1
|
Guo D, Zhang L, Wang X, Zheng J, Lin S. Establishment methods and research progress of livestock and poultry immortalized cell lines: A review. Front Vet Sci 2022; 9:956357. [PMID: 36118350 PMCID: PMC9478797 DOI: 10.3389/fvets.2022.956357] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
An infinite cell line is one of the most favored experimental tools and plays an irreplaceable role in cell-based biological research. Primary cells from normal animal tissues undergo a limited number of divisions and subcultures in vitro before they enter senescence and die. On the contrary, an infinite cell line is a population of non-senescent cells that could proliferate indefinitely in vitro under the stimulation of external factors such as physicochemical stimulation, virus infection, or transfer of immortality genes. Cell immortalization is the basis for establishing an infinite cell line, and previous studies have found that methods to obtain immortalized cells mainly included physical and chemical stimulations, heterologous expression of viral oncogenes, increased telomerase activity, and spontaneous formation. However, some immortalized cells do not necessarily proliferate permanently even though they can extend their lifespan compared with primary cells. An infinite cell line not only avoids the complicated process of collecting primary cell, it also provides a convenient and reliable tool for studying scientific problems in biology. At present, how to establish a stable infinite cell line to maximize the proliferation of cells while maintaining the normal function of cells is a hot issue in the biological community. This review briefly introduces the methods of cell immortalization, discusses the related progress of establishing immortalized cell lines in livestock and poultry, and compares the characteristics of several methods, hoping to provide some ideas for generating new immortalized cell lines.
Collapse
|
2
|
Xie X, Pang M, Liang S, Lin Y, Zhao Y, Qiu D, Liu J, Dong Y, Liu Y. Cellular microRNAs influence replication of H3N2 canine influenza virus in infected cells. Vet Microbiol 2021; 257:109083. [PMID: 33894663 DOI: 10.1016/j.vetmic.2021.109083] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 04/18/2021] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are known to play important regulatory roles in host-virus interactions. Avian-origin H3N2 canine influenza virus (CIV) has emerged as the most prevalent subtype among dogs in Asia since 2007. To evaluate the roles of host miRNAs in H3N2 CIV infection, here, miRNA profiles obtained from primary canine bronchiolar epithelial cells (CBECs) and canine alveolar macrophages (CAMCs) were compared between infected and mock-infected cells with the H3N2 CIV JS/10. It was found that the expressions of cfa-miR-125b and cfa-miR-151, which have been reported to be associated with innate immunity and inflammatory response, were significantly decreased in CIV-infected canine primary cells. Bioinformatics prediction indicated that 5' seed regions of the two miRNAs are partially complementary to the mRNAs of nucleoprotein (NP) and non-structural protein 1 (NS1) of JS/10. As determined by virus titration, quantitative real-time PCR (qRT-PCR) and western blotting, overexpression of the two miRNAs inhibited CIV replication in cell culture, while their inhibition facilitated this replication, suggesting that the two miRNAs could act as negative regulators of CIV replication. Our findings support the notion that some cellular miRNAs can influence the outcome of virus infection, which helps to elucidate the resistance of host cells to viral infection and to clarify the pathogenesis of H3N2 CIV.
Collapse
Affiliation(s)
- Xing Xie
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing, 210014, China
| | - Maoda Pang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Shan Liang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Lin
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanbing Zhao
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dong Qiu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Provincial Animal Disease Control Center, Nanjing, 210036, China
| | - Jin Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Xie X, Gan Y, Pang M, Shao G, Zhang L, Liu B, Xu Q, Wang H, Feng Y, Yu Y, Chen R, Wu M, Zhang Z, Hua L, Xiong Q, Liu M, Feng Z. Establishment and characterization of a telomerase-immortalized porcine bronchial epithelial cell line. J Cell Physiol 2018; 233:9763-9776. [PMID: 30078190 DOI: 10.1002/jcp.26942] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 06/12/2018] [Indexed: 01/03/2023]
Abstract
Primary porcine bronchial epithelial cells (PBECs) are an ideal model to study the molecular and pathogenic mechanisms of various porcine respiratory pathogens. However, the short lifespan of primary PBECs greatly limit their application. Here, we isolated and cultured primary PBECs and established immortalized PBECs by transfecting primary PBECs with the pEGFP-hTERT recombinant plasmid containing human telomerase reverse transcriptase (hTERT). Immortalized PBECs (hTERT-PBECs) retained the morphological and functional features of primary PBECs as indicated by cytokeratin 18 expression, telomerase activity assay, proliferation assays, karyotype analysis, and quantitative reverse-transcriptase polymerase chain reaction. Compared to primary PBECs, hTERT-PBECs had higher telomerase activity, extended replicative lifespan, and displayed enhanced proliferative activity. Moreover, this cell line is not transformed in vitro and does not exhibit a malignant phenotype in vivo, suggesting that it can be safely used in further studies. Besides, hTERT-PBECs were susceptible to swine influenza virus of H3N2 subtype and porcine circovirus type 2. In conclusion, the immortalized hTERT-PBECs represent a valuable in vitro model, which can be widely used in the study of porcine respiratory pathogenic infections.
Collapse
Affiliation(s)
- Xing Xie
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuan Gan
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maoda Pang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Key Laboratory of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Guoqing Shao
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lei Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Beibei Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qi Xu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Haiyan Wang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yanyan Feng
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanfei Yu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Rong Chen
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Meng Wu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhenzhen Zhang
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lizhong Hua
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiyan Xiong
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Maojun Liu
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhixin Feng
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
4
|
Banerjee A, Misra V, Schountz T, Baker ML. Tools to study pathogen-host interactions in bats. Virus Res 2018; 248:5-12. [PMID: 29454637 PMCID: PMC7114677 DOI: 10.1016/j.virusres.2018.02.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 02/01/2018] [Accepted: 02/12/2018] [Indexed: 11/06/2022]
Abstract
Bats are important reservoir hosts for emerging zoonotic viruses. Viruses detected in bats are difficult to isolate using traditional cell lines. Bat cell lines provide critical tools to dissect host pathogen interactions. Little is known about immune cell populations and their responses in bats. Sharing reagents and cell lines will accelerate research and virus discovery.
Bats are natural reservoirs for a variety of emerging viruses that cause significant disease in humans and domestic animals yet rarely cause clinical disease in bats. The co-evolutionary history of bats with viruses has been hypothesized to have shaped the bat-virus relationship, allowing both to exist in equilibrium. Progress in understanding bat-virus interactions and the isolation of bat-borne viruses has been accelerated in recent years by the development of susceptible bat cell lines. Viral sequences similar to severe acute respiratory syndrome corona virus (SARS-CoV) have been detected in bats, and filoviruses such as Marburg virus have been isolated from bats, providing definitive evidence for the role of bats as the natural host reservoir. Although viruses can be readily detected in bats using molecular approaches, virus isolation is far more challenging. One of the limitations in using traditional culture systems from non-reservoir species is that cell types and culture conditions may not be compatible for isolation of bat-borne viruses. There is, therefore, a need to develop additional bat cell lines that correspond to different cell types, including less represented cell types such as immune cells, and culture them under more physiologically relevant conditions to study virus host interactions and for virus isolation. In this review, we highlight the current progress in understanding bat-virus interactions in bat cell line systems and some of the challenges and limitations associated with cell lines. Future directions to address some of these challenges to better understand host-pathogen interactions in these intriguing mammals are also discussed, not only in relation to viruses but also other pathogens carried by bats including bacteria and fungi.
Collapse
Affiliation(s)
- Arinjay Banerjee
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Vikram Misra
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Tony Schountz
- Department of Microbiology, Immunology and Pathology, Arthropod-borne and Infectious Diseases laboratory, Colorado State University, Fort Collins, USA
| | - Michelle L Baker
- CSIRO, Health and Biosecurity Business Unit, Australian Animal Health Laboratory, Geelong, Australia.
| |
Collapse
|
5
|
Banerjee A, Rapin N, Miller M, Griebel P, Zhou Y, Munster V, Misra V. Generation and Characterization of Eptesicus fuscus (Big brown bat) kidney cell lines immortalized using the Myotis polyomavirus large T-antigen. J Virol Methods 2016; 237:166-173. [PMID: 27639955 PMCID: PMC7113758 DOI: 10.1016/j.jviromet.2016.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022]
Abstract
Eptesicus fuscus kidney cells immortalized using Myotis polyomavirus T-antigen. E. fuscus interferon competent kidney cell line supports the growth of vesicular stomatitis virus, porcine epidemic diarrhea virus, herpes simplex virus and Middle-East respiratory syndrome coronavirus. All cell lines exhibit a marker for fibroblasts (vimentin), some also exhibit an epithelial marker (cytokeratin).
It is speculated that bats are important reservoir hosts for numerous viruses, with 27 viral families reportedly detected in bats. Majority of these viruses have not been isolated and there is little information regarding their biology in bats. Establishing a well-characterized bat cell line supporting the replication of bat-borne viruses would facilitate the analysis of virus-host interactions in an in vitro model. Currently, few bat cell lines have been developed and only Tb1-Lu, derived from Tadarida brasiliensis is commercially available. Here we describe a method to establish and immortalize big brown bat (Eptesicus fuscus) kidney (Efk3) cells using the Myotis polyomavirus T-antigen. Subclones of this cell line expressed both epithelial and fibroblast markers to varying extents. Cell clones expressed interferon beta in response to poly(I:C) stimulation and supported the replication of four different viruses, namely, vesicular stomatitis virus (VSV), porcine epidemic diarrhea coronavirus (PED-CoV), Middle-East respiratory syndrome coronavirus (MERS-CoV) and herpes simplex virus (HSV). To our knowledge, this is the first bat cell line from a northern latitude insectivorous bat developed using a novel technology. The cell line has the potential to be used for isolation of bat viruses and for studying virus-bat interactions in culture.
Collapse
Affiliation(s)
- Arinjay Banerjee
- Department of Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Noreen Rapin
- Department of Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Megan Miller
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Philip Griebel
- Vaccine and Infectious Disease Organization - International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yan Zhou
- Vaccine and Infectious Disease Organization - International Vaccine Center (VIDO-InterVac), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, USA
| | - Vikram Misra
- Department of Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
6
|
Lin Y, Xie X, Zhao Y, Kalhoro DH, Lu C, Liu Y. Enhanced replication of avian-origin H3N2 canine influenza virus in eggs, cell cultures and mice by a two-amino acid insertion in neuraminidase stalk. Vet Res 2016; 47:53. [PMID: 27160077 PMCID: PMC4862097 DOI: 10.1186/s13567-016-0337-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/14/2016] [Indexed: 02/06/2023] Open
Abstract
Canine influenza virus (CIV) is a newly identified, highly contagious respiratory pathogen in dogs. Recent studies indicate that avian-origin H3N2 CIV are circulating in Chinese dogs. To investigate the effects of a two-amino acid (2-aa) insertion naturally occurring at the distal end of the neuraminidase (NA) stalk found in Chinese isolates since 2010 on virus replication and virulence, we rescued the CIV strain, A/canine/Jiangsu/06/2011(H3N2) and its NA mutant without the 2-aa insertion using reverse genetics. The NA stalk length affected virus growth in cell culture. Compared to the short stalk strain (without 2-aa insertion), the long stalk strain (with 2-aa insertion) exhibited higher peak titers and greater yields in Madin-Darby canine kidney (MDCK) cells, chicken embryo fibroblasts and canine bronchiolar epithelial cells, as well as much larger plaques in MDCK cell monolayers. Furthermore, mice inoculated with the long stalk strain showed more severe pathologic damage in lung and higher proportion of detectable viral RNA in tissues. The long stalk strain induced local IFN-γ production with faster kinetics and higher levels in mice. However, in chickens, the two viral strains showed no significant difference with nearly the same proportion of detectable viral RNA loads in tissues. These observations suggest that the 2-aa insertion in the NA stalk acquired by avian-origin H3N2 CIV helps to enhance viral replication and is likely a result of adaptive evolution in canine hosts.
Collapse
Affiliation(s)
- Yan Lin
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xing Xie
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanbing Zhao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | | | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongjie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|