1
|
Feng Z, Wang L, Guan Q, Chu X, Luo ZQ. Acinetobacter baumannii coordinates central metabolism, plasmid dissemination, and virulence by sensing nutrient availability. mBio 2023; 14:e0227623. [PMID: 37855599 PMCID: PMC10746170 DOI: 10.1128/mbio.02276-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Plasmid conjugation is known to be an energy-expensive process, but our understanding of the molecular linkage between conjugation and metabolism is limited. Our finding reveals that Acinetobacter baumannii utilizes a two-component system to co-regulate metabolism, plasmid transfer, and virulence by sensing reaction intermediates of key metabolic pathways, which suggests that nutrient availability dictates not only bacterial proliferation but also horizontal gene transfer. The identification of Dot/Icm-like proteins as components of a conjugation system involved in the dissemination of antibiotic-resistance genes by A. baumannii has provided important targets for the development of agents capable of inhibiting virulence and the spread of anti-microbial-resistance genes in bacterial communities.
Collapse
Affiliation(s)
- Zhengshan Feng
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Lidong Wang
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Qingtian Guan
- Bioinformatics Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Xiao Chu
- Department of Respiratory Medicine, Center of Infectious Diseases and Pathogen Biology, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Zumsteg J, Hirschler A, Carapito C, Maurer L, Villette C, Heintz D, Dahl C, El Nayal A, Sangal V, Mahmoud H, Van Dorsselaer A, Ismail W. Mechanistic insights into sulfur source-driven physiological responses and metabolic reorganization in the fuel-biodesulfurizing Rhodococcus qingshengii IGTS8. Appl Environ Microbiol 2023; 89:e0082623. [PMID: 37655899 PMCID: PMC10537767 DOI: 10.1128/aem.00826-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/30/2023] [Indexed: 09/02/2023] Open
Abstract
Comparative proteomics and untargeted metabolomics were combined to study the physiological and metabolic adaptations of Rhodococcus qingshengii IGTS8 under biodesulfurization conditions. After growth in a chemically defined medium with either dibenzothiophene (DBT) or MgSO4 as the sulfur source, many differentially produced proteins and metabolites associated with several metabolic and physiological processes were detected including the metabolism of carbohydrates, amino acids, lipids, nucleotides, vitamins, protein synthesis, transcriptional regulation, cell envelope biogenesis, and cell division. Increased production of the redox cofactor mycofactocin and associated proteins was one of the most striking adaptations under biodesulfurization conditions. While most central metabolic enzymes were less abundant in the presence of DBT, a key enzyme of the glyoxylate shunt, isocitrate lyase, was up to 26-fold more abundant. Several C1 metabolism and oligotrophy-related enzymes were significantly more abundant in the biodesulfurizing culture. R. qingshengii IGTS8 exhibited oligotrophic growth in liquid and solid media under carbon starvation. Moreover, the oligotrophic growth was faster on the solid medium in the presence of DBT compared to MgSO4 cultures. In the DBT culture, the cell envelope and phospholipids were remodeled, with lower levels of phosphatidylethanolamine and unsaturated and short-chain fatty acids being the most prominent changes. Biodesulfurization increased the biosynthesis of osmoprotectants (ectoine and mannosylglycerate) as well as glutamate and induced the stringent response. Our findings reveal highly diverse and overlapping stress responses that could protect the biodesulfurizing culture not only from the associated sulfate limitation but also from chemical, oxidative, and osmotic stress, allowing efficient resource management. IMPORTANCE Despite decades of research, a commercially viable bioprocess for fuel desulfurization has not been developed yet. This is mainly due to lack of knowledge of the physiology and metabolism of fuel-biodesulfurizing bacteria. Being a stressful condition, biodesulfurization could provoke several stress responses that are not understood. This is particularly important because a thorough understanding of the microbial stress response is essential for the development of environmentally friendly and industrially efficient microbial biocatalysts. Our comparative systems biology studies provide a mechanistic understanding of the biology of biodesulfurization, which is crucial for informed developments through the rational design of recombinant biodesulfurizers and optimization of the bioprocess conditions. Our findings enhance the understanding of the physiology, metabolism, and stress response not only in biodesulfurizing bacteria but also in rhodococci, a precious group of biotechnologically important bacteria.
Collapse
Affiliation(s)
- Julie Zumsteg
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Aurélie Hirschler
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI FR2048, Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI FR2048, Strasbourg, France
| | - Loïc Maurer
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
- Département mécanique, ICube Laboratoire des sciences de l’ingénieur, de l’informatique et de l’imagerie, UNISTRA/CNRS/ENGEES/INSA, Strasbourg, France
| | - Claire Villette
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Christiane Dahl
- Institut für Mikrobiologie & Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Ashraf El Nayal
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Huda Mahmoud
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - Alain Van Dorsselaer
- Laboratoire de Spectrométrie de Masse BioOrganique, CNRS, Université de Strasbourg, IPHC UMR 7178, Infrastructure Nationale de Protéomique ProFI FR2048, Strasbourg, France
| | - Wael Ismail
- Environmental Biotechnology Program, Life Sciences Department, College of Graduate Studies, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
3
|
Reconstruction and Analysis of Thermodynamically Constrained Models Reveal Metabolic Responses of a Deep-Sea Bacterium to Temperature Perturbations. mSystems 2022; 7:e0058822. [PMID: 35950761 PMCID: PMC9426432 DOI: 10.1128/msystems.00588-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Microbial acclimation to different temperature conditions can involve broad changes in cell composition and metabolic efficiency. A systems-level view of these metabolic responses in nonmesophilic organisms, however, is currently missing. In this study, thermodynamically constrained genome-scale models were applied to simulate the metabolic responses of a deep-sea psychrophilic bacterium, Shewanella psychrophila WP2, under suboptimal (4°C), optimal (15°C), and supraoptimal (20°C) growth temperatures. The models were calibrated with experimentally determined growth rates of WP2. Gibbs free energy change of reactions (ΔrG'), metabolic fluxes, and metabolite concentrations were predicted using random simulations to characterize temperature-dependent changes in the metabolism. The modeling revealed the highest metabolic efficiency at the optimal temperature, and it suggested distinct patterns of ATP production and consumption that could lead to lower metabolic efficiency under suboptimal or supraoptimal temperatures. The modeling also predicted rearrangement of fluxes through multiple metabolic pathways, including the glycolysis pathway, Entner-Doudoroff pathway, tricarboxylic acid (TCA) cycle, and electron transport system, and these predictions were corroborated through comparisons to WP2 transcriptomes. Furthermore, predictions of metabolite concentrations revealed the potential conservation of reducing equivalents and ATP in the suboptimal temperature, consistent with experimental observations from other psychrophiles. Taken together, the WP2 models provided mechanistic insights into the metabolism of a psychrophile in response to different temperatures. IMPORTANCE Metabolic flexibility is a central component of any organism's ability to survive and adapt to changes in environmental conditions. This study represents the first application of thermodynamically constrained genome-scale models in simulating the metabolic responses of a deep-sea psychrophilic bacterium to various temperatures. The models predicted differences in metabolic efficiency that were attributed to changes in metabolic pathway utilization and metabolite concentration during growth under optimal and nonoptimal temperatures. Experimental growth measurements were used for model calibration, and temperature-dependent transcriptomic changes corroborated the model-predicted rearrangement of metabolic fluxes. Overall, this study highlights the utility of modeling approaches in studying the temperature-driven metabolic responses of an extremophilic organism.
Collapse
|
4
|
Ikeda Y, Kishimoto M, Shintani M, Yoshida N. Oligotrophic Gene Expression in Rhodococcus erythropolis N9T-4 under Various Nutrient Conditions. Microorganisms 2022; 10:microorganisms10091725. [PMID: 36144327 PMCID: PMC9502362 DOI: 10.3390/microorganisms10091725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
Rhodococcus erythropolis N9T-4 is a super oligotroph that grows on an inorganic basal medium without any additional carbon and nitrogen sources and requires CO2 for its oligotrophic growth. Previously, we found that two genes, aldA and mnoA, encoding NAD-dependent aliphatic aldehyde dehydrogenase and N,N′-dimethyl-4-nitrosoaniline-dependent methanol dehydrogenase, respectively, were highly upregulated under oligotrophic conditions. In this study, we constructed reporter plasmids containing an enhanced green fluorescent protein gene under aldA or mnoA promoters (pAldA and pMnoA, respectively). Fluorescence analysis of N9T-4 cells with reporter plasmids revealed that tryptone and yeast extract strongly repressed the expression of oligotrophy-connected genes, whereas the effect of casamino acids was moderate. Furthermore, remarkably high expression of aldA and mnoA was observed when the reporter strains were grown in media containing primary alcohols, particularly ethanol. Malic acid repressed ethanol-induced gene expression, suggesting that C2 metabolism is involved in the oligotrophic growth of N9T-4. The regulation of oligotrophic gene expression elucidated in this study could provide appropriate conditions for the production of useful compounds in an oligotrophic microbial process.
Collapse
Affiliation(s)
- Yuri Ikeda
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan
| | - Mana Kishimoto
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan
| | - Masaki Shintani
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Nobuyuki Yoshida
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu 432-8561, Japan
- Correspondence:
| |
Collapse
|
5
|
Liang Y, Yu H. Genetic toolkits for engineering Rhodococcus species with versatile applications. Biotechnol Adv 2021; 49:107748. [PMID: 33823269 DOI: 10.1016/j.biotechadv.2021.107748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 02/09/2023]
Abstract
Rhodococcus spp. are a group of non-model gram-positive bacteria with diverse catabolic activities and strong adaptive capabilities, which enable their wide application in whole-cell biocatalysis, environmental bioremediation, and lignocellulosic biomass conversion. Compared with model microorganisms, the engineering of Rhodococcus is challenging because of the lack of universal molecular tools, high genome GC content (61% ~ 71%), and low transformation and recombination efficiencies. Nevertheless, because of the high interest in Rhodococcus species for bioproduction, various genetic elements and engineering tools have been recently developed for Rhodococcus spp., including R. opacus, R. jostii, R. ruber, and R. erythropolis, leading to the expansion of the genetic toolkits for Rhodococcus engineering. In this article, we provide a comprehensive review of the important developed genetic elements for Rhodococcus, including shuttle vectors, promoters, antibiotic markers, ribosome binding sites, and reporter genes. In addition, we also summarize gene transfer techniques and strategies to improve transformation efficiency, as well as random and precise genome editing tools available for Rhodococcus, including transposition, homologous recombination, recombineering, and CRISPR/Cas9. We conclude by discussing future trends in Rhodococcus engineering. We expect that more synthetic and systems biology tools (such as multiplex genome editing, dynamic regulation, and genome-scale metabolic models) will be adapted and optimized for Rhodococcus.
Collapse
Affiliation(s)
- Youxiang Liang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
6
|
Inaba S, Sakai H, Kato H, Horiuchi T, Yano H, Ohtsubo Y, Tsuda M, Nagata Y. Expression of an alcohol dehydrogenase gene in a heterotrophic bacterium induces carbon dioxide-dependent high-yield growth under oligotrophic conditions. MICROBIOLOGY-SGM 2020; 166:531-545. [PMID: 32310743 DOI: 10.1099/mic.0.000908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sphingobium japonicum strain UT26, whose γ-hexachlorocyclohexane-degrading ability has been studied in detail, is a typical aerobic and heterotrophic bacterium that needs organic carbon sources for its growth, and cannot grow on a minimal salt agar medium prepared without adding any organic carbon sources. Here, we isolated a mutant of UT26 with the ability to grow to visible state on such an oligotrophic medium from a transposon-induced mutant library. This high-yield growth under oligotrophic conditions (HYGO) phenotype was CO2-dependent and accompanied with CO2 incorporation. In the HYGO mutant, a transposon was inserted just upstream of the putative Zn-dependent alcohol dehydrogenase (ADH) gene (adhX) so that the adhX gene was constitutively expressed, probably by the transposon-derived promoter. The adhX-deletion mutant (UT26DAX) harbouring a plasmid carrying the adhX gene under the control of a constitutive promoter exhibited the HYGO phenotype. Moreover, the HYGO mutants spontaneously emerged among the UT26-derived hypermutator strain cells, and adhX was highly expressed in these HYGO mutants, while no HYGO mutant appeared among UT26DAX-derived hypermutator strain cells, indicating the necessity of adhX for the HYGO phenotype. His-tagged AdhX that was expressed in Escherichia coli and purified to homogeneity showed ADH activity towards methanol and other alcohols. Mutagenesis analysis of the adhX gene indicated a correlation between the ADH activity and the HYGO phenotype. These results demonstrated that the constitutive expression of an adhX-encoding protein with ADH activity in UT26 leads to the CO2-dependent HYGO phenotype. Identical or nearly identical adhX orthologues were found in other sphingomonad strains, and most of them were located on plasmids, suggesting that the adhX-mediated HYGO phenotype may be an important adaptation strategy to oligotrophic environments among sphingomonads.
Collapse
Affiliation(s)
- Shinnosuke Inaba
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Hironori Sakai
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Hiromi Kato
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Takayuki Horiuchi
- Chitose Laboratory Corp., 2-13-3 Nogawa-honcho, Miyamae-ku, Kawasaki, Kanagawa, 216-0041, Japan
| | - Hirokazu Yano
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yoshiyuki Ohtsubo
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Masataka Tsuda
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yuji Nagata
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
7
|
Ikegaya R, Shintani M, Kimbara K, Fakuda M, Yoshida N. Identification of a transcriptional regulator for oligotrophy-responsive promoter in Rhodococcus erythropolis N9T-4. Biosci Biotechnol Biochem 2020; 84:865-868. [PMID: 31884880 DOI: 10.1080/09168451.2019.1709792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Two genes, aldA, and mnoA, encoding an NAD-dependent aliphatic dehydrogenase and N,N'-dimethyl-4-nitrosoaniline-dependent methanol dehydrogenase, respectively, are strongly expressed when Rhodococcus erythropolis N9T-4 is grown under oligotrophic conditions. In this study, we found a transcriptional regulator required for the transcription of both aldA and mnoA. The transcriptional regulator was also found to be essential for the oligotrophic growth of N9T-4.
Collapse
Affiliation(s)
- Ryoji Ikegaya
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Masaki Shintani
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Kazuhide Kimbara
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | | | - Nobuyuki Yoshida
- Applied Chemistry and Biochemical Engineering Course, Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| |
Collapse
|
8
|
Functional analysis of putative transporters involved in oligotrophic growth of Rhodococcus erythropolis N9T-4. Appl Microbiol Biotechnol 2019; 103:4167-4175. [PMID: 30953120 DOI: 10.1007/s00253-019-09714-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/04/2019] [Accepted: 02/23/2019] [Indexed: 10/27/2022]
Abstract
Rhodococcus erythropolis N9T-4, which is an extremely oligotrophic bacterium, can survive in a completely inorganic medium with no additional carbon source. This bacterium utilizes atmospheric CO2, but does not require any additional energy source such as light and hydrogen gas, required by autotrophic microorganisms. However, its CO2 fixation and energy-acquisition systems in the oligotrophic growth remain unrevealed. We expected N9T-4 to have the transporter(s) that imports essential compound(s) for its oligotrophic growth. Three putative ATP-binding cassette (ABC) transporters were found to be highly upregulated under oligotrophic conditions. We constructed the gene-deletion mutants of a gene encoding the substrate-binding protein for each ABC transporter (∆sbp1, ∆sbp2, and ∆sbp3). Among these mutants, ∆sbp1 showed growth defects on oligotrophic medium without carbon source. We examined the growth of the mutants on the oligotrophic medium containing 1% trehalose as a sole carbon source. The results exhibited worse growth of ∆sbp3 than that of the control strain (∆ligD), whereas intracellular trehalose content of all mutants decreased compared with that of ∆ligD. It was reported that trehalose functions as the mycolate carrier to the arabinogalactan layer in the cell wall of Mycobacterium tuberculosis. Transmission electron microscopic analysis of ∆sbp1 cells showed that an outermost envelope of the ∆sbp1 cell diminished, which was expected to be mycolate layer. From these results, we suggest that the same trehalose-recycling system as that in a Mycobacterium cell functions in the oligotrophic growth of N9T-4, and the ABC transporter comprising Sbp1 as the substrate-binding protein is strongly involved in the oligotrophic growth of N9T-4.
Collapse
|
9
|
Corregido MC, Asención Diez MD, Iglesias AÁ, Piattoni CV. New pieces to the carbon metabolism puzzle of Nitrosomonas europaea: Kinetic characterization of glyceraldehyde-3 phosphate and succinate semialdehyde dehydrogenases. Biochimie 2019; 158:238-245. [PMID: 30690134 DOI: 10.1016/j.biochi.2019.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/19/2019] [Indexed: 02/02/2023]
Abstract
Nitrosomonas europaea is a chemolithotroph that obtains energy through the oxidation of ammonia to hydroxylamine while assimilates atmospheric CO2 to cover the cell carbon demands for growth. This microorganism plays a relevant role in the nitrogen biogeochemical cycle on Earth but its carbon metabolism remains poorly characterized. Based on sequence homology, we identified two genes (cbbG and gabD) coding for redox enzymes in N. europaea. Cloning and expression of the genes in Escherichia coli, allowed the production of recombinant enzymes purified to determine their biochemical properties. The protein CbbG is a glyceraldehyde-3-phosphate (Ga3P) dehydrogenase (Ga3PDHase) catalyzing the reversible oxidation of Ga3P to 1,3-bis-phospho-glycerate (1,3bisPGA), using specifically NAD+/NADH as cofactor. CbbG showed ∼6-fold higher Km value for 1,3bisPGA but ∼5-fold higher kcat for the oxidation of Ga3P. The protein GabD irreversibly oxidizes Ga3P to 3Pglycerate using NAD+ or NADP+, thus resembling a non-phosphorylating Ga3PDHase. However, the enzyme showed ∼6-fold higher Km value and three orders of magnitude higher catalytic efficiency with succinate semialdehyde (SSA) and NADP+. Indeed, the GabD protein identity corresponds to an SSA dehydrogenase (SSADHase). CbbG seems to be the only Ga3PDHase present in N. europaea; which would be involved in reducing triose-P during autotrophic carbon fixation. Otherwise, in cells grown under conditions deprived of ammonia and oxygen, the enzyme could catalyze the glycolytic step of Ga3P oxidation producing NADH. As an SSADHase, GabD would physiologically act producing succinate and preferentially NADPH over NADH; thus being part of an alternative pathway of the tricarboxylic acid cycle converting α-ketoglutarate to succinate. The properties determined for these enzymes contribute to better identify metabolic steps in CO2 assimilation, glycolysis and the tricarboxylic acid cycle in N. europaea. Results are discussed in the framework of metabolic pathways that launch biosynthetic intermediates relevant in the microorganism to develop and fulfill its role in nature.
Collapse
Affiliation(s)
- María Cecilia Corregido
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (IAL, CONICET-UNL) & FBCB, Centro Científico Tecnológico CONICET Santa Fe, Santa Fe, Argentina
| | - Matías Damián Asención Diez
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (IAL, CONICET-UNL) & FBCB, Centro Científico Tecnológico CONICET Santa Fe, Santa Fe, Argentina
| | - Alberto Álvaro Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (IAL, CONICET-UNL) & FBCB, Centro Científico Tecnológico CONICET Santa Fe, Santa Fe, Argentina.
| | - Claudia Vanesa Piattoni
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (IAL, CONICET-UNL) & FBCB, Centro Científico Tecnológico CONICET Santa Fe, Santa Fe, Argentina; Instituto Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
10
|
Matsuoka T, Yoshida N. Establishment of an effective oligotrophic cultivation system for Rhodococcus erythropolis N9T-4. Biosci Biotechnol Biochem 2018; 82:1652-1655. [PMID: 29862898 DOI: 10.1080/09168451.2018.1482196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Rhodococcus erythropolis N9T-4 grows on an inorganic solid-state medium with no additional carbon and energy sources; however, it is unable to grow well in a liquid culture medium under the oligotrophic conditions. We examined submerged cultivations of N9T-4 using a polyurethane foam sponge to achieve approximately 10 times of the oligotrophic growth of the bacterium in the liquid culture medium.
Collapse
Affiliation(s)
- Tomohiro Matsuoka
- a Applied Chemistry and Biochemical Engineering Course, Department of Engineering , Graduate School of Integrated Science and Technology, Shizuoka University , Hamamatsu , Japan
| | - Nobuyuki Yoshida
- a Applied Chemistry and Biochemical Engineering Course, Department of Engineering , Graduate School of Integrated Science and Technology, Shizuoka University , Hamamatsu , Japan
| |
Collapse
|
11
|
Gutiérrez G, Chistyakova LV, Villalobo E, Kostygov AY, Frolov AO. Identification of Pelomyxa palustris Endosymbionts. Protist 2017; 168:408-424. [PMID: 28755578 DOI: 10.1016/j.protis.2017.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/08/2017] [Accepted: 06/13/2017] [Indexed: 11/29/2022]
Abstract
Pelomyxa palustris is a giant anaerobic/microaerobic amoeba, characterized by a number of exceptional cytological and physiological features, among them the presumed absence of energy producing organelles and the presence of endosymbiotic bacteria. These endosymbionts have been previously distinguished as: a large rectangular-shaped Gram-variable rod with a central cleft; a slender Gram-negative rod; and a slender Gram-positive rod. Using DNA extracted from P. palustris cysts, we have obtained three SSU rRNA gene sequences. We have determined that these sequences are affiliated to three different prokaryotic genera: Methanosaeta (a methanogenic archaea), Syntrophorhabdus (a syntrophic Gram-negative bacteria) and Rhodococcus (an aerobic chemoorganotrophic Gram-positive bacteria). To our knowledge, it is the first time that Syntrophorhabdus has been described as an endosymbiont in association with a methanogen. Strikingly, no traces of Methanobacterium formicicum could be detected, despite this methanogen had allegedly been isolated from trophozoites of P. palustris. It seems that the host and the endosymbionts have established a multipartite syntrophic consortium resembling to some extent those found in sewage treatment plants.
Collapse
Affiliation(s)
| | - Ludmila V Chistyakova
- St. Petersburg State University, Сore Facility Center of SPSU "Culture collection of microorganisms", St. Petersburg, Russia
| | | | - Alexei Y Kostygov
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia; Life Science Research Centre, Faculty of Science, University of Ostrava, Czech Republic
| | - Alexander O Frolov
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
12
|
Yoshida N, Yano T, Kedo K, Fujiyoshi T, Nagai R, Iwano M, Taguchi E, Nishida T, Takagi H. A unique intracellular compartment formed during the oligotrophic growth of Rhodococcus erythropolis N9T-4. Appl Microbiol Biotechnol 2016; 101:331-340. [PMID: 27717963 DOI: 10.1007/s00253-016-7883-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/17/2016] [Accepted: 09/20/2016] [Indexed: 11/29/2022]
Abstract
Rhodococcus erythropolis N9T-4, isolated from stored crude oil, shows extremely oligotrophic features and can grow on a basal medium without any additional carbon, nitrogen, sulfur, and energy sources, but requires CO2 for its oligotrophic growth. Transmission electron microscopic observation showed that a relatively large and spherical compartment was observed in a N9T-4 cell grown under oligotrophic conditions. In most cases, only one compartment was observed per cell, but in some cases, it was localized at each pole of the cell, suggesting that it divides at cell division. We termed this unique bacterial compartment an oligobody. The oligobody was not observed or very rarely observed in small sizes under nutrient rich conditions, whereas additional carbon sources did not affect oligobody formation. Energy dispersive X-ray spectroscopy analysis revealed remarkable peaks corresponding to phosphorus and potassium in the oligobody. The oligobodies in N9T-4 cells could be stained by Toluidine blue, suggesting that the oligobody is composed of inorganic polyphosphate and is a type of acidocalcisome. Two genes-encoding polyphosphate kinases, ppk1 and ppk2, were found in the N9T-4 genome: ppk1 disruption caused a negative effect on the formation of the oligobody. Although it was suggested that the oligobody plays an important role for the oligotrophic growth, both ppk-deleted mutants showed the same level of oligotrophic growth as the wild-type strain.
Collapse
Affiliation(s)
- Nobuyuki Yoshida
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan. .,Department of Applied Chemistry and Biochemical Engineering, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan.
| | - Takanori Yano
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan.,The Institute of Enology and Viticulture, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1-13-1 Kitashin, Kofu, Yamanashi, 400-0005, Japan
| | - Kaori Kedo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Takuya Fujiyoshi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Rina Nagai
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Megumi Iwano
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.,Department of Biotechnology, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiji Taguchi
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Tomoki Nishida
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Hiroshi Takagi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| |
Collapse
|
13
|
Yano T, Funamizu Y, Yoshida N. Intracellular accumulation of trehalose and glycogen in an extreme oligotroph, Rhodococcus erythropolis N9T-4. Biosci Biotechnol Biochem 2016; 80:610-3. [DOI: 10.1080/09168451.2015.1107467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
An extreme oligotroph, Rhodococcus erythropolis N9T-4, showed intracellular accumulation of trehalose and glycogen under oligotrophic conditions. No trehalose accumulation was observed in cells grown on the rich medium. Deletion of the polyphosphate kinase genes enhanced the trehalose accumulation and decreases the intracellular glycogen contents, suggesting an oligotrophic relationship between among the metabolic pathways of trehalose, glycogen, and inorganic polyphosphate biosyntheses.
Collapse
Affiliation(s)
- Takanori Yano
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Yuhei Funamizu
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Nobuyuki Yoshida
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan
| |
Collapse
|