1
|
Zhang H, Shu D, Zhang J, Liu X, Wang K, Jiang R. Biodegradable film mulching increases soil microbial network complexity and decreases nitrogen-cycling gene abundance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:172874. [PMID: 38703840 DOI: 10.1016/j.scitotenv.2024.172874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Biodegradable plastic films have emerged as a substitute for conventional plastic films. Nevertheless, responses of plant-associated microbiomes to the application of biodegradable film mulching at field scale have received little attention. A field experiment was conducted to assess the influence of different film mulching treatments on various microbial attributes and nitrogen (N) cycling functional genes in bulk and rhizosphere soils. Biodegradable film mulching raised the bacterial Shannon index in bulk soils but not in rhizosphere soils. Biodegradable film mulching has led to an increase in the complexity and connectivity of microbial networks, as well as an enhancement in the positive association among microorganisms owing to raised soil nutrients and increased crop biomass. In biodegradable film-treated soils, both bacterial and fungal communities were primarily influenced by stochastic processes associated with dispersal limitation. Moreover, conventional plastic film mulching increased denitrification, anammox, N fixation, and dissimilatory nitrate-reduction (DNRA) gene abundance in bulk soils. In rhizosphere soils, biodegradable film mulching reduced nitrification, denitrification, anammox, N fixation, and DNRA gene abundance. Furthermore, keystone genera (e.g., Nitrosospira, Truepera, Adhaeribacter, Opitutus, and Fusarium) were affected by edaphic variables, contributing to decreased N-cycling gene abundance in biodegradable film-treated soils. Collectively, biodegradable film mulching transformed soil microbiome assembly and functional adaptation, and soil nutrient availability and plant biomass were the critical factors influencing the microbial community. These findings present a novel perspective on the diverse impacts of biodegradable and conventional film mulching on soil microbiome and N-cycling processes.
Collapse
Affiliation(s)
- Hao Zhang
- Research Center for cultural Landscape Protection and Ecological Restoration, China-Portugal Belt and Road Cooperation Laboratory of Cultural Heritage Conservation Science, Gold Mantis School of Architecture, Soochow University, Suzhou 215006, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Duntao Shu
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, China
| | - Jiaqi Zhang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuejun Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100091, China
| | - Kai Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100091, China
| | - Rui Jiang
- Research Center for cultural Landscape Protection and Ecological Restoration, China-Portugal Belt and Road Cooperation Laboratory of Cultural Heritage Conservation Science, Gold Mantis School of Architecture, Soochow University, Suzhou 215006, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Bharali P, Gogoi B, Sorhie V, Acharjee SA, Walling B, Alemtoshi, Vishwakarma V, Shah MP. Autochthonous psychrophilic hydrocarbonoclastic bacteria and its ecological function in contaminated cold environments. Biodegradation 2024; 35:1-46. [PMID: 37436665 DOI: 10.1007/s10532-023-10042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023]
Abstract
Petroleum hydrocarbon (PH) pollution has mostly been caused by oil exploration, extraction, and transportation activities in colder regions, particularly in the Arctic and Antarctic regions, where it serves as a primary source of energy. Due to the resilience feature of nature, such polluted environments become the realized ecological niches for a wide community of psychrophilic hydrocarbonoclastic bacteria (PHcB). In contrast, to other psychrophilic species, PHcB is extremely cold-adapted and has unique characteristics that allow them to thrive in greater parts of the cold environment burdened with PHs. The stated group of bacteria in its ecological niche aids in the breakdown of litter, turnover of nutrients, cycling of carbon and nutrients, and bioremediation. Although such bacteria are the pioneers of harsh colder environments, their growth and distribution remain under the influence of various biotic and abiotic factors of the environment. The review discusses the prevalence of PHcB community in colder habitats, the metabolic processes involved in the biodegradation of PH, and the influence of biotic and abiotic stress factors. The existing understanding of the PH metabolism by PHcB offers confirmation of excellent enzymatic proficiency with high cold stability. The discovery of more flexible PH degrading strategies used by PHcB in colder environments could have a significant beneficial outcome on existing bioremediation technologies. Still, PHcB is least explored for other industrial and biotechnological applications as compared to non-PHcB psychrophiles. The present review highlights the pros and cons of the existing bioremediation technologies as well as the potential of different bioaugmentation processes for the effective removal of PH from the contaminated cold environment. Such research will not only serve to investigate the effects of pollution on the basic functional relationships that form the cold ecosystem but also to assess the efficacy of various remediation solutions for diverse settings and climatic conditions.
Collapse
Affiliation(s)
- Pranjal Bharali
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India.
| | - Bhagyudoy Gogoi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Viphrezolie Sorhie
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Shiva Aley Acharjee
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Bendangtula Walling
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Alemtoshi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Nagaland, 798627, India
| | - Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Galgotias University, Greater Noida, NCR Delhi, India
| | - Maulin Pramod Shah
- Industrial Waste Water Research Lab, Division of Applied and Environmental Microbiology Lab at Enviro Technology Ltd., Ankleshwar, Gujarat, India
| |
Collapse
|
3
|
Wang X, Dai Z, Zhao H, Hu L, Dahlgren RA, Xu J. Heavy metal effects on multitrophic level microbial communities and insights for ecological restoration of an abandoned electroplating factory site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121548. [PMID: 37011779 DOI: 10.1016/j.envpol.2023.121548] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The response of soil microbes to heavy metal pollution provides a metric to evaluate the soil health and ecological risks associated with heavy metal contamination. However, a multitrophic level perspective of how soil microbial communities and their functions respond to long-term exposure of multiple heavy metals remains unclear. Herein, we examined variations in soil microbial (including protists and bacteria) diversity, functional guilds and interactions along a pronounced metal pollution gradient in a field surrounding an abandoned electroplating factory. Given the stressful soil environment resulting from extremely high heavy metal concentrations and low nutrients, beta diversity of protist increased, but that of bacteria decreased, at high versus low pollution sites. Additionally, the bacteria community showed low functional diversity and redundancy at the highly polluted sites. We further identified indicative genus and "generalists" in response to heavy metal pollution. Predatory protists in Cercozoa were the most sensitive protist taxa with respect to heavy metal pollution, whereas photosynthetic protists showed a tolerance for metal pollution and nutrient deficiency. The complexity of ecological networks increased, but the communication among the modules disappeared with increasing metal pollution levels. Subnetworks of tolerant bacteria displaying functional versatility (Blastococcus, Agromyces and Opitutus) and photosynthetic protists (microalgae) became more complex with increasing metal pollution levels, indicating their potential for use in bioremediation and restoration of abandoned industrial sites contaminated by heavy metals.
Collapse
Affiliation(s)
- Xuehua Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Haochun Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Lingfei Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Liu Y, Sun Y, Yu J, Xia X, Ding A, Zhang D. Impacts of groundwater level fluctuation on soil microbial community, alkane degradation efficiency and alkane-degrading gene diversity in the critical zone: Evidence from an accelerated water table fluctuation simulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83060-83070. [PMID: 35759097 DOI: 10.1007/s11356-022-21246-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Petroleum hydrocarbons are hazardous to ecosystems and human health, commonly containing n-alkanes and polycyclic aromatic hydrocarbons. Previous researches have studied alkane degraders and degrading genes under aerobic or anaerobic conditions, but seldom discussed them in the intermittent saturation zone which is a connective area between the vadose zone and the groundwater aquifer with periodic alteration of oxygen and moisture. The present study investigated the difference in alkane degradation efficiency, bacterial community, and alkane degrading gene diversity in aerobic, anaerobic, and aerobic-anaerobic fluctuated treatments. All biotic treatments achieved over 90% of n-alkane removal after 120 days of incubation. The removal efficiencies of n-alkanes with a carbon chain length from 16 to 25 were much higher in anaerobic scenarios than those in aerobic scenarios, explained by different dominant microbes between aerobic and anaerobic conditions. The highest removal efficiency was found in fluctuation treatments, indicating an accelerated n-alkane biodegradation under aerobic-anaerobic alternation. In addition, the copy numbers of the 16S rRNA gene and two alkB genes (alkB-P and alkB-R) declined dramatically when switched from aerobic to anaerobic scenarios and oppositely from anaerobic to aerobic conditions. This suggested that water level fluctuation could notably change the presence of aerobic alkane degrading genes. Our results suggested that alkane degradation efficiency, soil microbial community, and alkane-degrading genes were all driven by water level fluctuation in the intermittent saturation zone, helping better understand the effects of seasonal water table fluctuation on the biodegradation of petroleum hydrocarbons in the subsurface environment.
Collapse
Affiliation(s)
- Yueqiao Liu
- Experiment and Practice Innovation Education Center, Beijing Normal University at Zhuhai, Zhuhai, 519087, China
| | - Yujiao Sun
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jingshan Yu
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xuefeng Xia
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Aizhong Ding
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, China.
- Key Laboratory of Groundwater Resources and Environment Ministry of Education, Jilin University, Changchun, 130021, China.
| |
Collapse
|
5
|
Geng S, Xu G, You Y, Xia M, Zhu Y, Ding A, Fan F, Dou J. Occurrence of polycyclic aromatic compounds and interdomain microbial communities in oilfield soils. ENVIRONMENTAL RESEARCH 2022; 212:113191. [PMID: 35351456 DOI: 10.1016/j.envres.2022.113191] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Soil polycyclic aromatic compound (PAC) pollution as a result of petroleum exploitation has caused serious environmental problems. The unclear assembly and functional patterns of microorganisms in oilfield soils limits the understanding of microbial mechanisms for PAC elimination and health risk reduction. This study investigated the polycyclic aromatic hydrocarbons (PAHs) and substituted PAHs (SPAHs) occurrence, and their impact on the bacteria-archaea-fungi community diversity, co-occurrence network and functionality in the soil of an abandoned oilfield. The results showed that the PAC content in the oilfield ranged from 3429.03 μg kg-1 to 6070.89 μg kg-1, and risk assessment results suggested a potential cancer risk to children and adults. High molecular weight PAHs (98.9%) and SPAHs (1.0%) contributed to 99.9% of the toxic equivalent concentration. For microbial analysis, the abundantly detected degraders and unigenes indicated the microbial potential to mitigate pollutants and reduce health risks. Microbial abundance and diversity were found to be negatively correlated with health risk. The co-occurrence network analysis revealed nonrandom assembly patterns of the interdomain microbial communities, and species in the network exhibited strong positive connections (59%). The network demonstrated strong ecological linkages and was divided into five smaller coherent modules, in which the functional microbes were mainly involved in organic substance and mineral component degradation, biological electron transfer and nutrient cycle processes. The keystone species for maintaining microbial ecological functions included Marinobacter of bacteria and Neocosmospora of fungi. Additionally, benzo [g,h,i]pyrene, dibenz [a,h]anthracene, indeno [1,2,3-cd]perylene and total phosphorus were the key environmental factors driving the assembly and functional patterns of microbial communities under pollution stress. This work improves the knowledge of the functional pattern and environmental adaptation mechanisms of interdomain microbes, and provides valuable guidance for the further bioremediation of PAC-contaminated soils in oilfields.
Collapse
Affiliation(s)
- Shuying Geng
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Guangming Xu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Yue You
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Meng Xia
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Yi Zhu
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Aizhong Ding
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Fuqiang Fan
- Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, PR China.
| | - Junfeng Dou
- Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
6
|
Soil microbiota and microarthropod communities in oil contaminated sites in the European Subarctic. Sci Rep 2021; 11:19620. [PMID: 34608182 PMCID: PMC8490368 DOI: 10.1038/s41598-021-98680-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
The present comprehensive study aimed to estimate the aftermath of oil contamination and the efficacy of removing the upper level of polluted soil under the conditions of the extreme northern taiga of northeastern European Russia. Soil samples from three sites were studied. Two sites were contaminated with the contents of a nearby sludge collector five years prior to sampling. The highly contaminated upper soil level was removed from one of them. The other was left for self-restoration. A chemical analysis of the soils was conducted, and changes in the composition of the soil zoocoenosis and bacterial and fungal microbiota were investigated. At both contaminated sites, a decrease in the abundance and taxonomic diversity of indicator groups of soil fauna, oribatid mites and collembolans compared to the background site were found. The pioneer eurytopic species Oppiella nova, Proisotoma minima and Xenyllodes armatus formed the basis of the microarthropod populations in the contaminated soil. A complete change in the composition of dominant taxonomic units was observed in the microbiota, both the bacterial and fungal communities. There was an increase in the proportion of representatives of Proteobacteria and Actinobacteria in polluted soils compared to the background community. Hydrocarbon-degrading bacteria-Alcanivorax, Rhodanobacter ginsengisoli, Acidobacterium capsulatum, and Acidocella-and fungi-Amorphotheca resinae abundances greatly increased in oil-contaminated soil. Moreover, among both bacteria and fungi, a sharp increase in the abundance of uncultivated organisms that deserve additional attention as potential oil degraders or organisms with a high resistance to oil contamination were observed. The removal of the upper soil level was partly effective in terms of decreasing the oil product concentration (from approximately 21 to 2.6 g/kg of soil) and preventing a decrease in taxonomic richness but did not prevent alterations in the composition of the microbiota or zoocoenosis.
Collapse
|
7
|
Procópio L. The oil spill and the use of chemical surfactant reduce microbial corrosion on API 5L steel buried in saline soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26975-26989. [PMID: 33496949 DOI: 10.1007/s11356-021-12544-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
In order to evaluate the biocorrosion of API 5L metal buried in saline soils, three different conditions in microcosms were evaluated. The control microcosm contained only saline soil, the second had the addition of petroleum, and the third contained the addition of both petroleum and surfactant. The corrosion rate of the metals was measured by loss of mass after 30 days, and the microbial communities were delineated using 16S rRNA gene sequencing techniques. The species were dominated by halophiles in all samples analyzed. Among the bacteria, the predominant group was Proteobacteria, with emphasis on the Alphaproteobacteria and Gammaproteobacteria. Betaproteobacteria and Deltaproteobacteria members were also identified in a smaller number in all conditions. Firmicutes were especially abundant in the control system, although it was persistently present in other conditions evaluated. Bacteroidetes and Actinobacteria were also present in a considerable number of OTUs in the three microcosms. Halobacteria were predominant among archaea and were present in all conditions. The analysis pointed to a conclusion that in the control microcosm, the corrosion rate was higher, while the microcosm containing only oil had the lowest corrosion rate. These results suggest that, under these conditions, the entry of other carbon sources favors the presence of petroleum degraders, rather than samples involved in the corrosion of metals.
Collapse
Affiliation(s)
- Luciano Procópio
- Industrial Microbiology and Bioremediation Department, Universidade Federal do Rio de Janeiro (UFRJ), Caxias, Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Natronomonas salsuginis sp. nov., a New Inhabitant of a Marine Solar Saltern. Microorganisms 2020; 8:microorganisms8040605. [PMID: 32326357 PMCID: PMC7232251 DOI: 10.3390/microorganisms8040605] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 11/17/2022] Open
Abstract
A halophilic archaeon, strain F20-122T, was isolated from a marine saltern of Isla Bacuta (Huelva, Spain). Cells were Gram-stain-negative, aerobic, and coccoid in morphology. It grew at 25–50 °C (optimum 37 °C), pH 6.5–9.0 (optimum pH 8.0), and 10–30% (w/v) total salts (optimum 25% salts). The phylogenetic analyses based on the 16S rRNA and rpoB’ genes showed its affiliation with the genus Natronomonas and suggested its placement as a new species within this genus. The in silico DNA–DNA hybridization (DDH) and average nucleotide identity (ANI) analyses of this strain against closely related species supported its placement in a new taxon. The DNA G + C content of this isolate was 63.0 mol%. The polar lipids of strain F20-122T were phosphatidylglycerol phosphate methyl ester (PGP-Me), phosphatidylglycerol (PG), and phosphatidylglycerol sulfate (PGS). Traces of biphosphatidylglycerol (BPG) and other minor phospholipids and unidentified glycolipids were also present. Based on the phylogenetic, genomic, phenotypic, and chemotaxonomic characterization, we propose strain F20-122T (= CCM 8891T = CECT 9564T = JCM 33320T) as the type strain of a new species within the genus Natronomonas, with the name Natronomonas salsuginis sp. nov. Rhodopsin-like sequence analysis of strain F20-122T revealed the presence of haloarchaeal proton pumps, suggesting a light-mediated ATP synthesis for this strain and a maximum wavelength absorption in the green spectrum.
Collapse
|
9
|
Hu B, Wang M, Geng S, Wen L, Wu M, Nie Y, Tang YQ, Wu XL. Metabolic Exchange with Non-Alkane-Consuming Pseudomonas stutzeri SLG510A3-8 Improves n-Alkane Biodegradation by the Alkane Degrader Dietzia sp. Strain DQ12-45-1b. Appl Environ Microbiol 2020; 86:AEM.02931-19. [PMID: 32033953 PMCID: PMC7117941 DOI: 10.1128/aem.02931-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023] Open
Abstract
Biodegradation of alkanes by microbial communities is ubiquitous in nature. Interestingly, the microbial communities with high hydrocarbon-degrading performances are sometimes composed of not only hydrocarbon degraders but also nonconsumers, but the synergistic mechanisms remain unknown. Here, we found that two bacterial strains isolated from Chinese oil fields, Dietzia sp. strain DQ12-45-1b and Pseudomonas stutzeri SLG510A3-8, had a synergistic effect on hexadecane (C16 compound) biodegradation, even though P. stutzeri could not utilize C16 individually. To gain a better understanding of the roles of the alkane nonconsumer P. stutzeri in the C16-degrading consortium, we reconstructed a two-species stoichiometric metabolic model, iBH1908, and integrated in silico prediction with the following in vitro validation, a comparative proteomics analysis, and extracellular metabolomic detection. Metabolic interactions between P. stutzeri and Dietzia sp. were successfully revealed to have importance in efficient C16 degradation. In the process, P. stutzeri survived on C16 metabolic intermediates from Dietzia sp., including hexadecanoate, 3-hydroxybutanoate, and α-ketoglutarate. In return, P. stutzeri reorganized its metabolic flux distribution to fed back acetate and glutamate to Dietzia sp. to enhance its C16 degradation efficiency by improving Dietzia cell accumulation and by regulating the expression of Dietzia succinate dehydrogenase. By using the synergistic microbial consortium of Dietzia sp. and P. stutzeri with the addition of the in silico-predicted key exchanged metabolites, diesel oil was effectively disposed of in 15 days with a removal fraction of 85.54% ± 6.42%, leaving small amounts of C15 to C20 isomers. Our finding provides a novel microbial assembling mode for efficient bioremediation or chemical production in the future.IMPORTANCE Many natural and synthetic microbial communities are composed of not only species whose biological properties are consistent with their corresponding communities but also ones whose chemophysical characteristics do not directly contribute to the performance of their communities. Even though the latter species are often essential to the microbial communities, their roles are unclear. Here, by investigation of an artificial two-member microbial consortium in n-alkane biodegradation, we showed that the microbial member without the n-alkane-degrading capability had a cross-feeding interaction with and metabolic regulation to the leading member for the synergistic n-alkane biodegradation. Our study improves the current understanding of microbial interactions. Because "assistant" microbes showed importance in communities in addition to the functional microbes, our findings also suggest a useful "assistant-microbe" principle in the design of microbial communities for either bioremediation or chemical production.
Collapse
Affiliation(s)
- Bing Hu
- Institute for Synthetic Biosystems, Department of Biochemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, People's Republic of China
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Miaoxiao Wang
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Shuang Geng
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Liqun Wen
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Mengdi Wu
- School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Yong Nie
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| | - Yue-Qin Tang
- Department of Architecture and Environment, Sichuan University, Chengdu, People's Republic of China
| | - Xiao-Lei Wu
- Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing, People's Republic of China
| |
Collapse
|
10
|
Microbiome and imputed metagenome study of crude and refined petroleum-oil-contaminated soils: Potential for hydrocarbon degradation and plant-growth promotion. J Biosci 2019. [DOI: 10.1007/s12038-019-9936-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
11
|
Zhang J, Chen M, Huang J, Guo X, Zhang Y, Liu D, Wu R, He H, Wang J. Diversity of the microbial community and cultivable protease-producing bacteria in the sediments of the Bohai Sea, Yellow Sea and South China Sea. PLoS One 2019; 14:e0215328. [PMID: 30973915 PMCID: PMC6459509 DOI: 10.1371/journal.pone.0215328] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 03/30/2019] [Indexed: 02/06/2023] Open
Abstract
The nitrogen (N) cycle is closely related to the stability of marine ecosystems. Microbial communities have been directly linked to marine N-cycling processes. However, systematic research on the bacterial community composition and diversity involved in N cycles in different seas is lacking. In this study, microbial diversity in the Bohai Sea (BHS), Yellow Sea (YS) and South China Sea (SCS) was surveyed by targeting the hypervariable V4 regions of the 16S rRNA gene using next-generation sequencing (NGS) technology. A total of 2,505,721 clean reads and 15,307 operational taxonomic units (OTUs) were obtained from 86 sediment samples from the three studied China seas. LEfSe analysis demonstrated that the SCS had more abundant microbial taxa than the BHS and YS. Diversity indices demonstrated that Proteobacteria and Planctomycetes were the dominant phyla in all three China seas. Canonical correspondence analysis (CCA) indicated that pH (P = 0.034) was the principal determining factors, while the organic matter content, depth and temperature had a minor correlated with the variations in sedimentary microbial community distribution. Cluster and functional analyses of microbial communities showed that chemoheterotrophic and aerobic chemoheterotrophic microorganisms widely exist in these three seas. Further research found that the cultivable protease-producing bacteria were mainly affiliated with the phyla Proteobacteria, Firmicutes and Bacteroidetes. It was very clear that Pseudoalteromonadaceae possessed the highest relative abundance in the three sea areas. The predominant protease-producing genera were Pseudoalteromonas and Bacillus. These results shed light on the differences in bacterial community composition, especially protease-producing bacteria, in these three China seas.
Collapse
Affiliation(s)
- Jiang Zhang
- School of Life Science, Central South University, Changsha, China
| | - Ming Chen
- Sanway Gene Technology Inc., Changsha, China
| | - Jiafeng Huang
- School of Life Science, Central South University, Changsha, China
| | - Xinwu Guo
- Sanway Gene Technology Inc., Changsha, China
| | - Yanjiao Zhang
- Shandong Province Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Dan Liu
- School of Life Science, Central South University, Changsha, China
| | - Ribang Wu
- School of Life Science, Central South University, Changsha, China
| | - Hailun He
- School of Life Science, Central South University, Changsha, China
- * E-mail: (HH); (GW)
| | - Jun Wang
- School of Life Science, Central South University, Changsha, China
- Sanway Gene Technology Inc., Changsha, China
- * E-mail: (HH); (GW)
| |
Collapse
|
12
|
Liao B, Yan X, Zhang J, Chen M, Li Y, Huang J, Lei M, He H, Wang J. Microbial community composition in alpine lake sediments from the Hengduan Mountains. Microbiologyopen 2019; 8:e00832. [PMID: 30848090 PMCID: PMC6741133 DOI: 10.1002/mbo3.832] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 11/18/2022] Open
Abstract
Microbial communities in sediments play an important role in alpine lake ecosystems. However, the microbial diversity and community composition of alpine lake sediments from the Hengduan Mountains remain largely unknown. Therefore, based on the Illumina MiSeq platform, high‐throughput sequencing analysis of the 16S rRNA gene was performed on 15 alpine lake sediments collected at different locations in the Hengduan Mountains. The abundance‐based coverage estimate (ACE), Chao1, and Shannon indices indicated that the microbial abundance and diversity of these sediments were high. There are some differences in the composition of microbial communities among sediments. However, in general, Proteobacteria accounted for the largest proportion of all sediments (22.3%–67.6%) and was the dominant phylum. Followed by Bacteroidetes, Acidobacteria, Chloroflexi, and Planctomycetes. In addition, the operational taxonomic unit (OTU) interactions network had modular structures and suggested more cooperation than competition in the microbial community. Besides, we also found that temperature has a significant contribution to the sample–environment relationship. This study revealed the diversity and composition of microbial communities in alpine lake sediments from the Hengduan Mountains, and describe the correlation between microbial community structure and different environmental variables.
Collapse
Affiliation(s)
- Binqiang Liao
- School of Life Science Central South University, Changsha, China
| | - Xiaoxin Yan
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology, Xuzhou, China
| | - Jiang Zhang
- School of Life Science Central South University, Changsha, China
| | - Ming Chen
- Sanway Gene Technology Inc., Changsha, China
| | - Yanling Li
- Key Laboratory of Plateau Lake Ecology and Environment Change, Institute of Plateau Lake Ecology and Pollution Management, School of Resource Environment and Earth Science, Yunnan University, Kunming, China
| | - Jiafeng Huang
- School of Life Science Central South University, Changsha, China
| | - Ming Lei
- School of Life Science Central South University, Changsha, China
| | - Hailun He
- School of Life Science Central South University, Changsha, China
| | - Jun Wang
- School of Life Science Central South University, Changsha, China.,Sanway Gene Technology Inc., Changsha, China
| |
Collapse
|
13
|
Chen S, Xu Y, Sun S, Chen F, Liu J. Halalkalicoccus subterraneus sp. nov., an extremely halophilic archaeon isolated from a subterranean halite deposit. Antonie van Leeuwenhoek 2019; 112:1067-1075. [PMID: 30707397 DOI: 10.1007/s10482-019-01241-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/22/2019] [Indexed: 11/29/2022]
Abstract
An extremely halophilic archaeon, designated strain GSM28T, was isolated from a subterranean halite deposit in a Yunnan salt mine, China. Cells of the strain were observed to be cocci, non-motile and Gram-variable, and to require at least 15% (w/v) NaCl for growth (optimum 20%). Growth was found to occur in the ranges of 20-45 °C (optimum 42 °C) and pH 6.0-8.5 (optimum 7.5). Cells did not lyse in distilled water. Phylogenetic analysis based on 16S rRNA gene sequences indicated that this strain belongs to the genus Halalkalicoccus and shows 99.1% similarities with its close phylogenetic relative Halalkalicoccus paucihalophilus DSM 24557T. Genomic ANI analysis showed that the DNA-DNA relatedness between strain GSM28T and the closely related species Hac. paucihalophilus DSM 24557T and Halalkalicoccus jeotgali B3T was 83.7% and 83.1%, respectively. The major polar lipids were determined to be phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate, sulfated mannosyl-glucosyl-glycerol diether-1 and two unidentified glycolipids. The DNA G + C content was determined to be 61.8 mol %. On the basis of physiological, biochemical tests and phylogenetic differentiations, strain GSM28T is concluded to represent a novel species in the genus Halalkalicoccus, for which the name Halalkalicoccus subterraneus sp. nov. is proposed. The type strain is GSM28T (= CGMCC 1.16344T = NBRC 113432T).
Collapse
Affiliation(s)
- Shaoxing Chen
- College of Life Sciences, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui, People's Republic of China. .,College of Life Sciences, Honghe University, No. 1 Xuefu Road, Mengzi, 661100, Yunnan, People's Republic of China.
| | - Yao Xu
- College of Life Sciences, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui, People's Republic of China
| | - Siqi Sun
- College of Life Sciences, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui, People's Republic of China
| | - Feilong Chen
- College of Life Sciences, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui, People's Republic of China
| | - Jingwen Liu
- College of Life Sciences, Anhui Normal University, No. 1 Beijing East Road, Wuhu, 241000, Anhui, People's Republic of China
| |
Collapse
|
14
|
Krzmarzick MJ, Taylor DK, Fu X, McCutchan AL. Diversity and Niche of Archaea in Bioremediation. ARCHAEA (VANCOUVER, B.C.) 2018; 2018:3194108. [PMID: 30254509 PMCID: PMC6140281 DOI: 10.1155/2018/3194108] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 08/01/2018] [Indexed: 12/03/2022]
Abstract
Bioremediation is the use of microorganisms for the degradation or removal of contaminants. Most bioremediation research has focused on processes performed by the domain Bacteria; however, Archaea are known to play important roles in many situations. In extreme conditions, such as halophilic or acidophilic environments, Archaea are well suited for bioremediation. In other conditions, Archaea collaboratively work alongside Bacteria during biodegradation. In this review, the various roles that Archaea have in bioremediation is covered, including halophilic hydrocarbon degradation, acidophilic hydrocarbon degradation, hydrocarbon degradation in nonextreme environments such as soils and oceans, metal remediation, acid mine drainage, and dehalogenation. Research needs are addressed in these areas. Beyond bioremediation, these processes are important for wastewater treatment (particularly industrial wastewater treatment) and help in the understanding of the natural microbial ecology of several Archaea genera.
Collapse
Affiliation(s)
- Mark James Krzmarzick
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| | - David Kyle Taylor
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xiang Fu
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Aubrey Lynn McCutchan
- School of Civil and Environmental Engineering, College of Engineering, Architecture, and Technology, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
15
|
Characterization of bacterial composition and diversity in a long-term petroleum contaminated soil and isolation of high-efficiency alkane-degrading strains using an improved medium. World J Microbiol Biotechnol 2018; 34:34. [DOI: 10.1007/s11274-018-2417-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/27/2018] [Indexed: 10/18/2022]
|
16
|
Yang CW, Lee CC, Ku H, Chang BV. Bacterial communities associated with anaerobic debromination of decabromodiphenyl ether from mangrove sediment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:5391-5403. [PMID: 28013469 DOI: 10.1007/s11356-016-8259-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/13/2016] [Indexed: 06/06/2023]
Abstract
This study evaluated decabromodiphenyl ether (BDE-209) anaerobic debromination and bacterial community changes in mangrove sediment. BDE-209 debromination rates were enhanced with zerovalent iron compared to without zerovalent iron in the sediment. BDE-209 debromination rates in microcosms constructed with sediments collected in autumn were higher than in microcosms constructed with sediments collected in spring and were higher at the Bali sampling site than the Guandu sampling site. The intermediate products resulting from the reductive debromination of BDE-209 in sediment were nona-BDE (BDE-206, BDE-207), octa-BDEs (BDE-196, BDE-197), hepta-BDEs (BDE-183, BDE-184, BDE-191), hexa-BDEs (BDE-137, BDE-138, BDE-154, BDE-157), penta-BDEs (BDE-85, BDE-99, BDE-100, BDE-126), tetra-BDEs (BDE-47, BDE-49, BDE-66, BDE-77), tri-BDEs (BDE-17, BDE-28), and di-BDEs (BDE-15). Fifty bacterial genera associated with BDE-209 debromination were identified. Overall, 12 of the 50 bacterial genera were reported to be involved in dehalogenation of aromatic compounds. These bacteria have high potential to be BDE-209 debromination bacteria. Different combinations of bacterial community composition exhibit different abilities for BDE-209 anaerobic debromination.
Collapse
Affiliation(s)
- Chu-Wen Yang
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Ching-Chang Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - His Ku
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Bea-Ven Chang
- Department of Microbiology, Soochow University, Taipei, Taiwan.
| |
Collapse
|
17
|
Zhou ZF, Wang MX, Zuo XH, Yao YH. Comparative Investigation of Bacterial, Fungal, and Archaeal Community Structures in Soils in a Typical Oilfield in Jianghan, China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 72:65-77. [PMID: 27900422 DOI: 10.1007/s00244-016-0333-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
Agricultural soils in oilfields have high risk for polycyclic aromatic hydrocarbon (PAH) pollution. In this study, from the Jianghan Oilfield (Hubei Province, China) with a history of >50 years, 7 soil samples (OS-1 to OS-7) were collected. Subsequently, the bacterial, archaeal, and fungal community structures were investigated by Illumina MiSeq sequencing, and the relationship between microbial community structure and soil PAH content was analyzed. The results indicated that bacterial and archaeal Chao 1 indices showed a significantly negative relationship with soil PAH content, and only the bacterial Shannon index had a significantly negative relationship with soil PAH content. Moreover, the community structure of bacteria (r 2 = 0.9001, p = 0.013) showed a stronger correlation with PAH content than that of fungi (r 2 = 0.7357, p = 0.045), and no significant relationship was found between archaeal community structure (r 2 = 0.4553, p = 0.262) and soil PAH content. In addition, the relative greater abundances of some bacterial genus belonging to Actinobacteria (Mycobacterium and Micromonospora) and Proteobacteria (Pseudomonas, Lysobacter, Idiomarina, Oxalobacteraceae, and Massilia), fungal genus belonging to Ascomycota (Sordariales and Pleosporales), and archaeal phylum (Euryarchaeota) were detected in the soil samples (OS-3 and OS-5) with greater PAH content. In summary, soil PAHs showed an obvious influence and selectivity on the soil microbiota. Furthermore, compared with fungi and archaea, bacteria was more sensitive to soil PAH pollution, and the diversity indices and community structure of bacteria both might be suitable indicators for assessment of soil PAH stress on the soil ecosystem.
Collapse
Affiliation(s)
- Zhi-Feng Zhou
- College of Resources and Environment, Southwest University, Chongqing, 400716, China.
| | - Ming-Xia Wang
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Xiao-Hu Zuo
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Yan-Hong Yao
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| |
Collapse
|
18
|
Archaea in Natural and Impacted Brazilian Environments. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:1259608. [PMID: 27829818 PMCID: PMC5086508 DOI: 10.1155/2016/1259608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/08/2016] [Indexed: 11/26/2022]
Abstract
In recent years, archaeal diversity surveys have received increasing attention. Brazil is a country known for its natural diversity and variety of biomes, which makes it an interesting sampling site for such studies. However, archaeal communities in natural and impacted Brazilian environments have only recently been investigated. In this review, based on a search on the PubMed database on the last week of April 2016, we present and discuss the results obtained in the 51 studies retrieved, focusing on archaeal communities in water, sediments, and soils of different Brazilian environments. We concluded that, in spite of its vast territory and biomes, the number of publications focusing on archaeal detection and/or characterization in Brazil is still incipient, indicating that these environments still represent a great potential to be explored.
Collapse
|
19
|
Microbial diversity and community structure in an antimony-rich tailings dump. Appl Microbiol Biotechnol 2016; 100:7751-63. [PMID: 27188777 DOI: 10.1007/s00253-016-7598-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 10/21/2022]
Abstract
To assess the impact of antimony (Sb) on microbial community structure, 12 samples were taken from an Sb tailings pile in Guizhou Province, Southwest China. All 12 samples exhibited elevated Sb concentrations, but the mobile and bioaccessible fractions were small in comparison to total Sb concentrations. Besides the geochemical analyses, microbial communities inhabiting the tailing samples were characterized to investigate the interplay between the microorganisms and environmental factors in mine tailings. In all samples, Proteobacteria and Actinobacteria were the most dominant phyla. At the genus level, Thiobacillus, Limnobacter, Nocardioides, Lysobacter, Phormidium, and Kaistobacter demonstrated relatively high abundances. The two most abundant genera, Thiobacillus and Limnobacter, are characterized as sulfur-oxidizing bacteria and thiosulfate-oxidizing bacteria, respectively, while the genus Lysobacter contains arsenic (As)-resistant bacteria. Canonical correspondence analysis (CCA) indicates that TOC and the sulfate to sulfide ratio strongly shaped the microbial communities, suggesting the influence of the environmental factors in the indigenous microbial communities.
Collapse
|
20
|
Abstract
We report the draft genome sequence of Arthrobacter sp. strain Edens01, isolated from a leaf surface of a Rosa hybrid plant as part of the Howard Hughes Medical Institute-funded Student Initiated Microbial Discovery (SIMD) project. The genome has a total size of 3,639,179 bp and contig N50 of 454,897 bp.
Collapse
|
21
|
Jimenez-Sanchez G. Genomics innovation: transforming healthcare, business, and the global economy. Genome 2015; 58:511-7. [DOI: 10.1139/gen-2015-0121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genomics revolution has generated an unprecedented number of assets to propel innovation. Initial availability of genomics-based applications show a significant potential to contribute addressing global challenges, such as human health, food security, alternative sources of energies, and environmental sustainability. In the last years, most developed and emerging nations have established bioeconomy agendas where genomics plays a major role to meet their local needs. Genomic medicine is one of the most visible areas where genomics innovation is likely to contribute to a more individualized, predictive, and preventive medical practice. Examples in agriculture, dairy and beef, fishery, aquaculture, and forests industries include the effective selection of genetic variants associated to traits of economic value. Some, in addition to producing more and better foods, already represent an important increase in revenues to their respective industries. It is reasonable to predict that genomics applications will lead to a paradigm shift in our ability to ease significant health, economic, and social burdens. However, to successfully benefit from genomics innovations, it is imperative to address a number of hurdles related to generating robust scientific evidence, developing lower-cost sequencing technologies, effective bioinformatics, as well as sensitive ethical, economical, environmental, legal, and social aspects associated with the development and use of genomics innovations.
Collapse
Affiliation(s)
- Gerardo Jimenez-Sanchez
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA; Global Biotech Consulting Group, Mexico
- Harvard T.H. Chan School of Public Health, Department of Epidemiology, Boston, MA, USA; Global Biotech Consulting Group, Mexico
| |
Collapse
|
22
|
Antibiotic sulfanilamide biodegradation by acclimated microbial populations. Appl Microbiol Biotechnol 2015; 100:2439-47. [DOI: 10.1007/s00253-015-7133-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 11/27/2022]
|