1
|
Li X, Fei X, Chen Q, Gao Z, Yin H, Zhang C, Li S, Zhao Z. The Ugd, a capsular polysaccharide synthesis protein, regulates the bacterial motility in Vibrio alginolyticus. Microbiol Res 2024; 285:127775. [PMID: 38788350 DOI: 10.1016/j.micres.2024.127775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
Vibrio alginolyticus is one of the most common opportunistic pathogens in marine animals and humans. In this study, A transposon mutation library of the V. alginolyticus E110 was used to identify motility-related genes, and we found three flagellar and one capsular polysaccharide (CPS) synthesis-related genes were linked to swarming motility. Then, gene deletion and complementation further confirmed that CPS synthesis-related gene ugd is involved in the swarming motility of V. alginolyticus. Phenotype assays showed that the Δugd mutant reduced CPS production, decreased biofilm formation, impaired swimming ability, and increased cytotoxicity compared to the wild-type strain. Transcriptome analysis showed that 655 genes (15%) were upregulated and 914 genes (21%) were downregulated in the Δugd strain. KEGG pathway and heatmap analysis revealed that genes involved in two-component systems (TCSs), chemotaxis, and flagella assembly pathways were downregulated in the Δugd mutant. On the other hand, genes involved in pathways of human diseases, biosynthesis ABC transporters, and metabolism were upregulated in the Δugd mutant. The RT-qPCR further validated that ugd-regulated genes are associated with motility, biofilm formation, virulence, and TCSs. These findings imply that ugd may be an important player in the control of some physiological processes in V. alginolyticus, highlighting its potential as a target for future research and potential therapeutic interventions.
Collapse
Affiliation(s)
- Xixi Li
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Xingyi Fei
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Qingwei Chen
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Zimeng Gao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Han Yin
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Chen Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Shenao Li
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing 210098, China; Department of Marine Biology, College of Oceanography, Hohai University, Nanjing 210098, China.
| |
Collapse
|
2
|
Zhuang JD, Shi JM, Hong CC, Wu TT, Liu L, Voglmeir J. Engineering Bifunctional Galactokinase/Uridyltransferase Chimera for Enhanced UDP-d-Xylose Production. JACS AU 2024; 4:2557-2563. [PMID: 39055162 PMCID: PMC11267548 DOI: 10.1021/jacsau.4c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
The biotechnological production of uridine diphosphate-d-xylose (UDP-d-xylose), the glycosyl donor in enzymatic for d-xylose, is an important precursor for advancing glycoengineering research on biopharmaceuticals such as heparin and glycosaminoglycans. Leveraging a recently discovered UDP-xylose salvage pathway, we have engineered a series of bifunctional chimeric biocatalysts derived from Solitalea canadensis galactokinase/uridyltransferase, facilitating the conversion of d-xylose to UDP-d-xylose. This study elucidates the novel assembly of eight fusion protein constructs, differing in domain orientations and linker peptide lengths, to investigate their functional expression in Escherichia coli, resulting in the synthesis of the first bifunctional enzyme that orchestrates a direct transformation from d-xylose to UDP-d-xylose. Fusion constructs with a NH2-GSGGGSGHM-COOH peptide linker demonstrated the highest expression and catalytic tenacity. For the highest catalytic conversion from d-xylose to UDP-d-xylose, we established an optimum pH of 7.0 and a temperature optimum of 30 °C, with an optimal fusion enzyme concentration of 3.3 mg/mL for large-scale UDP-d-xylose production. Insights into ATP and ADP inhibition further helped to optimize the reaction conditions. Testing various ratios of unfused galactokinase and uridyltransferase biocatalysts for UDP-xylose synthesis from d-xylose revealed that a 1:1 ratio was optimal. The K cat/K m value for the NH2-GSGGGSGHM-COOH peptide linker showed a 10% improvement compared with the unfused counterparts. The strategic design of these fusion enzymes efficiently routes for the convenient and efficient biocatalytic synthesis of xylosides in biotechnological and pharmaceutical applications.
Collapse
Affiliation(s)
| | | | - Chen-Cheng Hong
- Glycomics and Glycan Bioengineering
Research Center (GGBRC), College of Food
Science and Technology Nanjing
Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Ting-Ting Wu
- Glycomics and Glycan Bioengineering
Research Center (GGBRC), College of Food
Science and Technology Nanjing
Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Li Liu
- Glycomics and Glycan Bioengineering
Research Center (GGBRC), College of Food
Science and Technology Nanjing
Agricultural University, 1 Weigang, 210095 Nanjing, China
| | - Josef Voglmeir
- Glycomics and Glycan Bioengineering
Research Center (GGBRC), College of Food
Science and Technology Nanjing
Agricultural University, 1 Weigang, 210095 Nanjing, China
| |
Collapse
|
3
|
Dulin CC, Sharma P, Frigo L, Voehler MW, Iverson TM, Bachmann BO. EvdS6 is a bifunctional decarboxylase from the everninomicin gene cluster. J Biol Chem 2023:104893. [PMID: 37286037 PMCID: PMC10338323 DOI: 10.1016/j.jbc.2023.104893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023] Open
Abstract
The everninomicins are bacterially produced antibiotic octasaccharides characterized by the presence of two interglycosidic spirocyclic ortho-δ-lactone (orthoester) moieties. The terminating G- and H-ring sugars, L-lyxose and C-4 branched sugar β-D-eurekanate, are proposed to be biosynthetically derived from nucleotide diphosphate pentose sugar pyranosides; however, the identity of these precursors and their biosynthetic origin remain to be determined. Herein we identify a new glucuronic acid decarboxylase from Micromonospora belonging to the superfamily of short-chain dehydrogenase/reductase enzymes, EvdS6. Biochemical characterization demonstrated that EvdS6 is an NAD+-dependent bifunctional enzyme that produces a mixture of two products, differing in the sugar C-4 oxidation state. This product distribution is atypical for glucuronic acid decarboxylating enzymes, most of which favor production of the reduced sugar and a minority of which favor release of the oxidized product. Spectroscopic and stereochemical analysis of reaction products revealed that the first product released is the oxidatively produced 4-keto-D-xylose and the second product is the reduced D-xylose. X-ray crystallographic analysis of EvdS6 at 1.51 Å resolution with bound co-factor and TDP demonstrated that the overall geometry of the EvdS6 active site is conserved with other SDR enzymes and enabled studies probing structural determinants for the reductive half of the net neutral catalytic cycle. Critical active site threonine and aspartate residues were unambiguously identified as essential in the reductive step of the reaction and resulted in enzyme variants producing almost exclusively the keto sugar. This work defines potential precursors for the G-ring L-lyxose and resolves likely origins of the H-ring β-D-eurekanate sugar precursor.
Collapse
Affiliation(s)
- Callie C Dulin
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Pankaj Sharma
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Laura Frigo
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Markus W Voehler
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - T M Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| | - Brian O Bachmann
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, USA; Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Song H, Zhao G, Zhang M, Bi R, Meng X, Song J, Wang B, Liu J, Liu L, Lyu Y, Zhang X. Optimization of the UDP-Xyl biocatalytic synthesis from Crassostrea gigas by orthogonal design method. Protein Expr Purif 2021; 190:106002. [PMID: 34666163 DOI: 10.1016/j.pep.2021.106002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 08/25/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
UDP-Xyl, a nucleotide sugar involved in the biosynthesis of various glycoconjugates, is difficult to obtain and quite expensive. Biocatalysis using a one-pot multi-enzyme cascade is one of the most valuable biotransformation processes widely used in the industry. Herein, two enzymes, UDP-glucose (UDP-Glc) dehydrogenase (CGIUGD) and UDP-Xyl synthase (CGIUXS) from the Pacific oyster Crassostrea gigas, which are coupled together for the biotransformation of UDP-Xyl, were characterized. The optimum pH was determined to be pH 9.0 for CGIUGD and pH 7.5 for CGIUXS. Both enzymes showed the highest activity at 37 °C. Neither enzyme is metal ion-dependent. On this basis, a single factor and orthogonal test were applied to optimize the condition of biotransformation of UDP-Xyl from UDP-Glc. Orthogonal design L9 (33) was conducted to optimize processing variables of enzyme amount, pH, and temperature. The conversion of UDP-Xyl was selected as an analysis indicator. Optimum variables were the ratio of CGIUGD to CGIUXS of 2:5, enzymatic pH of 8.0, and temperature of 37 °C, which is confirmed by three repeated validation experiments. The UDP-Xyl conversion was 69.921% in a 1 mL reaction mixture by optimized condition for 1 h. This is the first report for the biosynthesis of UDP-Xyl from oyster enzymes.
Collapse
Affiliation(s)
- Huibo Song
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Guihong Zhao
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Ming Zhang
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Ruiming Bi
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Xinhui Meng
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Junliu Song
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Bo Wang
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Jian Liu
- College of Agricultural and Biological Engineering (College of Tree Peony), Heze University, Heze, China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongmei Lyu
- School of Marine and Bioengineering, Yancheng Institute of Technology, NO 1, Xiwang Road, Yancheng, 224051, China.
| | - Xiaoyang Zhang
- School of Marine and Bioengineering, Yancheng Institute of Technology, NO 1, Xiwang Road, Yancheng, 224051, China.
| |
Collapse
|
5
|
Chemoenzymatic synthesis of ultralow and low-molecular weight heparins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140301. [DOI: 10.1016/j.bbapap.2019.140301] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
|