1
|
Basardeh E, Piri-Gavgani S, Moradi HR, Azizi M, Mirzabeigi P, Nazari F, Ghanei M, Mahboudi F, Rahimi-Jamnani F. Anti-Acinetobacter Baumannii single-chain variable fragments provide therapeutic efficacy in an immunocompromised mouse pneumonia model. BMC Microbiol 2024; 24:55. [PMID: 38341536 PMCID: PMC10858608 DOI: 10.1186/s12866-023-03080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 10/22/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND The emergence of carbapenem-resistant and extensively drug-resistant (XDR) Acinetobacter baumannii as well as inadequate effective antibiotics calls for an urgent effort to find new antibacterial agents. The therapeutic efficacy of two human scFvs, EB211 and EB279, showing growth inhibitory activity against A. baumannii in vitro, was investigated in immunocompromised mice with A. baumannii pneumonia. RESULTS The data revealed that infected mice treated with EB211, EB279, and a combination of the two scFvs showed better survival, reduced bacterial load in the lungs, and no marked pathological abnormalities in the kidneys, liver, and lungs when compared to the control groups receiving normal saline or an irrelevant scFv. CONCLUSIONS The results from this study suggest that the scFvs with direct growth inhibitory activity could offer promising results in the treatment of pneumonia caused by XDR A. baumannii.
Collapse
Affiliation(s)
- Eilnaz Basardeh
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Somayeh Piri-Gavgani
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Reza Moradi
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Parastoo Mirzabeigi
- Department of Clinical Pharmacy and Pharmacoeconomics, Faculty of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Nazari
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Rahimi-Jamnani
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Phage Display-Derived Peptides and Antibodies for Bacterial Infectious Diseases Therapy and Diagnosis. Molecules 2023; 28:molecules28062621. [PMID: 36985593 PMCID: PMC10052323 DOI: 10.3390/molecules28062621] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023] Open
Abstract
The emergence of antibiotic-resistant-bacteria is a serious public health threat, which prompts us to speed up the discovery of novel antibacterial agents. Phage display technology has great potential to screen peptides or antibodies with high binding capacities for a wide range of targets. This property is significant in the rapid search for new antibacterial agents for the control of bacterial resistance. In this paper, we not only summarized the recent progress of phage display for the discovery of novel therapeutic agents, identification of action sites of bacterial target proteins, and rapid detection of different pathogens, but also discussed several problems of this technology that must be solved. Breakthrough in these problems may further promote the development and application of phage display technology in the biomedical field in the future.
Collapse
|
3
|
Exploring the Action Mechanism of the Active Ingredient of Quercetin in Ligustrum lucidum on the Mouse Mastitis Model Based on Network Pharmacology and Molecular Biology Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4236222. [PMID: 35722145 PMCID: PMC9205729 DOI: 10.1155/2022/4236222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/26/2022] [Indexed: 11/17/2022]
Abstract
Aim The aim of this study is to explore the mechanism of action of quercetin, the main active anti-inflammatory component of Ligustrum lucidum, in the prevention and treatment of mastitis. Methods Prediction of the main active ingredients and key anti-inflammatory targets of Ligustrum lucidum using a network pharmacology platform and molecular biology validation of the results. Observation of histopathological changes in the mouse mammary gland by hematoxylin-eosin staining(H&E) method, quantitative real-time PCR(qPCR), and Western blot (WB) to detect the expression levels of relevant inflammatory factors mRNA and protein. Results A total of 7 active ingredients and 42 key targets were obtained from the network pharmacological analysis of Ligustrum lucidum, with quercetin as the main core ingredient and tumor necrosis factor(TNF), serine threonine protein kinase1(AKT1), and interleukin6(IL6) as the core targets; H&E results showed that pathological changes were reduced to different degrees in the dose group compared to the model group. The qPCR results showed that the relative expression of TNF and IL6 mRNA in the high dose group on day 3 and the high and medium dose groups on day 7 were not significantly different compared with the blank group (P > 0.05), and the difference between the dose groups on day 5 was significant (P < 0.05). WB results showed that the difference in nuclear factor kappa-B(NF-κB) protein expression in the medium and low dose groups on day 7 was significant compared with the blank group (P < 0.05), the difference in 5 and 7 days, significant differences in AKT1 protein expression between the middle and low dose groups (P < 0.05), nonsignificant differences in the TNF protein expression between the high dose groups on day 7 (P > 0.05), and significant differences in the IL6 protein expression between the middle and low dose groups on days 3 and 7 (P < 0.05). Conclusion Quercetin, the main active ingredient of Ligustrum lucidum, may act in the prevention and treatment of mastitis by inhibiting the expression of inflammatory factors in phosphoinositol 3-kinase(PI3K)-AKT and NF-κB signaling pathways and showa a significant dose-dependent effect. This study provides theoretical basis and clues for the control of mastitis in dairy cows.
Collapse
|
4
|
Wang F, Wang M, Zhang L, Cheng M, Li M, Zhu J. Generation and functional analysis of single chain variable fragments (scFvs) targeting the nucleocapsid protein of Porcine epidemic diarrhea virus. Appl Microbiol Biotechnol 2022; 106:995-1009. [PMID: 35024918 PMCID: PMC8755980 DOI: 10.1007/s00253-021-11722-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 11/25/2022]
Abstract
Abstract Porcine epidemic diarrhea virus (PEDV) is the causative agent of porcine epidemic diarrhea, which can cause death in suckling piglets. Vaccines confer only partial protection against new mutant strains, whereas antibodies targeting virus-encoded proteins may be effective prophylactics. In this study, we constructed a recombinant single chain variable fragment (scFv) library from the spleens of two pigs immunized with a recombinant PEDV nucleocapsid (N) protein. Among the positive clones directed against PEDV N protein isolated from the library, four scFvs that showed higher affinity for N were functionally analyzed. These scFvs specifically bound to the PEDV N protein, but not to the transmissible gastroenteritis virus (TGEV) N protein. Their framework regions were highly conserved, whereas their complementarity-determining regions displayed clear diversity. An immunofluorescence assay showed the co-localization of the four scFvs with PEDV N protein in cells. They significantly suppressed PEDV replication, detected with reverse transcription (RT)-quantitative PCR (qPCR; P < 0.01). Two of them significantly reduced the viral titer at 48 hpi and 72 hpi (P < 0.05). In addition, they observably suppressed the production of viral protein at 72 hpi. The expression of interferons, interferon regulatory factor 3 (IRF3), and IRF7 was assessed with RT-qPCR, which indicated that PEDV dramatically suppressed the transcription of interferon-λ1 and IRF7 and that the scFvs significantly upregulated their expression (P < 0.05). These findings facilitated the investigation of the mechanism by which PEDV evaded the host immune response and suggested that these porcine scFvs were potential candidate agents for the prevention and treatment of porcine diarrhea caused by PEDV. Key points • Four scFvs targeting PEDV N protein were generated from porcine spleens • These scFvs co-localized with PEDV N protein and suppressed PEDV replication • These scFvs significantly upregulated IFN-λ1 expression Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11722-z.
Collapse
Affiliation(s)
- Fengqing Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Man Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lei Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Manling Cheng
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mei Li
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jianguo Zhu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
5
|
Single-Chain Fragment Variables Targeting Leukocidin ED Can Alleviate the Inflammation of Staphylococcus aureus-Induced Mastitis in Mice. Int J Mol Sci 2021; 23:ijms23010334. [PMID: 35008761 PMCID: PMC8745144 DOI: 10.3390/ijms23010334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus aureus is a vital bovine mastitis pathogen causing huge economic losses to the dairy industry worldwide. In our previous studies, leukotoxin ED (LukED) was detected in most S. aureus strains isolated from bovine mastitis. Here, four single-chain fragment variables (scFvs) (ZL8 and ZL42 targeting LukE, ZL22 and ZL23 targeting LukD) were obtained using purified LukE and LukD proteins as the antigens after five rounds of bio-panning. The complementarity-determining region 3 (CDR3) of the VH domain of these scFvs exhibited significant diversities. In vitro, the scFvs significantly decreased LukED-induced cell killing by inhibiting the binding of LukED to chemokine receptors (CCR5 and CXCR2) and reduced the death rates of bovine neutrophils and MAC-T cells caused by LukED and S. aureus (p < 0.05). In an S. aureus-induced mouse mastitis model, histopathology and MPO results revealed that scFvs ameliorated the histopathological damages and reduced the infiltration of inflammatory cells (p < 0.05). The ELISA and qPCR assays showed that scFvs reduced the transcription and expression levels of Tumor Necrosis Factor-alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-8 and IL-18 (p < 0.05). The overall results demonstrated the protective anti-inflammatory effect of scFvs in vitro and in vivo, enlightening the potential role of scFvs in the prevention and treatment of S. aureus-induced mastitis.
Collapse
|
6
|
Anti- Staphylococcus aureus Single-Chain Fragment Variables Play a Protective Anti-Inflammatory Role In Vitro and In Vivo. Vaccines (Basel) 2021; 9:vaccines9111300. [PMID: 34835231 PMCID: PMC8618225 DOI: 10.3390/vaccines9111300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is a causative agent of bovine mastitis, capable of causing significant economic losses to the dairy industry worldwide. This study focuses on obtaining single-chain fragment variables (scFvs) against the virulence factors of S. aureus and evaluates the protective effect of scFvs on bovine mammary epithelial (MAC-T) cells and mice mammary gland tissues infected by S. aureus. After five rounds of bio-panning, four scFvs targeting four virulence factors of S. aureus were obtained. The complementarity-determining regions (CDRs) of these scFvs exhibited significant diversities, especially CDR3 of the VH domain. In vitro, each of scFvs was capable of inhibiting S. aureus growth and reducing the damage of MAC-T cells infected by S. aureus. Preincubation of MAC-T cells with scFvs could significantly attenuate the effect of apoptosis and necrosis compared with the negative control group. In vivo, the qPCR and ELISA results demonstrated that scFvs reduced the transcription and expression of Tumor Necrosis Factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-8, and IL-18. Histopathology and myeloperoxidase (MPO) results showed that scFvs ameliorated the histopathological damages and reduced the inflammatory cells infiltration. The overall results demonstrated the positive anti-inflammatory effect of scFvs, revealing the potential role of scFvs in the prevention and treatment of S. aureus infections.
Collapse
|
7
|
Roth KDR, Wenzel EV, Ruschig M, Steinke S, Langreder N, Heine PA, Schneider KT, Ballmann R, Fühner V, Kuhn P, Schirrmann T, Frenzel A, Dübel S, Schubert M, Moreira GMSG, Bertoglio F, Russo G, Hust M. Developing Recombinant Antibodies by Phage Display Against Infectious Diseases and Toxins for Diagnostics and Therapy. Front Cell Infect Microbiol 2021; 11:697876. [PMID: 34307196 PMCID: PMC8294040 DOI: 10.3389/fcimb.2021.697876] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/21/2021] [Indexed: 12/30/2022] Open
Abstract
Antibodies are essential molecules for diagnosis and treatment of diseases caused by pathogens and their toxins. Antibodies were integrated in our medical repertoire against infectious diseases more than hundred years ago by using animal sera to treat tetanus and diphtheria. In these days, most developed therapeutic antibodies target cancer or autoimmune diseases. The COVID-19 pandemic was a reminder about the importance of antibodies for therapy against infectious diseases. While monoclonal antibodies could be generated by hybridoma technology since the 70ies of the former century, nowadays antibody phage display, among other display technologies, is robustly established to discover new human monoclonal antibodies. Phage display is an in vitro technology which confers the potential for generating antibodies from universal libraries against any conceivable molecule of sufficient size and omits the limitations of the immune systems. If convalescent patients or immunized/infected animals are available, it is possible to construct immune phage display libraries to select in vivo affinity-matured antibodies. A further advantage is the availability of the DNA sequence encoding the phage displayed antibody fragment, which is packaged in the phage particles. Therefore, the selected antibody fragments can be rapidly further engineered in any needed antibody format according to the requirements of the final application. In this review, we present an overview of phage display derived recombinant antibodies against bacterial, viral and eukaryotic pathogens, as well as microbial toxins, intended for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Esther Veronika Wenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Maximilian Ruschig
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kai-Thomas Schneider
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | | | | | - Stefan Dübel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,Abcalis GmbH, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Braunschweig, Germany.,YUMAB GmbH, Braunschweig, Germany
| |
Collapse
|
8
|
Soltanmohammadi B, Piri‐Gavgani S, Basardeh E, Ghanei M, Azizi M, Khaksar Z, Sharifzadeh Z, Badmasti F, Soezi M, Fateh A, Azimi P, Siadat SD, Shooraj F, Bouzari S, Omrani MD, Rahimi‐Jamnani F. Bactericidal fully human single-chain fragment variable antibodies protect mice against methicillin-resistant Staphylococcus aureus bacteraemia. Clin Transl Immunology 2021; 10:e1302. [PMID: 34221401 PMCID: PMC8240403 DOI: 10.1002/cti2.1302] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/01/2021] [Accepted: 05/30/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES The increasing prevalence of antibiotic-resistant Staphylococcus aureus, besides the inadequate numbers of effective antibiotics, emphasises the need to find new therapeutic agents against this lethal pathogen. METHODS In this study, to obtain antibody fragments against S. aureus, a human single-chain fragment variable (scFv) library was enriched against living methicillin-resistant S. aureus (MRSA) cells, grown in three different conditions, that is human peripheral blood mononuclear cells with plasma, whole blood and biofilm. The antibacterial activity of scFvs was evaluated by the growth inhibition assay in vitro. Furthermore, the therapeutic efficacy of anti-S. aureus scFvs was appraised in a mouse model of bacteraemia. RESULTS Three scFv antibodies, that is MEH63, MEH158 and MEH183, with unique sequences, were found, which exhibited significant binding to S. aureus and reduced the viability of S. aureus in in vitro inhibition assays. Based on the results, MEH63, MEH158 and MEH183, in addition to their combination, could prolong the survival rate, reduce the bacterial burden in the blood and prevent inflammation and tissue destruction in the kidneys and spleen of mice with MRSA bacteraemia compared with the vehicle group (treated with normal saline). CONCLUSION The combination therapy with anti-S. aureus scFvs and conventional antibiotics might shed light on the treatment of patients with S. aureus infections.
Collapse
Affiliation(s)
- Behnoush Soltanmohammadi
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Somayeh Piri‐Gavgani
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Eilnaz Basardeh
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Mostafa Ghanei
- Chemical Injuries Research CenterSystems Biology and Poisoning InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Masoumeh Azizi
- Molecular Medicine Department, Biotechnology Research CenterPasteur Institute of IranTehranIran
| | - Zabihollah Khaksar
- Department of Basic SciencesSchool of Veterinary MedicineShiraz UniversityShirazIran
| | | | - Farzad Badmasti
- Department of BacteriologyPasteur Institute of IranTehranIran
| | - Mahdieh Soezi
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Parisa Azimi
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Fahimeh Shooraj
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| | - Saeid Bouzari
- Molecular Biology DepartmentPasteur Institute of IranTehranIran
| | - Mir Davood Omrani
- Department of Medical GeneticsSchool of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Fatemeh Rahimi‐Jamnani
- Department of Mycobacteriology and Pulmonary ResearchPasteur Institute of IranTehranIran
- Microbiology Research CenterPasteur Institute of IranTehranIran
| |
Collapse
|
9
|
Causes, types, etiological agents, prevalence, diagnosis, treatment, prevention, effects on human health and future aspects of bovine mastitis. Anim Health Res Rev 2020; 21:36-49. [PMID: 32051050 DOI: 10.1017/s1466252319000094] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mastitis is among the most common and challenging diseases of dairy animals. It is an inflammation of udder tissues due to physical damage, chemical irritation, or infection caused by certain pathogens. Bovine mastitis has been known for ages, but its complex etiology and multi-factorial nature make it difficult to control. Mastitis may have a negative impact on human health by inducing antibiotic-resistant pathogens that may spread, which is threatening. Researchers are continuously struggling to devise suitable methods for mastitis control. Management strategies are mainly focused on disease prevention by farm management which includes proper hygiene, trained staff to monitor minor changes in the udder or milk, and better diagnostic and treatment methods. New technologies which have the potential to unravel this complicated disease include improved diagnostic tools, based on advanced genomics or proteomics, prevention, based on vaccines and immune modulators, and metabolic products of probiotics such as bacteriocins and gene therapy.
Collapse
|
10
|
Zhang F, Chen Y, Yang L, Zhu J. Construction and characterization of porcine single-chain fragment variable antibodies that neutralize transmissible gastroenteritis virus in vitro. Arch Virol 2019; 164:983-994. [PMID: 30729994 PMCID: PMC7087081 DOI: 10.1007/s00705-019-04156-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 01/02/2019] [Indexed: 11/17/2022]
Abstract
Transmissible gastroenteritis virus (TGEV) infection causes severe diarrhea in piglets and imposes a significant economic burden on pig farms. Single-chain fragment variable (scFv) antibodies effectively inhibit virus infection and could be a potential therapeutic reagent for preventing disease. In this study, a recombinant scFv antibody phage display library was constructed from peripheral blood lymphocytes of piglets infected with TGEV. The library was screened with four rounds of biopanning using purified TGEV antigen, and scFv antibodies that bound to TGEV were obtained. The scFv gene was subcloned into the pET-28a(+), and the constituted plasmid was introduced into Escherichia coli BL21 (DE3) for protein expression. All three scFv clones identified had neutralizing activity against TGEV. An immunofluorescence assay and western blot analysis demonstrated that two scFv antibodies reacted with the spike protein of TGEV. These results indicate that scFv antibodies provide protection against viral infection in vitro and may be a therapeutic candidate for both prevention and treatment of TGEV infection in swine.
Collapse
Affiliation(s)
- Fanqing Zhang
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, People's Republic of China
| | - Yuxue Chen
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, People's Republic of China.,Shanghai Frontan Animal Health Co., Ltd., Shanghai, 201502, People's Republic of China
| | - Liang Yang
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, People's Republic of China.,Shanghai Frontan Animal Health Co., Ltd., Shanghai, 201502, People's Republic of China
| | - Jianguo Zhu
- Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, School of Agriculture and Biology, Shanghai JiaoTong University, Shanghai, 200240, People's Republic of China. .,School of Agriculture and Biology, Shanghai Key Lab of Veterinary Biology, Shanghai JiaoTong university, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
11
|
Wang M, Wang T, Guan Y, Wang F, Zhu J. The preparation and therapeutic roles of scFv-Fc antibody against Staphylococcus aureus infection to control bovine mastitis. Appl Microbiol Biotechnol 2019; 103:1703-1712. [PMID: 30607490 DOI: 10.1007/s00253-018-9548-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 01/30/2023]
Abstract
Staphylococcus aureus-induced bovine mastitis causes significant losses to the dairy industry and available vaccines do not confer adequate protection. As a more attractive alternative, we propose the use of antibody (Ab) therapy. In our previous study, we constructed a bovine single-chain variable fragment (scFv) Ab phage display and successfully obtained scFvs that bound to S. aureus antigens with high affinity. Here, we describe a novel Ab against S. aureus (scFv-Fc Ab). To construct the scFv-Fc Ab, the scFv Ab was genetically fused to the Fc fragment of a bovine IgG1 Ab. Western blot analysis showed that the bovine scFvs-Fc Abs were successfully expressed with horseradish peroxidase-conjugated goat-anti-bovine IgG (Fc) Ab in Escherichia coli cells. The purified bovine scFvs-Fc Abs had good binding activity to S. aureus and effectively inhibited the bacterial growth in culture medium and bovine scFvs-Fc Abs enhanced phagocytosis of S. aureus by neutrophils isolated from peripheral blood in a dose-dependent manner. In the experiment of bovine scFvs-Fc Abs for the treatment of S. aureus-induced bovine mastitis, the total effective percentage reached 82% (9/11). These novel bovine scFvs-Fc Abs may be useful as therapeutic candidates for the prevention and treatment of S. aureus-induced bovine mastitis.
Collapse
Affiliation(s)
- Man Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tingting Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yu Guan
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fengqing Wang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jianguo Zhu
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai JiaoTong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|