1
|
de Jesús-Campos D, García-Ortega LF, Fimbres-Olivarría D, Herrera-Estrella L, López-Elías JA, Hayano-Kanashiro C. Transcriptomic analysis of Chaetoceros muelleri in response to different nitrogen concentrations reveals the activation of pathways to enable efficient nitrogen uptake. Gene 2024; 924:148589. [PMID: 38777108 DOI: 10.1016/j.gene.2024.148589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/07/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Nitrogen is the principal nutrient deficiency that increases lipids and carbohydrate content in diatoms but negatively affects biomass production. Marine diatom Chaetoceros muelleri is characterized by lipid and carbohydrate accumulation under low nitrogen concentration without affecting biomass. To elucidate the molecular effects of nitrogen concentrations, we performed an RNA-seq analysis of C. muelleri grown under four nitrogen concentrations (3.53 mM, 1.76 mM, 0.44 mM, and 0.18 mM of NaNO3). This research revealed that changes in global transcription in C. muelleri are differentially expressed by nitrogen concentration. "Energetic metabolism", "Carbohydrate metabolism" and "Lipid metabolism" pathways were identified as the most upregulated by N deficiency. Due to N limitation, alternative pathways to self-supply nitrogen employed by microalgal cells were identified. Additionally, nitrogen limitation decreased chlorophyll content and caused a greater response at the transcriptional level with a higher number of unigenes differentially expressed. By contrast, the highest N concentration (3.53 mM) recorded the lowest number of differentially expressed genes. Amt1, Nrt2, Fad2, Skn7, Wrky19, and Dgat2 genes were evaluated by RT-qPCR. In conclusion, C. muelleri modify their metabolic pathways to optimize nitrogen utilization and minimize nitrogen losses. On the other hand, the assembled transcriptome serves as the basis for metabolic engineering focused on improving the quantity and quality of the diatom for biotechnological applications. However, proteomic and metabolomic analysis is also required to compare gene expression, protein, and metabolite accumulation.
Collapse
Affiliation(s)
- Damaristelma de Jesús-Campos
- Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, Hermosillo-Sonora CP 83000, Mexico
| | - Luis Fernando García-Ortega
- Departamento de Ingeniería Genética, Centro de Investigación y Estudios Avanzados del IPN, Irapuato-Guanajuato Zip Code 36821, Mexico
| | - Diana Fimbres-Olivarría
- Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, Hermosillo-Sonora CP 83000, Mexico
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Plant and Soil Science Department, Texas Tech University, 79409 Lubbock, TX, USA; Unidad de Genómica Avanzada/LANGEBIO, Centro de Investigación y Estudios Avanzados del IPN, Irapuato-Guanajuato Zip Code 36821, Mexico
| | - José Antonio López-Elías
- Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, Hermosillo-Sonora CP 83000, Mexico.
| | - Corina Hayano-Kanashiro
- Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, Hermosillo-Sonora CP 83000, Mexico.
| |
Collapse
|
2
|
Mori H, Matsui M, Bamba T, Hori Y, Kitamura S, Toya Y, Hidese R, Yasueda H, Hasunuma T, Shimizu H, Taoka N, Kobayashi S. Engineering Escherichia coli for efficient glutathione production. Metab Eng 2024; 84:180-190. [PMID: 38969164 DOI: 10.1016/j.ymben.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/06/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Glutathione is a tripeptide of excellent value in the pharmaceutical, food, and cosmetic industries that is currently produced during yeast fermentation. In this case, glutathione accumulates intracellularly, which hinders high production. Here, we engineered Escherichia coli for the efficient production of glutathione. A total of 4.3 g/L glutathione was produced by overexpressing gshA and gshB, which encode cysteine glutamate ligase and glutathione synthetase, respectively, and most of the glutathione was excreted into the culture medium. Further improvements were achieved by inhibiting degradation (Δggt and ΔpepT); deleting gor (Δgor), which encodes glutathione oxide reductase; attenuating glutathione uptake (ΔyliABCD); and enhancing cysteine production (PompF-cysE). The engineered strain KG06 produced 19.6 g/L glutathione after 48 h of fed-batch fermentation with continuous addition of ammonium sulfate as the sulfur source. We also found that continuous feeding of glycine had a crucial role for effective glutathione production. The results of metabolic flux and metabolomic analyses suggested that the conversion of O-acetylserine to cysteine is the rate-limiting step in glutathione production by KG06. The use of sodium thiosulfate largely overcame this limitation, increasing the glutathione titer to 22.0 g/L, which is, to our knowledge, the highest titer reported to date in the literature. This study is the first report of glutathione fermentation without adding cysteine in E. coli. Our findings provide a great potential of E. coli fermentation process for the industrial production of glutathione.
Collapse
Affiliation(s)
- Hiroki Mori
- Agri-Bio Research Center, KANEKA CORPORATION, 1-8, Miyamae-cho, Takasago-cho, Takasago, Hyogo, 676-8688, Japan
| | - Misato Matsui
- Agri-Bio Research Center, KANEKA CORPORATION, 1-8, Miyamae-cho, Takasago-cho, Takasago, Hyogo, 676-8688, Japan
| | - Takahiro Bamba
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yoshimi Hori
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Sayaka Kitamura
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Toya
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryota Hidese
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Hisashi Yasueda
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba-shi, Ibaraki, 305-8550, Japan
| | - Tomohisa Hasunuma
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroshi Shimizu
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naoaki Taoka
- Agri-Bio Research Center, KANEKA CORPORATION, 1-8, Miyamae-cho, Takasago-cho, Takasago, Hyogo, 676-8688, Japan
| | - Shingo Kobayashi
- Agri-Bio Research Center, KANEKA CORPORATION, 1-8, Miyamae-cho, Takasago-cho, Takasago, Hyogo, 676-8688, Japan.
| |
Collapse
|
3
|
Santos LO, Silva PGP, Lemos Junior WJF, de Oliveira VS, Anschau A. Glutathione production by Saccharomyces cerevisiae: current state and perspectives. Appl Microbiol Biotechnol 2022; 106:1879-1894. [PMID: 35182192 DOI: 10.1007/s00253-022-11826-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022]
Abstract
Glutathione (L-γ-glutamyl-cysteinyl-glycine, GSH) is a tripeptide synthesized through consecutive enzymatic reactions. Among its several metabolic functions in cells, the main one is the potential to act as an endogenous antioxidant agent. GSH has been the focus of numerous studies not only due to its role in the redox status of biological systems but also due to its biotechnological characteristics. GSH is usually obtained by fermentation and shows a variety of applications by the pharmaceutical and food industry. Therefore, the search for new strategies to improve the production of GSH during fermentation is crucial. This mini review brings together recent papers regarding the principal parameters of the biotechnological production of GSH by Saccharomyces cerevisiae. In this context, aspects, such as the medium composition (amino acids, alternative raw materials) and the use of technological approaches (control of osmotic and pressure conditions, magnetic field (MF) application, fed-batch process) were considered, along with genetic engineering knowledge, trends, and challenges in viable GSH production. KEY POINTS: • Saccharomyces cerevisiae has shown potential for glutathione production. • Improved technological approaches increases glutathione production. • Genetic engineering in Saccharomyces cerevisiae improves glutathione production.
Collapse
Affiliation(s)
- Lucielen Oliveira Santos
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.
| | - Pedro Garcia Pereira Silva
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | | | - Vanessa Sales de Oliveira
- Department of Food Technology, Institute of Technology, University Federal Rural of Rio de Janeiro, Seropédica, RJ, 23890-000, Brazil
| | - Andréia Anschau
- Department of Bioprocess Engineering and Biotechnology, Federal University of Technology, Dois Vizinhos, PR, 85660-000, Brazil
| |
Collapse
|
5
|
Abstract
SIGNIFICANCE Mitochondrial glutathione fulfills crucial roles in a number of processes, including iron-sulfur cluster biosynthesis and peroxide detoxification. Recent Advances: Genetically encoded fluorescent probes for the glutathione redox potential (EGSH) have permitted extensive new insights into the regulation of mitochondrial glutathione redox homeostasis. These probes have revealed that the glutathione pools of the mitochondrial matrix and intermembrane space (IMS) are highly reduced, similar to the cytosolic glutathione pool. The glutathione pool of the IMS is in equilibrium with the cytosolic glutathione pool due to the presence of porins that allow free passage of reduced glutathione (GSH) and oxidized glutathione (GSSG) across the outer mitochondrial membrane. In contrast, limited transport of glutathione across the inner mitochondrial membrane ensures that the matrix glutathione pool is kinetically isolated from the cytosol and IMS. CRITICAL ISSUES In contrast to the situation in the cytosol, there appears to be extensive crosstalk between the mitochondrial glutathione and thioredoxin systems. Further, both systems appear to be intimately involved in the removal of reactive oxygen species, particularly hydrogen peroxide (H2O2), produced in mitochondria. However, a detailed understanding of these interactions remains elusive. FUTURE DIRECTIONS We postulate that the application of genetically encoded sensors for glutathione in combination with novel H2O2 probes and conventional biochemical redox state assays will lead to fundamental new insights into mitochondrial redox regulation and reinvigorate research into the physiological relevance of mitochondrial redox changes. Antioxid. Redox Signal. 27, 1162-1177.
Collapse
Affiliation(s)
- Gaetano Calabrese
- 1 Institute of Biochemistry, University of Cologne , Cologne, Germany
| | - Bruce Morgan
- 2 Department of Cellular Biochemistry, University of Kaiserslautern , Kaiserslautern, Germany
| | - Jan Riemer
- 1 Institute of Biochemistry, University of Cologne , Cologne, Germany
| |
Collapse
|