam Young Park
- Department of Oral Physiology, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Ok Su Kim
- Department of Periodontology, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Hoo Sang Park
- Department of Periodontology, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| | - Ji Yeon Jung
- Department of Oral Physiology, Dental Science Research Institute, School of Dentistry, Chonnam National University, Gwangju, Korea
| |
Collapse
|
9
|
NAD +/NADH redox alterations reconfigure metabolism and rejuvenate senescent human mesenchymal stem cells in vitro. Commun Biol 2020; 3:774. [PMID: 33319867 PMCID: PMC7738682 DOI: 10.1038/s42003-020-01514-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs) promote endogenous tissue regeneration and have become a promising candidate for cell therapy. However, in vitro culture expansion of hMSCs induces a rapid decline of stem cell properties through replicative senescence. Here, we characterize metabolic profiles of hMSCs during expansion. We show that alterations of cellular nicotinamide adenine dinucleotide (NAD + /NADH) redox balance and activity of the Sirtuin (Sirt) family enzymes regulate cellular senescence of hMSCs. Treatment with NAD + precursor nicotinamide increases the intracellular NAD + level and re-balances the NAD + /NADH ratio, with enhanced Sirt-1 activity in hMSCs at high passage, partially restores mitochondrial fitness and rejuvenates senescent hMSCs. By contrast, human fibroblasts exhibit limited senescence as their cellular NAD + /NADH balance is comparatively stable during expansion. These results indicate a potential metabolic and redox connection to replicative senescence in adult stem cells and identify NAD + as a metabolic regulator that distinguishes stem cells from mature cells. This study also suggests potential strategies to maintain cellular homeostasis of hMSCs in clinical applications. Yuan et al. characterise metabolic profiles of human mesenchymal stem cells (hMSCs) during cell expansion in culture. They find that late passage hMSCs exhibit a NAD + /NADH redox cycle imbalance and that adding NAD + precursor nicotinamide restores mitochondrial fitness and cellular homeostasis in senescent hMSCs indicating a possible route to preserve hMSC homeostasis for therapeutic use.
Collapse
|
10
|
Yang Y, Huang Y, Li W. Autophagy and its significance in periodontal disease. J Periodontal Res 2020; 56:18-26. [PMID: 33247437 DOI: 10.1111/jre.12810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/24/2020] [Accepted: 10/10/2020] [Indexed: 12/14/2022]
Abstract
Autophagy is an evolutionarily conserved process essential for cellular homeostasis and human health. As a lysosome-dependent degradation pathway, autophagy acts as a modulator of the pathogenesis of diverse diseases. The relationship between autophagy and oral diseases has been explored in recent years, and there is increasing interest in the role of autophagy in periodontal disease. Periodontal disease is a prevalent chronic inflammatory disorder characterized by the destruction of periodontal tissues. It is initiated through pathogenic bacterial infection and interacts with the host immune defense, leading to inflammation and alveolar bone resorption. In this review, we outline the machinery of autophagy and present an overview of work on the significance of autophagy in regulating pathogen invasion, the immune response, inflammation, and alveolar bone homeostasis of periodontal disease. Existing data provide support for the importance of autophagy as a multi-dimensional regulator in the pathogenesis of periodontal disease and demonstrate the importance of future research on the potential roles of autophagy in periodontal disease.
Collapse
Affiliation(s)
- Yuhui Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yiping Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
11
|
Zhang Z, Li D, Xu L, Li HP. Sirt1 improves functional recovery by regulating autophagy of astrocyte and neuron after brain injury. Brain Res Bull 2019; 150:42-49. [PMID: 31102754 DOI: 10.1016/j.brainresbull.2019.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/26/2022]
Abstract
Traumatic brain injury (TBI) triggers neuronal death mechanisms that significantly induce neuronal loss and neurological dysfunction. Our previous study revealed that Sirt1 could improve the neuroprotective effect by reducing the astrocyte activation after TBI. Nevertheless, the underlying mechanisms of Sirt1 attenuating astrocyte activation still remain unclear. The following study examined whether the protection of Sirt1 in nigrostriatal pathway injury is associated with autophagy regulation. We established a nigrostriatal pathway injury in the mouse brain in order to mimic the traumatic brain injury and up-regulated Sirt1 expression by resveratrol. Consequently, we analyzed the effect of Sirt1 up-regulation on LC3 and monitored the LC3 localization in the astrocytes, microglial cells and neurons. We found that the Sirt1 up-regulation by resveratrol increased the expression of LC3 around the lesion site after injury. Confocal results showed that Sirt1 up-regulation increased the expression of LC3 in astrocytes and decreased the expression in the neurons, while low effect was found on the microglial cells. Moreover, compared the resveratrol treatment groups, a typical nucleocytoplasmic localization with strong distribution in the nucleus (in astrocyte and neurons) was observed in the control group (treated with DMSO). To sum up, our data suggested that regulation of Sirt1 expression could enhance autophagy in the astrocytes and decrease the expression in the neurons. This mechanism, which may probably relate to the distribution of LC3 in cytoplasm and nucleus, provides a new theoretical basis for exploring the neuroprotective mechanism of Sirt1 after brain injury.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Dan Li
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Li Xu
- Department of Ophthalmology, Forth People's Hospital, Shenyang, China.
| | - Hong-Peng Li
- Department of Human Anatomy, College of Basic Medical Sciences, China Medical University, Shenyang, China.
| |
Collapse
|
12
|
Jaber FA, Khan NM, Ansari MY, Al-Adlaan AA, Hussein NJ, Safadi FF. Autophagy plays an essential role in bone homeostasis. J Cell Physiol 2019; 234:12105-12115. [PMID: 30820954 DOI: 10.1002/jcp.27071] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/29/2018] [Indexed: 12/20/2022]
Abstract
Autophagy is very critical for multiple cellular processes. Autophagy plays a critical role in bone cell differentiation and function.
Collapse
Affiliation(s)
- Fatima A Jaber
- Department of Biology, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED) School of Medicine, Rootstown, Ohio.,School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Nazir M Khan
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED) School of Medicine, Rootstown, Ohio
| | - Mohammad Y Ansari
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED) School of Medicine, Rootstown, Ohio
| | - Asaad A Al-Adlaan
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED) School of Medicine, Rootstown, Ohio.,School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Nazar J Hussein
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED) School of Medicine, Rootstown, Ohio.,School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University (NEOMED) School of Medicine, Rootstown, Ohio.,School of Biomedical Sciences, Kent State University, Kent, Ohio.,Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, Rootstown, Ohio.,Department of Orthopedic Surgery, SUMMA Health System, Akron, Ohio.,Rebecca D. Considine Research Institute Akron Children's Hospital, Akron, Ohio
| |
Collapse
|
13
|
Duarte LF, Farías MA, Álvarez DM, Bueno SM, Riedel CA, González PA. Herpes Simplex Virus Type 1 Infection of the Central Nervous System: Insights Into Proposed Interrelationships With Neurodegenerative Disorders. Front Cell Neurosci 2019; 13:46. [PMID: 30863282 PMCID: PMC6399123 DOI: 10.3389/fncel.2019.00046] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is highly prevalent in humans and can reach the brain without evident clinical symptoms. Once in the central nervous system (CNS), the virus can either reside in a quiescent latent state in this tissue, or eventually actively lead to severe acute necrotizing encephalitis, which is characterized by exacerbated neuroinflammation and prolonged neuroimmune activation producing a life-threatening disease. Although HSV-1 encephalitis can be treated with antivirals that limit virus replication, neurological sequelae are common and the virus will nevertheless remain for life in the neural tissue. Importantly, there is accumulating evidence that suggests that HSV-1 infection of the brain both, in symptomatic and asymptomatic individuals could lead to neuronal damage and eventually, neurodegenerative disorders. Here, we review and discuss acute and chronic infection of particular brain regions by HSV-1 and how this may affect neuron and cognitive functions in the host. We review potential cellular and molecular mechanisms leading to neurodegeneration, such as protein aggregation, dysregulation of autophagy, oxidative cell damage and apoptosis, among others. Furthermore, we discuss the impact of HSV-1 infection on brain inflammation and its potential relationship with neurodegenerative diseases.
Collapse
Affiliation(s)
- Luisa F Duarte
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Diana M Álvarez
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Biología Celular, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
14
|
Yin J, Zhou Z, Chen J, Wang Q, Tang P, Ding Q, Yin G, Gu J, Fan J. Edaravone inhibits autophagy after neuronal oxygen-glucose deprivation/recovery injury. Int J Neurosci 2019; 129:501-510. [PMID: 30472906 DOI: 10.1080/00207454.2018.1550399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE OF THE STUDY Edaravone is an oxygen free radical scavenger that is widely used to treat ischemic injury to the nervous system. This study investigated the effect of edaravone pretreatment on neurons subjected to oxygen-glucose deprivation/recovery (OGD/R) injury. MATERIALS AND METHODS Common neurons were subjected to oxygen and glucose deprivation for 1 h, followed by oxygen and glucose recovery for 0.5, 2, 6 and 12 h to establish the OGD/R model. Autophagy was assessed by electron microscope observation of autophagosomes, cell immunofluorescence, mRFP-GFP-LC3 virus cell fluorescence and western blotting analyses of the autophagy-related proteins. The findings showed that at OGD/R 2 h autophagy was high. Next, neurons were pretreated with different concentrations of edaravone (0, 5, 10, 25, 50 and 100 μM) before establishing the OGD/R model. Western blotting was used to analyze the expression of autophagy-related proteins. The CCK-8 assay was used to analyze cell viability after pretreatment with different concentrations of edaravone. Optimal inhibition of autophagy was achieved with the concentration of edaravone 50 μM. Neurons pretreated with 50 μM edaravone and established OGD/R model were analyzed for autophagy levels. RESULTS At every OGD/R time point autophagy was lower in neurons pretreated with edaravone than in those not pretreated with the drug. The difference was statistically significant without OGD/R 12 h. CONCLUSIONS Pretreatment with edaravone may reduce the level of autophagy in neurons subjected to OGD/R injury.
Collapse
Affiliation(s)
- Jian Yin
- a Department of Orthopaedics , The Affiliated Jiangning Hospital with Nanjing Medical University , Nanjing , China
| | - Zheng Zhou
- b Department of Orthopaedics , The First Affiliated Hospital with Nanjing Medical University , Nanjing , China
| | - Jian Chen
- b Department of Orthopaedics , The First Affiliated Hospital with Nanjing Medical University , Nanjing , China
| | - Qian Wang
- b Department of Orthopaedics , The First Affiliated Hospital with Nanjing Medical University , Nanjing , China
| | - Pengyu Tang
- b Department of Orthopaedics , The First Affiliated Hospital with Nanjing Medical University , Nanjing , China
| | - Qirui Ding
- b Department of Orthopaedics , The First Affiliated Hospital with Nanjing Medical University , Nanjing , China
| | - Guoyong Yin
- b Department of Orthopaedics , The First Affiliated Hospital with Nanjing Medical University , Nanjing , China
| | - Jun Gu
- c Department of Orthopaedics , Wuxi Xishan People's Hospital , Wuxi , China
| | - Jin Fan
- b Department of Orthopaedics , The First Affiliated Hospital with Nanjing Medical University , Nanjing , China
| |
Collapse
|
15
|
Abstract
Macroautophagy is a catabolic process through which redundant, aged, or damaged cellular structures are first enclosed within double-membrane vesicles (called autophagosomes), and thereafter degraded within lysosomes. Macroautophagy provides a primary route for the turnover of macromolecules, membranes and organelles, and as such plays a major role in cell homeostasis. As part of the stress response, autophagy is crucial to determine the cell fate in response to extracellular or intracellular injuries. Autophagy is involved in cancerogenesis and in cancer progression. Here we illustrate the essential methods for monitoring autophagy in pancreatic cancer cells.
Collapse
|
16
|
Zhang F, Yan T, Guo W, Sun K, Wang S, Bao X, Liu K, Zheng B, Zhang H, Ren T. Novel oncogene COPS3 interacts with Beclin1 and Raf-1 to regulate metastasis of osteosarcoma through autophagy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:135. [PMID: 29970115 PMCID: PMC6029018 DOI: 10.1186/s13046-018-0791-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/13/2018] [Indexed: 01/02/2023]
Abstract
Background Expression of COP9 signalosome subunit 3 (COPS3), an oncogene overexpressed in osteosarcoma, has been demonstrated to be significantly correlated with tumor metastasis. However, the underlying mechanism by which COPS3 promotes metastasis of osteosarcoma and its role in autophagy remain unknown. Methods The expression of COPS3 was detected in primary osteosarcoma tissues and matching lung metastasis tissues by immunohistochemistry (IHC). The effect of COPS3 on the metastasis of osteosarcoma cells was investigated by transwell, wound healing assays and animal studies. Indicated proteins was analyzed by western blotting when COPS3 was knockdown or overexpressed. The COPS3 Interacting protein was determined by immunoprecipitation assay. The relationship between COPS3 and autophagy was detected by western blotting and immunofluorescence. Results We found that knockdown of COPS3 significantly reduced the lung metastasis of osteosarcoma cells in a mouse model, coinciding with downregulation of mitogen-activated protein kinase (MEK) and extracellular signal-regulated kinase (ERK) signaling. The silencing of COPS3 also inhibited the epithelial–mesenchymal transition (EMT) through the 90 kDa ribosomal S6 kinases (RSK), a family of signal transduction proteins downstream of MEK/ERK. Reciprocal immunoprecipitation assays revealed that COPS3 directly interacts with Raf-1, an upstream regulator of MEK/ERK. Surprisingly, Beclin1, an important autophagic protein, appeared in the COPS3-immunoprecipitates, along with the autophagic markers LC3-I and LC3-II. Loss of COPS3 completely inhibited H2O2-induced autophagic flux and reduced Beclin1 expression. Additionally, autophagy inhibitor or silencing of Beclin1 both decreased cell metastasis. Conclusions Taken together, these data reveal a novel function of COPS3 in the regulation of autophagy and highlight the relationship between autophagy and metastasis in osteosarcoma cells. Electronic supplementary material The online version of this article (10.1186/s13046-018-0791-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fan Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, China
| | - Taiqiang Yan
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China. .,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, China.
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, China
| | - Kunkun Sun
- Department of Pathology, Peking University People's Hospital, Beijing, 100044, China
| | - Shidong Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, China
| | - Xing Bao
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, China
| | - Kuisheng Liu
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, China
| | - Bingxin Zheng
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, China
| | - Hongliang Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, 100044, China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, 100044, China
| |
Collapse
|
17
|
Wang X, Wang S, Zhou Y, Obulkasim H, Zhang ZH, Dai B, Zhu W, Shi XL. BM‑MSCs protect against liver ischemia/reperfusion injury via HO‑1 mediated autophagy. Mol Med Rep 2018; 18:2253-2262. [PMID: 29956785 DOI: 10.3892/mmr.2018.9207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 02/23/2018] [Indexed: 11/09/2022] Open
Abstract
Ischemia/reperfusion (I/R) injury is considered to be a contributing factor in liver injury following major hepatic resection or liver transplantation. Bone marrow mesenchymal stem cells (BM‑MSCs) have the potential to protect against liver I/R injury; however, the precise mechanisms have not been completely elucidated. Autophagy serves an important role in protecting against various injuries, including I/R injury. The present study aimed to determine the role of autophagy and its potential regulatory mechanism in BM‑MSC‑mediated protection against liver I/R injury in rats. The results demonstrated that BM‑MSCs mitigated I/R injury and enhanced autophagy in vivo. In addition, inhibition of autophagy by 3‑methyladenine reversed the positive effects of BM‑MSCs. Furthermore, heme oxygenase‑1 (HO‑1) expression was promoted by BM‑MSCs. Using zinc protoporphyrin IX to inhibit HO‑1 demonstrated that HO‑1 was important for the promotion of autophagy. In conclusion, the present study revealed that BM‑MSCs protected against liver I/R injury via the promotion of HO‑1‑mediated autophagy.
Collapse
Affiliation(s)
- Xun Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Shuai Wang
- Department of Hepatobiliary Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Yuan Zhou
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Halmurat Obulkasim
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Zhi-Heng Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Bo Dai
- Department of Hepatobiliary Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Wei Zhu
- Department of Anesthesiology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| | - Xiao-Lei Shi
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, P.R. China
| |
Collapse
|
18
|
Lin XT, Zheng XB, Fan DJ, Yao QQ, Hu JC, Lian L, Wu XJ, Lan P, He XS. MicroRNA-143 Targets ATG2B to Inhibit Autophagy and Increase Inflammatory Responses in Crohn's Disease. Inflamm Bowel Dis 2018; 24:781-791. [PMID: 29562274 DOI: 10.1093/ibd/izx075] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Dysfunctional autophagy is recognized as a contributing factor in many chronic inflammatory diseases, including Crohn's disease (CD). Genetic analyses have found that microRNA (miRNA) levels are altered in the intestinal tissues of CD patients. METHODS The Sequencing Alternative Poly-Adenylation Sites (SAPAS) method was used to compare the 3' end of the total mRNA sequence of 3 surgical specimens of CD patients (including inflamed tissues and corresponding noninflamed tissues in each case). The levels of autophagy-related 2B (ATG2B), LC3, and miR-143 were compared between inflamed tissues and noninflamed tissues using immunoblot and quantitative reverse transcription polymerase chain reaction. Luciferase assays were used to verify the interactions between miR-143 and ATG2B. Autophagy was measured by immunoblot analyses of LC3 and transmission electron microscopy. Inflammatory cytokines and IκBα were analyzed to evaluate the effect of miR-143 on inflammatory response. RESULTS The tandem repeat 3'-UTR of ATG2B was longer in inflamed tissues than in corresponding noninflamed tissues and contained an miR-143 target site. miR-143 expression was elevated, whereas ATG2B and LC3-II were downregulated in inflamed tissues. The direct interaction between miR-143 and ATG2B was verified by a 3'-UTR dual-luciferase reporter assay. Constitutive expression of miR-143 or depletion of ATG2B in cultured intestinal epithelial cells inhibited autophagy, reduced IκBα levels, and increased inflammatory responses. CONCLUSIONS miR-143 may induce bowel inflammation by regulating ATG2B and autophagy, suggesting that miR-143 might play a critical role in the development of CD. Therefore, miR-143 could be a promising novel target for gene therapy in CD patients.
Collapse
Affiliation(s)
- Xu-Tao Lin
- Department of Gastrointestinal Endoscopy, Guangzhou, Guangdong, China.,Department of Colorectal Surgery, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Bin Zheng
- Department of Colorectal Surgery, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - De-Jun Fan
- Department of Gastrointestinal Endoscopy, Guangzhou, Guangdong, China.,Department of Colorectal Surgery, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiu-Qiong Yao
- Department of Colorectal Surgery, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian-Cong Hu
- Department of Colorectal Surgery, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei Lian
- Department of Colorectal Surgery, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Jian Wu
- Department of Colorectal Surgery, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ping Lan
- Department of Colorectal Surgery, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Sheng He
- Department of Colorectal Surgery, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Zhao Z, Li X, Li Q. Curcumin accelerates the repair of sciatic nerve injury in rats through reducing Schwann cells apoptosis and promoting myelinization. Biomed Pharmacother 2017. [PMID: 28622711 DOI: 10.1016/j.biopha.2017.05.099] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Schwann cells (SCs) play an indispensable role in the repair and regeneration of injured peripheral nerve. Curcumin can reduce SCs apoptosis, and promote the regeneration and functional recovery of injured peripheral nerves. However, the corresponding mechanisms are not clear. OBJECTIVE The article was aimed to explore the effect and corresponding mechanisms of curcumin on the repair of sciatic nerve injury in rats. METHODS After surgery induced sciatic nerve injury, the model rats were divided into three groups and treated with curcumin, curcumin+PD98059 and curcumin+IGF-1 respectively for 4days. The phosphorylation of Erk1/2 and Akt, and the expression of LC3-II, Beclin 1 and p62 were measured using western blotting. After treatment for 60days, myelination of the injured sciatic nerve was evaluated by MBP immunohistochemical staining and the expression of PMP22, Fibrin and S100 were determined using qRT-PCR and western blotting. In vitro, RSC96 cells were starved for 12h to induce autophagy, and received DMSO, curcumin, PD98059+curcumin, IGF-1+curcumin and BFA1 respectively. The phosphorylation of Erk1/2、Akt and the expression of LC3-II, Beclin 1, p62, PMP22, Fibrin and S100 were measured using western blotting, and the cell apoptosis was detected by flow cytometry. RESULTS Curcumin could promote injury-induced cell autophagy, remyelination and axon regeneration in sciatic nerve of rats. In vitro, curcumin could accelerate cell autophagy through regulating autophagy related Erk1/2 and Akt pathway, prevent cell apoptosis and promote expression of PMP22 and S100, and reduced deposition of Fibrin in cultured RSC96 SCs. CONCLUSIONS Curcumin could accelerate injured sciatic nerve repair in rats through reducing SCs apoptosis and promoting myelinization.
Collapse
Affiliation(s)
- Zhiwei Zhao
- Luoyang Orthopedic Hospital of Henan Province, Zhengzhou 450046, Henan Province, China
| | - Xiaoling Li
- Luoyang Orthopedic Hospital of Henan Province, Zhengzhou 450046, Henan Province, China.
| | - Qing Li
- Department of Orthopaedics, The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming 650032, Yunnan Province, China.
| |
Collapse
|
20
|
Abstract
More than 50% of the U.S. population is infected with herpes simplex virus type-I (HSV-1) and global infectious estimates are nearly 90%. HSV-1 is normally seen as a harmless virus but debilitating diseases can arise, including encephalitis and ocular diseases. HSV-1 is unique in that it can undermine host defenses and establish lifelong infection in neurons. Viral reactivation from latency may allow HSV-1 to lay siege to the brain (Herpes encephalitis). Recent advances maintain that HSV-1 proteins act to suppress and/or control the lysosome-dependent degradation pathway of macroautophagy (hereafter autophagy) and consequently, in neurons, may be coupled with the advancement of HSV-1-associated pathogenesis. Furthermore, increasing evidence suggests that HSV-1 infection may constitute a gradual risk factor for neurodegenerative disorders. The relationship between HSV-1 infection and autophagy manipulation combined with neuropathogenesis may be intimately intertwined demanding further investigation.
Collapse
Affiliation(s)
- Douglas O'Connell
- a Department of Molecular Microbiology and Immunology , Keck Medical School, University of Southern California , Los Angeles , CA , USA
| | - Chengyu Liang
- a Department of Molecular Microbiology and Immunology , Keck Medical School, University of Southern California , Los Angeles , CA , USA
| |
Collapse
|
21
|
Wen J, Zhao Y, Guo L. Orexin A induces autophagy in HCT-116 human colon cancer cells through the ERK signaling pathway. Int J Mol Med 2015; 37:126-32. [PMID: 26572581 DOI: 10.3892/ijmm.2015.2409] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 10/07/2015] [Indexed: 11/06/2022] Open
Abstract
Orexins are a class of peptides which have a potent influence on a broad variety of cancer cells. Autophagy is closely associated with tumors; however, its function is not yet completely understood. In this study, we aimed to determine whether orexin A induces autophagy in HCT‑116 human colon cancer cells and to elucidate the molecular mechanisms involved. For this purpose, HCT‑116 cells were treated with orexin A, and cell viability was then measured by MTT assay, and apoptosis was determined by flow cytometry. The expression levels of autophagy‑related proteins were measured by western blot analysis. Quantitative analysis of autophagy following acridine orange (AO) staining was performed using fluorescence microscopy, and cellular morphology was observed under a transmission electron microscope. In addition, the HCT‑116 cells were treated with the extracellular signal‑regulated kinase (ERK) inhibitor, U0126, or the autophagy inhibitor, chloroquine, in combination with orexin A in order to examine the activation of ERK. We found that orexin A significantly inhibited the viability of the HCT‑116 cells. Both autophagy and apoptosis were activated during the orexin A‑induced death of HCT‑116 cells. When the HCT‑116 cells were treated with orexin A for 24 h, an accumulation of punctate microtubule-associated protein-1 light chain 3 (LC3) and an increase in LC3‑Ⅱ protein levels were also detected, indicating the activation of autophagy. Moreover, orexin A upregulated ERK phosphorylation; however, U0126 or chloroquine abrogated ERK phosphorylation and decreased autophagy, compared to treatment with orexin A alone. Therefore, our findings demonstratedm that orexin A induced autophagy through the ERK pathway in HCT‑116 human colon cancer cells. The inhibition of autophagy may thus prove to be an effective strategy for enhancing the antitumor potential of orexin A as a treatment for colon cancer.
Collapse
Affiliation(s)
- Jing Wen
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yuyan Zhao
- Department of Endocrinology, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lei Guo
- Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
22
|
Zhang Z, Guo M, Zhao S, Xu W, Shao J, Zhang F, Wu L, Lu Y, Zheng S. The update on transcriptional regulation of autophagy in normal and pathologic cells: A novel therapeutic target. Biomed Pharmacother 2015; 74:17-29. [DOI: 10.1016/j.biopha.2015.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/15/2015] [Indexed: 02/08/2023] Open
|
23
|
Zhang X, Zhang Y, Yu Y, Liu J, Yuan Y, Zhao Y, Li H, Wang J, Wang Z. Convergence and divergence of genetic and modular networks between diabetes and breast cancer. J Cell Mol Med 2015; 19:1094-102. [PMID: 25752479 PMCID: PMC4420611 DOI: 10.1111/jcmm.12504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/22/2014] [Indexed: 12/03/2022] Open
Abstract
Diabetes mellitus (DM) and breast cancer (BC) can simultaneously occur in the same patient populations, but the molecular relationship between them remains unknown. In this study, we constructed genetic networks and used modularized analysis approaches to investigate the multi-dimensional characteristics of two diseases and one disease subtype. A text search engine (Agilent Literature Search 2.71) and MCODE software were applied to validate potential subnetworks and to divide the modules, respectively. A total of 793 DM-related genes, 386 type 2 diabetes (T2DM) genes and 873 BC-related genes were identified from the Online Mendelian Inheritance in Man database. For DM and BC, a total of 99 overlapping genes, 9 modules, 29 biological processes and 7 pathways were identified. Meanwhile, for T2DM and BC, 56 overlapping genes, 5 modules, 20 biological processes and 12 pathways were identified. Based on the Gene Ontology functional enrichment analysis of the top 10 non-overlapping modules of the two diseases, 10 biological functions and 5 pathways overlapped between them. The glycosphingolipid and lysosome pathways verified molecular mechanisms of cell death related to both DM and BC. We also identified new biological functions of dopamine receptors and four signalling pathways (Parkinson's disease, Alzheimer's disease, Huntington's disease and long-term depression) related to both diseases; these warrant further investigation. Our results illustrate the landscape of the novel molecular substructures between DM and BC, which may support a new model for complex disease classification and rational therapies for multiple diseases.
Collapse
Affiliation(s)
- Xiaoxu Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Berliocchi L, Maiarù M, Varano GP, Russo R, Corasaniti MT, Bagetta G, Tassorelli C. Spinal autophagy is differently modulated in distinct mouse models of neuropathic pain. Mol Pain 2015; 11:3. [PMID: 25645145 PMCID: PMC4417307 DOI: 10.1186/1744-8069-11-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/06/2015] [Indexed: 12/11/2022] Open
Abstract
Background Autophagy is a homeostatic degradative process essential for basal turnover of long-lived proteins and organelles as well as for removal of dysfunctional cellular components. Dysregulation of the autophagic machinery has been recently associated to several conditions including neurodegenerative diseases and cancer, but only very few studies have investigated its role in pain processing. Results We previously described autophagy impairment at the spinal cord in the experimental model of neuropathic pain induced by spinal nerve ligation (SNL). In this study, we characterized the main autophagic markers in two other common experimental models of neuropathic pain, the chronic constriction injury (CCI) and the spared nerve injury (SNI). The different modulation of LC3-I, Beclin 1 and p62 suggested that autophagy is differentially affected in the spinal dorsal horn depending on the type of peripheral injury. Confocal analysis of p62 distribution in the spinal dorsal horn indicated its presence mainly in NeuN-positive cell bodies and occasionally in glial processes, thus suggesting a predominant expression in the neuronal compartment. Finally, we investigated the consequences of autophagy impairment on pain behaviour by using the autophagy blocker cloroquine. Intrathecal chloroquine injection in naïve mice induced spinal accumulation of LC3 and p62 paralleled by significant mechanical hypersensitivity thus confirming the block in autophagosome clearance and suggesting the participation of the autophagic process in spinal mechanisms of pain processing. Altogether, our data indicate that spinal autophagy is differentially altered in different experimental pain models of neuropathic pain and that this process may be relevant for pain control.
Collapse
Affiliation(s)
- Laura Berliocchi
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100, Catanzaro, Italy. .,Centre of Neuropharmacology of Normal and Pathological Synaptic Plasticity, University Consortium for Adaptive Disorders and Head Pain, 87036, Rende, Cosenza, Italy.
| | - Maria Maiarù
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, 87036, Rende, Cosenza, Italy.
| | | | - Rossella Russo
- Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, 87036, Rende, Cosenza, Italy.
| | | | - Giacinto Bagetta
- Centre of Neuropharmacology of Normal and Pathological Synaptic Plasticity, University Consortium for Adaptive Disorders and Head Pain, 87036, Rende, Cosenza, Italy. .,Department of Pharmacy, Health and Nutritional Sciences, Section of Preclinical and Translational Pharmacology, University of Calabria, 87036, Rende, Cosenza, Italy.
| | - Cristina Tassorelli
- C. Mondino National Neurological Institute, Pavia, Italy. .,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| |
Collapse
|
25
|
The importance of autophagy regulation in breast cancer development and treatment. BIOMED RESEARCH INTERNATIONAL 2014; 2014:710345. [PMID: 25317422 PMCID: PMC4182068 DOI: 10.1155/2014/710345] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/05/2014] [Indexed: 12/12/2022]
Abstract
Breast cancer (BC) is a potentially life-threatening malignant tumor that still causes high mortality among women. One of the mechanisms through which cancer development could be controlled is autophagy. This process exerts different effects during the stages of cancer initiation and progression due to the occurring superimposition of signaling pathways of autophagy and carcinogenesis. Chronic inhibition of autophagy or autophagy deficiency promotes cancer, due to instability of the genome and defective cell growth and as a result of cell stress. However, increased induction of autophagy can become a mechanism which allows tumor cells to survive the conditions of hypoxia, acidosis, or chemotherapy. Therefore, in the development of cancer, autophagy is regarded as a double-edged sword. Determination of the molecular mechanisms underlying autophagy regulation and its role in tumorigenesis is an essential component of modern anticancer strategies. Results of scientific studies show that inhibition of autophagy may enhance the effectiveness of currently used anticancer drugs and other therapies (like radiotherapy). However, in some cases, the promotion of autophagy can induce death and, hence, elimination of the cancer cells and reduction of tumor size. This review summarizes the current knowledge on autophagy regulation in BC and up-to-date anticancer strategies correlated with autophagy.
Collapse
|
26
|
Wu DH, Tai S. Molecular mechanism of hepatitis B virus X-associated hepatocarcinogenesis. Shijie Huaren Xiaohua Zazhi 2014; 22:3773-3779. [DOI: 10.11569/wcjd.v22.i25.3773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant diseases and has the fourth highest mortality rate worldwide. Chronic hepatitis B virus (HBV) infection is one of the most important etiological factors for HCC. Current studies show that the hepatitis B virus X (HBX) gene plays an important role in the development of HBV-associated HCC. HBX protein is a multifunctional regulator. Though interacting with different host factors, HBX takes part in many cell physiological activities, such as signal transduction, gene transcription, cell cycle progression, apoptosis and autophagy. This review will discuss the biological role of HBX protein in the development of HCC based on the current state of knowledge on this protein.
Collapse
|
27
|
De Palma C, Perrotta C, Pellegrino P, Clementi E, Cervia D. Skeletal muscle homeostasis in duchenne muscular dystrophy: modulating autophagy as a promising therapeutic strategy. Front Aging Neurosci 2014; 6:188. [PMID: 25104934 PMCID: PMC4109521 DOI: 10.3389/fnagi.2014.00188] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/10/2014] [Indexed: 12/25/2022] Open
Abstract
Muscular dystrophies are a group of genetic and heterogeneous neuromuscular disorders characterized by the primary wasting of skeletal muscle. In Duchenne muscular dystrophy (DMD), the most severe form of these diseases, the mutations in the dystrophin gene lead to muscle weakness and wasting, exhaustion of muscular regenerative capacity, and chronic local inflammation leading to substitution of myofibers by connective and adipose tissue. DMD patients suffer from continuous and progressive skeletal muscle damage followed by complete paralysis and death, usually by respiratory and/or cardiac failure. No cure is yet available, but several therapeutic approaches aiming at reversing the ongoing degeneration have been investigated in preclinical and clinical settings. Autophagy is an important proteolytic system of the cell and has a crucial role in the removal of proteins, aggregates, and organelles. Autophagy is constantly active in skeletal muscle and its role in tissue homeostasis is complex: at high levels, it can be detrimental and contribute to muscle wasting; at low levels, it can cause weakness and muscle degeneration, due to the unchecked accumulation of damaged proteins and organelles. The causal relationship between DMD pathogenesis and dysfunctional autophagy has been recently investigated. At molecular level, the Akt axis is one of the key dysregulated pathways, although the molecular events are not completely understood. The aim of this review is to describe and discuss the clinical relevance of the recent advances dissecting autophagy and its signaling pathway in DMD. The picture might pave the way for the development of interventions that are able to boost muscle growth and/or prevent muscle wasting.
Collapse
Affiliation(s)
- Clara De Palma
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "L. Sacco", National Research Council-Institute of Neuroscience, University Hospital "L. Sacco", University of Milan , Milan , Italy
| | - Cristiana Perrotta
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "L. Sacco", National Research Council-Institute of Neuroscience, University Hospital "L. Sacco", University of Milan , Milan , Italy
| | - Paolo Pellegrino
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "L. Sacco", National Research Council-Institute of Neuroscience, University Hospital "L. Sacco", University of Milan , Milan , Italy
| | - Emilio Clementi
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "L. Sacco", National Research Council-Institute of Neuroscience, University Hospital "L. Sacco", University of Milan , Milan , Italy ; Scientific Institute IRCCS Eugenio Medea , Bosisio Parini , Italy
| | - Davide Cervia
- Unit of Clinical Pharmacology, Department of Biomedical and Clinical Sciences "L. Sacco", National Research Council-Institute of Neuroscience, University Hospital "L. Sacco", University of Milan , Milan , Italy ; Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia , Viterbo , Italy
| |
Collapse
|