1
|
Quintero-Díaz JC, Gil-Posada JO. Batch and semi-continuous treatment of cassava wastewater using microbial fuel cells and metataxonomic analysis. Bioprocess Biosyst Eng 2024; 47:1057-1070. [PMID: 38842769 PMCID: PMC11213813 DOI: 10.1007/s00449-024-03025-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/26/2024] [Indexed: 06/07/2024]
Abstract
The treatment of agroindustrial wastewater using microbial fuel cells (MFCs) is a technological strategy to harness its chemical energy while simultaneously purifying the water. This manuscript investigates the organic load effect as chemical oxygen demand (COD) on the production of electricity during the treatment of cassava wastewater by means of a dual-chamber microbial fuel cell in batch mode. Additionally, specific conditions were selected to evaluate the semi-continuous operational mode. The dynamics of microbial communities on the graphite anode were also investigated. The maximum power density delivered by the batch MFC (656.4 μW m- 2 ) was achieved at the highest evaluated organic load (6.8 g COD L- 1 ). Similarly, the largest COD removal efficiency (61.9%) was reached at the lowest organic load (1.17 g COD L- 1 ). Cyanide degradation percentages (50-70%) were achieved across treatments. The semi-continuous operation of the MFC for 2 months revealed that the voltage across the cell is dependent on the supply or suspension of the organic load feed. The electrode polarization resistance was observed to decreases over time, possibly due to the enrichment of the anode with electrogenic microbial communities. A metataxonomic analysis revealed a significant increase in bacteria from the phylum Firmicutes, primarily of the genus Enterococcus.
Collapse
Affiliation(s)
- Juan Carlos Quintero-Díaz
- Department of Chemical Engineering, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, 050010, Antioquia, Colombia.
| | - Jorge Omar Gil-Posada
- Department of Chemical Engineering, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, 050010, Antioquia, Colombia
| |
Collapse
|
2
|
Perchikov R, Cheliukanov M, Plekhanova Y, Tarasov S, Kharkova A, Butusov D, Arlyapov V, Nakamura H, Reshetilov A. Microbial Biofilms: Features of Formation and Potential for Use in Bioelectrochemical Devices. BIOSENSORS 2024; 14:302. [PMID: 38920606 PMCID: PMC11201457 DOI: 10.3390/bios14060302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Microbial biofilms present one of the most widespread forms of life on Earth. The formation of microbial communities on various surfaces presents a major challenge in a variety of fields, including medicine, the food industry, shipping, etc. At the same time, this process can also be used for the benefit of humans-in bioremediation, wastewater treatment, and various biotechnological processes. The main direction of using electroactive microbial biofilms is their incorporation into the composition of biosensor and biofuel cells This review examines the fundamental knowledge acquired about the structure and formation of biofilms, the properties they have when used in bioelectrochemical devices, and the characteristics of the formation of these structures on different surfaces. Special attention is given to the potential of applying the latest advances in genetic engineering in order to improve the performance of microbial biofilm-based devices and to regulate the processes that take place within them. Finally, we highlight possible ways of dealing with the drawbacks of using biofilms in the creation of highly efficient biosensors and biofuel cells.
Collapse
Affiliation(s)
- Roman Perchikov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Maxim Cheliukanov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Yulia Plekhanova
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| | - Sergei Tarasov
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| | - Anna Kharkova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Denis Butusov
- Computer-Aided Design Department, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg 197022, Russia;
| | - Vyacheslav Arlyapov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Hideaki Nakamura
- Department of Liberal Arts, Tokyo University of Technology, 1404-1 Katakura, Hachioji 192-0982, Tokyo, Japan;
| | - Anatoly Reshetilov
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| |
Collapse
|
3
|
Ho CL, Emran MY, Ihara S, Huang W, Wakai S, Li WP, Okamoto A. Osmium-grafted magnetic nanobeads improve microbial current generation via culture-free and quick enrichment of electrogenic bacteria. CHEMICAL ENGINEERING JOURNAL 2023; 466:142936. [DOI: 10.1016/j.cej.2023.142936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
4
|
Sonawane JM, Mahadevan R, Pandey A, Greener J. Recent progress in microbial fuel cells using substrates from diverse sources. Heliyon 2022; 8:e12353. [PMID: 36582703 PMCID: PMC9792797 DOI: 10.1016/j.heliyon.2022.e12353] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/09/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Increasing untreated environmental outputs from industry and the rising human population have increased the burden of wastewater and other waste streams on the environment. The most prevalent wastewater treatment methods include the activated sludge process, which requires aeration and is, therefore, energy and cost-intensive. The current trend towards a circular economy facilitates the recovery of waste materials as a resource. Along with the amount, the complexity of wastewater is increasing day by day. Therefore, wastewater treatment processes must be transformed into cost-effective and sustainable methods. Microbial fuel cells (MFCs) use electroactive microbes to extract chemical energy from waste organic molecules to generate electricity via waste treatment. This review focuses use of MFCs as an energy converter using wastewater from various sources. The different substrate sources that are evaluated include industrial, agricultural, domestic, and pharmaceutical types. The article also highlights the effect of operational parameters such as organic load, pH, current, and concentration on the MFC output. The article also covers MFC functioning with respect to the substrate, and the associated performance parameters, such as power generation and wastewater treatment matrices, are given. The review also illustrates the success stories of various MFC configurations. We emphasize the significant measures required to fill in the gaps related to the effect of substrate type on different MFC configurations, identification of microbes for use as biocatalysts, and development of biocathodes for the further improvement of the system. Finally, we shortlisted the best performing substrates based on the maximum current and power, Coulombic efficiency, and chemical oxygen demand removal upon the treatment of substrates in MFCs. This information will guide industries that wish to use MFC technology to treat generated effluent from various processes.
Collapse
Affiliation(s)
- Jayesh M. Sonawane
- Department of Chemical Engineering and Applied Chemistry, University of Toronto M5S 3E5, Canada
- Département de Chimie, Faculté des Sciences et de génie, Université Laval, Québec City, QC, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto M5S 3E5, Canada
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India
- Centre for Energy and Environmental Sustainability, Lucknow, 226 029, India
| | - Jesse Greener
- Département de Chimie, Faculté des Sciences et de génie, Université Laval, Québec City, QC, Canada
- CHU de Québec, Centre de recherche, Université Laval, 10 rue de l'Espinay, Québec, QC, Canada
| |
Collapse
|
5
|
HO CHIALUN, Emran MY, Ihara S, Huang W, Wakai S, Li WP, Okamoto A. Osmium-Grafted Magnetic Nanobeads Increase Microbial Current Generation Via Culture-Free and Quick Enrichment of Electrogenic Bacteria. SSRN ELECTRONIC JOURNAL 2022. [DOI: 10.2139/ssrn.4177599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
6
|
Xie A, Deaver JA, Miller E, Popat SC. Evaluation of electrical current production in microbial electrolysis cells fed with animal rendering wastewater. CHEMOSPHERE 2021; 285:131547. [PMID: 34329127 DOI: 10.1016/j.chemosphere.2021.131547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Anode-respiring bacteria (ARB) generate electrical current from the oxidation of short chain fatty acids (SCFA), primarily acetate, in microbial electrolysis cells (MECs). Animal rendering wastewater (RW) has high fat content, which under anaerobic conditions can yield acetate, making RW a potential feed for MECs. Yet, excess intermediate long chain fatty acids (LCFA) may limit conversion of LCFA and SCFA, and impact ARB activity. Here, we evaluated electrical current production in single-chamber MECs fed with RW. In RW-fed MECs, 34.26 ± 2.69% of the COD provided was converted to electrical current in an 80-day batch cycle. LCFA accumulated in RW-fed MECs, during which conversion of acetate to electrical current was limited. Diverse sulfate-reducing microorganisms were present in the anode biofilm in RW-fed MECs, whereas the genus Geobacter dominated in inoculum-only control MECs. Detection of H2-utilizing homoacetogens suggested some internal cycling of H2 produced at the cathode. Overall, this study shows that current production is possible from RW, but to be a viable process for RW treatment, further improvement in rates of COD conversion and current production is necessary along with identifying configurations and/or conditions in which the inhibitory effect of LCFA is reduced.
Collapse
Affiliation(s)
- Ao Xie
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Ct, Anderson, SC, 29625, USA
| | - Jessica A Deaver
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Ct, Anderson, SC, 29625, USA
| | - Emily Miller
- Department of Chemical and Biomolecular Engineering, Clemson University, 127 Earle Hall, Clemson, SC, 29634, USA
| | - Sudeep C Popat
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Ct, Anderson, SC, 29625, USA.
| |
Collapse
|
7
|
Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107003] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
8
|
Tsai JY, Lu PY, Yang CF. Lignocellulosic acid hydrolysis inhibitor impact on 5-hydroxymethylfurfural biotransformation into 2, 5-furandicarboxylic acid using immobilised Burkholderia cells. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1901889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jia-Yin Tsai
- Department of Safety Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan
| | - Ping-Yan Lu
- Department of Safety Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan
| | - Chu-Fang Yang
- Department of Safety Health and Environmental Engineering, National Yunlin University of Science and Technology, Yunlin, Taiwan
| |
Collapse
|
9
|
Liang Q, Yamashita T, Koike K, Matsuura N, Honda R, Hara-Yamamura H, Yokoyama H, Yamamoto-Ikemoto R. A bioelectrochemical-system-based trickling filter reactor for wastewater treatment. BIORESOURCE TECHNOLOGY 2020; 315:123798. [PMID: 32707501 DOI: 10.1016/j.biortech.2020.123798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/02/2020] [Accepted: 07/04/2020] [Indexed: 05/10/2023]
Abstract
A bioelectrochemical system (BES)-based trickling filter (TF) reactor was utilized for wastewater treatment. At a COD load of 1.0 g-COD/L/day, effluent chemical oxygen demand (COD) and total nitrogen (TN) were 115 and 108 mg/L, respectively, which were allowed for discharge. Superior performance was achieved at 0.5 g-COD/L/day with a circulation rate of 8 L/h, and both COD and TN removal were >98%. Coulombic efficiency was 11% at 1.0 g-COD/L/day and at most 16% at 0.5 g-COD/L/day. COD removal decreased when the BES was removed, demonstrating that BES improved COD removal capability. In anodic biofilms, exoelectrogenic, facultative, nitrifying, and sulfate-reducing bacteria could coexist. Geobacter for current generation grew inside the biofilm, and bacteria in the middle and outer layers consumed oxygen and degraded organic matter and nitrogen. This BES-based TF reactor may be used for efficient and cost-effective COD and TN removal at high loads without excess sludge removal.
Collapse
Affiliation(s)
- Qiaochu Liang
- Graduate School of Natural Science & Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takahiro Yamashita
- Division of Animal Environment and Waste Management Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 2 Ikenodai, Tsukuba 305-0901, Japan
| | - Kazuyoshi Koike
- Graduate School of Natural Science & Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Norihisa Matsuura
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroe Hara-Yamamura
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroshi Yokoyama
- Division of Animal Environment and Waste Management Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), 2 Ikenodai, Tsukuba 305-0901, Japan
| | - Ryoko Yamamoto-Ikemoto
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| |
Collapse
|
10
|
Satinover SJ, Rodriguez M, Campa MF, Hazen TC, Borole AP. Performance and community structure dynamics of microbial electrolysis cells operated on multiple complex feedstocks. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:169. [PMID: 33062055 PMCID: PMC7552531 DOI: 10.1186/s13068-020-01803-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Microbial electrolysis is a promising technology for converting aqueous wastes into hydrogen. However, substrate adaptability is an important feature, seldom documented in microbial electrolysis cells (MECs). In addition, the correlation between substrate composition and community structure has not been well established. This study used an MEC capable of producing over 10 L/L-day of hydrogen from a switchgrass-derived bio-oil aqueous phase and investigated four additional substrates, tested in sequence on a mature biofilm. The additional substrates included a red oak-derived bio-oil aqueous phase, a corn stover fermentation product, a mixture of phenol and acetate, and acetate alone. RESULTS The MECs fed with the corn stover fermentation product resulted in the highest performance among the complex feedstocks, producing an average current density of 7.3 ± 0.51 A/m2, although the acetate fed MECs outperformed complex substrates, producing 12.3 ± 0.01 A/m2. 16S rRNA gene sequencing showed that community structure and community diversity were not predictive of performance, and replicate community structures diverged despite identical inoculum and enrichment procedure. The trends in each replicate, however, were indicative of the influence of the substrates. Geobacter was the most dominant genus across most of the samples tested, but its abundance did not correlate strongly to current density. High-performance liquid chromatography (HPLC) showed that acetic acid accumulated during open circuit conditions when MECs were fed with complex feedstocks and was quickly degraded once closed circuit conditions were applied. The largest net acetic acid removal rate occurred when MECs were fed with red oak bio-oil aqueous phase, consuming 2.93 ± 0.00 g/L-day. Principal component analysis found that MEC performance metrics such as current density, hydrogen productivity, and chemical oxygen demand removal were closely correlated. Net acetic acid removal was also found to correlate with performance. However, no bacterial genus appeared to correlated to these performance metrics strongly, and the analysis suggested that less than 70% of the variance was accounted for by the two components. CONCLUSIONS This study demonstrates the robustness of microbial communities to adapt to a range of feedstocks and conditions without relying on specific species, delivering high hydrogen productivities despite differences in community structure. The results indicate that functional adaptation may play a larger role in performance than community composition. Further investigation of the roles each microbe plays in these communities will help MECs to become integral in the 21st-century bioeconomy to produce zero-emission fuels.
Collapse
Affiliation(s)
- Scott J. Satinover
- Bredesen Center for Interdisciplinary Research and Education, The University of Tennessee, Knoxville, USA
| | - Miguel Rodriguez
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN USA
| | - Maria F. Campa
- Institute for a Secure & Sustainable Environment, The University of Tennessee, Knoxville, USA
| | - Terry C. Hazen
- Bredesen Center for Interdisciplinary Research and Education, The University of Tennessee, Knoxville, USA
- Civil and Environmental Engineering, The University of Tennessee, Knoxville, USA
- Institute for a Secure & Sustainable Environment, The University of Tennessee, Knoxville, USA
| | - Abhijeet P. Borole
- Bredesen Center for Interdisciplinary Research and Education, The University of Tennessee, Knoxville, USA
- Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, USA
| |
Collapse
|
11
|
Community Structure Analyses of Anodic Biofilms in a Bioelectrochemical System Combined with an Aerobic Reactor. ENERGIES 2019. [DOI: 10.3390/en12193643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Bioelectrochemical system (BES)-based reactors have a limited range of use, especially in aerobic conditions, because these systems usually produce current from exoelectrogenic bacteria that are strictly anaerobic. However, some mixed cultures of bacteria in aerobic reactors can form surface biofilms that may produce anaerobic conditions suitable for exoelectrogenic bacteria to thrive. In this study, we combined a BES with an aerobic trickling filter (TF) reactor for wastewater treatment and found that the BES-TF setup could produce electricity with a coulombic efficiency of up to 15% from artificial wastewater, even under aerobic conditions. The microbial communities within biofilms formed at the anodes of BES-TF reactors were investigated using high throughput 16S rRNA gene sequencing. Efficiency of reduction in chemical oxygen demand and total nitrogen content of wastewater using this system was >97%. Bacterial community analysis showed that exoelectrogenic bacteria belonging to the genera Geobacter and Desulfuromonas were dominant within the biofilm coating the anode, whereas aerobic bacteria from the family Rhodocyclaceae were abundant on the surface of the biofilm. Based on our observations, we suggest that BES-TF reactors with biofilms containing aerobic bacteria and anaerobic exoelectrogenic bacteria on the anodes can function in aerobic environments.
Collapse
|
12
|
Jenol MA, Ibrahim MF, Kamal Bahrin E, Kim SW, Abd-Aziz S. Direct Bioelectricity Generation from Sago Hampas by Clostridium beijerinckii SR1 Using Microbial Fuel Cell. Molecules 2019; 24:molecules24132397. [PMID: 31261835 PMCID: PMC6651009 DOI: 10.3390/molecules24132397] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 11/16/2022] Open
Abstract
Microbial fuel cells offer a technology for simultaneous biomass degradation and biological electricity generation. Microbial fuel cells have the ability to utilize a wide range of biomass including carbohydrates, such as starch. Sago hampas is a starchy biomass that has 58% starch content. With this significant amount of starch content in the sago hampas, it has a high potential to be utilized as a carbon source for the bioelectricity generation using microbial fuel cells by Clostridium beijerinckii SR1. The maximum power density obtained from 20 g/L of sago hampas was 73.8 mW/cm2 with stable cell voltage output of 211.7 mV. The total substrate consumed was 95.1% with the respect of 10.7% coulombic efficiency. The results obtained were almost comparable to the sago hampas hydrolysate with the maximum power density 56.5 mW/cm2. These results demonstrate the feasibility of solid biomass to be utilized for the power generation in fuel cells as well as high substrate degradation efficiency. Thus, this approach provides a promising way to exploit sago hampas for bioenergy generation.
Collapse
Affiliation(s)
- Mohd Azwan Jenol
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Mohamad Faizal Ibrahim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Ezyana Kamal Bahrin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia
| | - Seung Wook Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-701, Korea
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Suraini Abd-Aziz
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Malaysia.
| |
Collapse
|
13
|
Haavisto JM, Lakaniemi AM, Puhakka JA. Storing of exoelectrogenic anolyte for efficient microbial fuel cell recovery. ENVIRONMENTAL TECHNOLOGY 2019; 40:1467-1475. [PMID: 29293411 DOI: 10.1080/09593330.2017.1423395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Starting up a microbial fuel cell (MFC) requires often a long-term culture enrichment period, which is a challenge after process upsets. The purpose of this study was to develop low-cost storage for MFC enrichment culture to enable prompt process recovery after upsets. Anolyte of an operating xylose-fed MFC was stored at different temperatures and for different time periods. Storing the anolyte for 1 week or 1 month at +4°C did not significantly affect power production, but the lag time for power production was increased from 2 days to 3 or 5 days, respectively. One month storing at -20°C increased the lag time to 7 days. The average power density in these MFCs varied between 1.2 and 1.7 W/m3. The share of dead cells (measured by live/dead staining) increased with storing time. After 6-month storage, the power production was insignificant. However, xylose removal remained similar in all cultures (99-100%) while volatile fatty acids production varied. The results indicate that fermentative organisms tolerated the long storage better than the exoelectrogens. As storing at +4°C is less energy intensive compared to freezing, anolyte storage at +4°C for a maximum of 1 month is recommended as start-up seed for MFC after process failure to enable efficient process recovery.
Collapse
Affiliation(s)
- Johanna M Haavisto
- a Laboratory of Chemistry and Bioengineering , Tampere University of Technology , Tampere , Finland
| | - Aino-Maija Lakaniemi
- a Laboratory of Chemistry and Bioengineering , Tampere University of Technology , Tampere , Finland
| | - Jaakko A Puhakka
- a Laboratory of Chemistry and Bioengineering , Tampere University of Technology , Tampere , Finland
| |
Collapse
|
14
|
Armato C, Ahmed D, Agostino V, Traversi D, Degan R, Tommasi T, Margaria V, Sacco A, Gilli G, Quaglio M, Saracco G, Schilirò T. Anodic microbial community analysis of microbial fuel cells based on enriched inoculum from freshwater sediment. Bioprocess Biosyst Eng 2019; 42:697-709. [PMID: 30694390 DOI: 10.1007/s00449-019-02074-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/11/2019] [Indexed: 01/30/2023]
Abstract
The characterization of anodic microbial communities is of great importance in the study of microbial fuel cells (MFCs). These kinds of devices mainly require a high abundance of anode respiring bacteria (ARB) in the anode chamber for optimal performance. This study evaluated the effect of different enrichments of environmental freshwater sediment samples used as inocula on microbial community structures in MFCs. Two enrichment media were compared: ferric citrate (FeC) enrichment, with the purpose of increasing the ARB percentage, and general enrichment (Gen). The microbial community dynamics were evaluated by polymerase chain reaction followed by denaturing gradient gel electrophoresis (PCR-DGGE) and real time polymerase chain reaction (qPCR). The enrichment effect was visible on the microbial community composition both during precultures and in anode MFCs. Both enrichment approaches affected microbial communities. Shannon diversity as well as β-Proteobacteria and γ-Proteobacteria percentages decreased during the enrichment steps, especially for FeC (p < 0.01). Our data suggest that FeC enrichment excessively reduced the diversity of the anode community, rather than promoting the proliferation of ARB, causing a condition that did not produce advantages in terms of system performance.
Collapse
Affiliation(s)
- Caterina Armato
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Turin, Italy.,Centre for Sustainable Future Technologies (CSFT@PoliTo), Istituto Italiano di Tecnologia, Turin, Italy
| | - Daniyal Ahmed
- Centre for Sustainable Future Technologies (CSFT@PoliTo), Istituto Italiano di Tecnologia, Turin, Italy.,Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Valeria Agostino
- Centre for Sustainable Future Technologies (CSFT@PoliTo), Istituto Italiano di Tecnologia, Turin, Italy.,Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Deborah Traversi
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Turin, Italy
| | - Raffaella Degan
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Turin, Italy
| | - Tonia Tommasi
- Department of Applied Science and Technology, Politecnico di Torino, Turin, Italy
| | - Valentina Margaria
- Centre for Sustainable Future Technologies (CSFT@PoliTo), Istituto Italiano di Tecnologia, Turin, Italy
| | - Adriano Sacco
- Centre for Sustainable Future Technologies (CSFT@PoliTo), Istituto Italiano di Tecnologia, Turin, Italy
| | - Giorgio Gilli
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Turin, Italy
| | - Marzia Quaglio
- Centre for Sustainable Future Technologies (CSFT@PoliTo), Istituto Italiano di Tecnologia, Turin, Italy
| | - Guido Saracco
- Centre for Sustainable Future Technologies (CSFT@PoliTo), Istituto Italiano di Tecnologia, Turin, Italy
| | - Tiziana Schilirò
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Turin, Italy.
| |
Collapse
|
15
|
Sun G, Kang K, Qiu L, Guo X, Zhu M. Electrochemical performance and microbial community analysis in air cathode microbial fuel cells fuelled with pyroligneous liquor. Bioelectrochemistry 2018; 126:12-19. [PMID: 30472567 DOI: 10.1016/j.bioelechem.2018.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/27/2022]
Abstract
Microbial fuels cells (MFCs) have been applied for the degradation of pyroligneous liquor (PL) derived from apple tree branches, at different concentrations. The substrate removal, electrochemical properties, and microbial community characteristics were analysed to evaluate the performance of MFCs. Maximum current density (1.94 A/m2), coulombic efficiency (28%), and phenol removal rate (84%) were achieved with MFCs fed with PL at the optimal concentration of 1 g chemical oxygen demand (COD)/L. The polarisation test, cyclic voltammetry, and electrochemical impedance of the electrode redox reaction further explained how the addition of PL could stimulate formation of the electrochemically active biofilm, at the optimal concentration of 1 g COD/L. The microbial community of the anodic biofilm demonstrated that MFCs fed with 1 g COD/L had the highest relative abundance of the typical electrogenic bacteria Geobacter (33%), followed by Sphaerochaeta (6%) and Clostridium (4%). The results revealed that syntrophic interaction of these functional microorganisms contributed significantly to the PL degradation and electrical current generation.
Collapse
Affiliation(s)
- Guotao Sun
- Department of Agricultural Engineering, Northwest A&F University, Yangling 712100, China
| | - Kang Kang
- Department of Agricultural Engineering, Northwest A&F University, Yangling 712100, China
| | - Ling Qiu
- Department of Agricultural Engineering, Northwest A&F University, Yangling 712100, China.
| | - Xiaohui Guo
- Department of Agricultural Engineering, Northwest A&F University, Yangling 712100, China
| | - Mingqiang Zhu
- Department of Agricultural Engineering, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
16
|
Evaluation of chromium removal efficiency at varying operating conditions of a novel bioelectrochemical system. Bioprocess Biosyst Eng 2018; 41:1547-1554. [DOI: 10.1007/s00449-018-1982-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
|
17
|
Kokko M, Epple S, Gescher J, Kerzenmacher S. Effects of wastewater constituents and operational conditions on the composition and dynamics of anodic microbial communities in bioelectrochemical systems. BIORESOURCE TECHNOLOGY 2018; 258:376-389. [PMID: 29548640 DOI: 10.1016/j.biortech.2018.01.090] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 06/08/2023]
Abstract
Over the last decade, there has been an ever-growing interest in bioelectrochemical systems (BES) as a sustainable technology enabling simultaneous wastewater treatment and biological production of, e.g. electricity, hydrogen, and further commodities. A key component of any BES degrading organic matter is the anode where electric current is biologically generated from the oxidation of organic compounds. The performance of BES depends on the interactions of the anodic microbial communities. To optimize the operational parameters and process design of BES a better comprehension of the microbial community dynamics and interactions at the anode is required. This paper reviews the abundance of different microorganisms in anodic biofilms and discusses their roles and possible side reactions with respect to their implications on the performance of BES utilizing wastewaters. The most important operational parameters affecting anodic microbial communities grown with wastewaters are highlighted and guidelines for controlling the composition of microbial communities are given.
Collapse
Affiliation(s)
- Marika Kokko
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; Laboratory of Chemistry and Bioengineering, Tampere University of Technology, Tampere, Finland
| | - Stefanie Epple
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Johannes Gescher
- Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| | - Sven Kerzenmacher
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany; Center for Environmental Research and Sustainable Technology (UFT), University of Bremen, Leobener Strasse 6, 28359 Bremen, Germany.
| |
Collapse
|
18
|
More AG, Gupta SK. Predictive modelling of chromium removal using multiple linear and nonlinear regression with special emphasis on operating parameters of bioelectrochemical reactor. J Biosci Bioeng 2018; 126:205-212. [PMID: 29580784 DOI: 10.1016/j.jbiosc.2018.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/24/2018] [Accepted: 02/18/2018] [Indexed: 10/17/2022]
Abstract
Bioelectrochemical system (BES) is a novel, self-sustaining metal removal technology functioning on the utilization of chemical energy of organic matter with the help of microorganisms. Experimental trials of two chambered BES reactor were conducted with varying substrate concentration using sodium acetate (500 mg/L to 2000 mg/L COD) and different initial chromium concentration (Cri) (10-100 mg/L) at different cathode pH (pH 1-7). In the current study mathematical models based on multiple linear regression (MLR) and non-linear regression (NLR) approach were developed using laboratory experimental data for determining chromium removal efficiency (CRE) in the cathode chamber of BES. Substrate concentration, rate of substrate consumption, Cri, pH, temperature and hydraulic retention time (HRT) were the operating process parameters of the reactor considered for development of the proposed models. MLR showed a better correlation coefficient (0.972) as compared to NLR (0.952). Validation of the models using t-test analysis revealed unbiasedness of both the models, with t critical value (2.04) greater than t-calculated values for MLR (-0.708) and NLR (-0.86). The root-mean-square error (RMSE) for MLR and NLR were 5.06 % and 7.45 %, respectively. Comparison between both models suggested MLR to be best suited model for predicting the chromium removal behavior using the BES technology to specify a set of operating conditions for BES. Modelling the behavior of CRE will be helpful for scale up of BES technology at industrial level.
Collapse
Affiliation(s)
- Anand Govind More
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India.
| | - Sunil Kumar Gupta
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India.
| |
Collapse
|
19
|
Kalantar M, Mardanpour MM, Yaghmaei S. A novel model for predicting bioelectrochemical performance of microsized-MFCs by incorporating bacterial chemotaxis parameters and simulation of biofilm formation. Bioelectrochemistry 2018; 122:51-60. [PMID: 29554553 DOI: 10.1016/j.bioelechem.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/25/2018] [Accepted: 03/10/2018] [Indexed: 11/18/2022]
Abstract
Bacterial transport parameters play a fundamental role in microbial population dynamics, biofilm formation and bacteria dispersion. In this study, the novel model was extended based on the capability of microsized microbial fuel cells (MFCs) as amperometric biosensors to predict the cells' chemotactic and bioelectrochemical properties. The model prediction results coincide with the experimental data of Shewanella oneidensis and chemotaxis mutant of P. aeruginosa bdlA and pilT strains, indicating the complementary role of numerical predictions for bioscreening applications of microsized MFCs. Considering the general mechanisms for electron transfer, substrate biodegradation, microbial growth and bacterial dispersion are the main features of the presented model. In addition, the genetic algorithm method was implemented by minimizing the objective function to estimate chemotaxis properties of the different strains. Microsized MFC performance was assessed by analyzing the microbial activity in the biofilm and the anolyte.
Collapse
Affiliation(s)
- Mohammad Kalantar
- Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Mahdi Mardanpour
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Technology and Innovation Group, Research Institute of Petroleum Industry, Tehran, Iran
| | - Soheila Yaghmaei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
20
|
Liu M, Ale MT, Kołaczkowski B, Fernando D, Daniel G, Meyer AS, Thygesen A. Comparison of traditional field retting and Phlebia radiata Cel 26 retting of hemp fibres for fibre-reinforced composites. AMB Express 2017; 7:58. [PMID: 28275995 PMCID: PMC5342995 DOI: 10.1186/s13568-017-0355-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/23/2017] [Indexed: 11/10/2022] Open
Abstract
Classical field retting and controlled fungal retting of hemp using Phlebia radiata Cel 26 (a mutant with low cellulose degrading ability) were compared with pure pectinase treatment with regard to mechanical properties of the produced fibre/epoxy composites. For field retting a classification of the microbial evolution (by gene sequencing) and enzyme profiles were conducted. By phylogenetic frequency mapping, different types of fungi, many belonging to the Ascomycota phylum were found on the fibres during the first 2 weeks of field retting, and thereafter, different types of bacteria, notably Proteobacteria, also proliferated on the field retted fibres. Extracts from field retted fibres exhibited high glucanase activities, while extracts from P. radiata Cel 26 retted fibres showed high polygalacturonase and laccase activities. As a result, fungal retting gave a significantly higher glucan content in the fibres than field retting (77 vs. 67%) and caused a higher removal of pectin as indicated by lower galacturonan content of fibres (1.6%) after fibres were retted for 20 days with P. radiata Cel 26 compared to a galacturonan content of 3.6% for field retted fibres. Effective fibre stiffness increased slightly after retting with P. radiata Cel 26 from 65 to 67 GPa, while it decreased after field retting to 52 GPa. Effective fibre strength could not be determined similarly due to variations in fibre fracture strain and fibre-matrix adhesion. A maximum composite strength with 50 vol% fibres of 307 MPa was obtained using P. radiata Cel 26 compared to 248 MPa with field retting.
Collapse
Affiliation(s)
- Ming Liu
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 229, 2800 Kongens Lyngby, Denmark
| | - Marcel T. Ale
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 229, 2800 Kongens Lyngby, Denmark
| | - Bartłomiej Kołaczkowski
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 229, 2800 Kongens Lyngby, Denmark
| | - Dinesh Fernando
- Department of Forest Products/Wood Science, Swedish University of Agricultural Sciences, Vallvägen 9D, 750-07 Uppsala, Sweden
| | - Geoffrey Daniel
- Department of Forest Products/Wood Science, Swedish University of Agricultural Sciences, Vallvägen 9D, 750-07 Uppsala, Sweden
| | - Anne S. Meyer
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 229, 2800 Kongens Lyngby, Denmark
| | - Anders Thygesen
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads 229, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
21
|
Liu R, Tursun H, Hou X, Odey F, Li Y, Wang X, Xie T. Microbial community dynamics in a pilot-scale MFC-AA/O system treating domestic sewage. BIORESOURCE TECHNOLOGY 2017; 241:439-447. [PMID: 28599222 DOI: 10.1016/j.biortech.2017.05.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
To investigate the effluent concentrations of pollutants, electricity production and microbial community structure, a pilot-scale microbial fuel cell coupled anaerobic-anoxic-oxic system for domestic sewage treatment was constructed, and continuously operated for more than 1 year under natural conditions. The results indicated that the treatment system ran well most of the whole period, but both effluent qualities and electricity production deteriorated at low temperature. The results of MiSeq sequencing showed that the microbial community structures of both anode and cathode biofilms changed extensively during long-term operation and were correlated with changes in effluent qualities. Fifteen genera of electricigens were detected in the anode biofilm, mainly including Clostridium, Paracoccus, Pseudomonas, and Arcobacter. Partial Mantel test results showed that the temperature had significant effects on the microbial community structure. The electricity production was found to have higher relevance to the variation of the anodic community than that of the cathodic community.
Collapse
Affiliation(s)
- Rui Liu
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology, Beijing, PR China; Tsinghua University, Beijing, PR China
| | - Haireti Tursun
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology, Beijing, PR China.
| | | | | | - Yuan Li
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology, Beijing, PR China
| | - Xiaohui Wang
- Beijing Engineering Research Center of Environmental Material for Water Purification, Beijing University of Chemical Technology, Beijing, PR China
| | - Tao Xie
- Institute of Resources and Environmental Science, MAPUNI, Beijing, PR China
| |
Collapse
|
22
|
Mateo S, Fernandez-Morales FJ, Cañizares P, Rodrigo MA. Influence of the Cathode Platinum Loading and of the Implementation of Membranes on the Performance of Air-Breathing Microbial Fuel Cells. Electrocatalysis (N Y) 2017. [DOI: 10.1007/s12678-017-0393-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Zhang SH, Qiu CH, Fang CF, Ge QL, Hui YX, Han B, Pang S. Characterization of bacterial communities in anode microbial fuel cells fed with glucose, propyl alcohol and methanol. APPL BIOCHEM MICRO+ 2017. [DOI: 10.1134/s0003683817020193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Ding J, Lu YZ, Fu L, Ding ZW, Mu Y, Cheng SH, Zeng RJ. Decoupling of DAMO archaea from DAMO bacteria in a methane-driven microbial fuel cell. WATER RESEARCH 2017; 110:112-119. [PMID: 27998783 DOI: 10.1016/j.watres.2016.12.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
Anaerobic oxidation of methane (AOM) contributes significantly to the global methane sink. Previously, studies of anaerobic methanotrophic (ANME) archaea have been limited as they have not been separable from their bacterial partners during the AOM process because of their dependence on the bacteria. A microbial fuel cell (MFC) is a device capable of directly transforming chemical energy to electrical energy via electrochemical reactions involving biochemical pathways. In this study, decoupling of denitrifying anaerobic methane oxidation (DAMO) archaea and DAMO bacteria was investigated in an microbial fuel cell (MFC) using methane as the fuel. The DAMO fuel cell worked successfully but demonstrated weak electrogenic capability with around 25 mV production. After 45 days' enrichment, the sequencing and fluorescence in situ hybridization results showed the DAMO archaea percentage had increased from 26.96% (inoculum) to 65.77% (electrode biofilm), while the DAMO bacteria percentage decreased from 24.39% to 2.07%. Moreover, the amount of ANME-2d had doubled in the electrode biofilm compared with the inoculum. The sequencing results also showed substantial enrichment of the Ignavibacterium and Geobacter genera. The roles of Ignavibacterium and Geobacter in the MFC system need to be further investigated. Nevertheless, these results illustrate that an MFC device may provide a possible approach to separate DAMO archaea from DAMO bacteria.
Collapse
Affiliation(s)
- Jing Ding
- Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou 215123, PR China
| | - Yong-Ze Lu
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Liang Fu
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Zhao-Wei Ding
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Yang Mu
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Shuk H Cheng
- Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou 215123, PR China; State Key Laboratory in Marine Pollution, Department of Biomedical Science, City University of Hong Kong, Kowloon, Hong Kong
| | - Raymond J Zeng
- Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou 215123, PR China; CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
25
|
Asensio Y, Fernandez-Marchante CM, Lobato J, Cañizares P, Rodrigo MA. Influence of the fuel and dosage on the performance of double-compartment microbial fuel cells. WATER RESEARCH 2016; 99:16-23. [PMID: 27130968 DOI: 10.1016/j.watres.2016.04.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/11/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
This manuscript focuses on the evaluation of the use of different types and dosages of fuels in the performance of double-compartment microbial fuel cell equipped with carbon felt electrodes and cationic membrane. Five types of fuels (ethanol, glycerol, acetate, propionate and fructose) have been tested for the same organic load (5,000 mg L(-1) measured as COD) and for one of them (acetate), the range of dosages between 500 and 20,000 mg L(-1) of COD was also studied. Results demonstrate that production of electricity depends strongly on the fuel used. Carboxylic acids are much more efficient than alcohols or fructose for the same organic load and within the range 500-5,000 mg L(-1) of acetate the production of electricity increases linearly with the amount of acetate fed but over these concentrations a change in the population composition may explain a worse performance.
Collapse
Affiliation(s)
- Y Asensio
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - C M Fernandez-Marchante
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - J Lobato
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - P Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain
| | - M A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences & Technologies, Universidad de Castilla La Mancha, Campus Universitario s/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
26
|
Cathode Assessment for Maximizing Current Generation in Microbial Fuel Cells Utilizing Bioethanol Effluent as Substrate. ENERGIES 2016. [DOI: 10.3390/en9050388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Hodgson DM, Smith A, Dahale S, Stratford JP, Li JV, Grüning A, Bushell ME, Marchesi JR, Avignone Rossa C. Segregation of the Anodic Microbial Communities in a Microbial Fuel Cell Cascade. Front Microbiol 2016; 7:699. [PMID: 27242723 PMCID: PMC4863660 DOI: 10.3389/fmicb.2016.00699] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/26/2016] [Indexed: 11/13/2022] Open
Abstract
Metabolic interactions within microbial communities are essential for the efficient degradation of complex organic compounds, and underpin natural phenomena driven by microorganisms, such as the recycling of carbon-, nitrogen-, and sulfur-containing molecules. These metabolic interactions ultimately determine the function, activity and stability of the community, and therefore their understanding would be essential to steer processes where microbial communities are involved. This is exploited in the design of microbial fuel cells (MFCs), bioelectrochemical devices that convert the chemical energy present in substrates into electrical energy through the metabolic activity of microorganisms, either single species or communities. In this work, we analyzed the evolution of the microbial community structure in a cascade of MFCs inoculated with an anaerobic microbial community and continuously fed with a complex medium. The analysis of the composition of the anodic communities revealed the establishment of different communities in the anodes of the hydraulically connected MFCs, with a decrease in the abundance of fermentative taxa and a concurrent increase in respiratory taxa along the cascade. The analysis of the metabolites in the anodic suspension showed a metabolic shift between the first and last MFC, confirming the segregation of the anodic communities. Those results suggest a metabolic interaction mechanism between the predominant fermentative bacteria at the first stages of the cascade and the anaerobic respiratory electrogenic population in the latter stages, which is reflected in the observed increase in power output. We show that our experimental system represents an ideal platform for optimization of processes where the degradation of complex substrates is involved, as well as a potential tool for the study of metabolic interactions in complex microbial communities.
Collapse
Affiliation(s)
- Douglas M Hodgson
- Department of Microbial and Cellular Sciences, University of Surrey Guildford, UK
| | - Ann Smith
- Cardiff School of Biosciences, Cardiff University Cardiff, UK
| | - Sonal Dahale
- Department of Microbial and Cellular Sciences, University of Surrey Guildford, UK
| | - James P Stratford
- Warwick Integrative Synthetic Biology Centre, University of Warwick Coventry, UK
| | - Jia V Li
- Centre for Digestive and Gut Health, Department of Surgery and Cancer, Imperial College LondonLondon, UK; Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College LondonLondon, UK
| | - André Grüning
- Department of Computer Science, University of Surrey Guildford, UK
| | - Michael E Bushell
- Department of Microbial and Cellular Sciences, University of Surrey Guildford, UK
| | - Julian R Marchesi
- Cardiff School of Biosciences, Cardiff UniversityCardiff, UK; Centre for Digestive and Gut Health, Department of Surgery and Cancer, Imperial College LondonLondon, UK
| | - C Avignone Rossa
- Department of Microbial and Cellular Sciences, University of Surrey Guildford, UK
| |
Collapse
|
28
|
Sun G, Rodrigues DDS, Thygesen A, Daniel G, Fernando D, Meyer AS. Inocula selection in microbial fuel cells based on anodic biofilm abundance of Geobacter sulfurreducens. Chin J Chem Eng 2016. [DOI: 10.1016/j.cjche.2015.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
A Viable Electrode Material for Use in Microbial Fuel Cells for Tropical Regions. ENERGIES 2016. [DOI: 10.3390/en9010035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|