1
|
Hocq R, Sauer M. An artificial coculture fermentation system for industrial propanol production. FEMS MICROBES 2022. [DOI: 10.1093/femsmc/xtac013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
ABSTRACT
Converting plant biomass into biofuels and biochemicals via microbial fermentation has received considerable attention in the quest for finding renewable energies and materials. Most approaches have so far relied on cultivating a single microbial strain, tailored for a specific purpose. However, this contrasts to how nature works, where microbial communities rather than single species perform all tasks. In artificial coculture systems, metabolic synergies are rationally designed by carefully selecting and simultaneously growing different microbes, taking advantage of the broader metabolic space offered by the use of multiple organisms.
1-propanol and 2-propanol, as biofuels and precursors for propylene, are interesting target molecules to valorize plant biomass. Some solventogenic Clostridia can naturally produce 2-propanol in the so-called Isopropanol-Butanol-Ethanol (IBE) fermentation, by coupling 2-propanol synthesis to acetate and butyrate reduction into ethanol and 1-butanol.
In this work, we hypothesized propanoate would be converted into 1-propanol by the IBE metabolism, while driving at the same time 2-propanol synthesis. We first verified this hypothesis and chose two propionic acid bacteria (PAB) strains as propanoate producers. While consecutive PAB and IBE fermentations only resulted in low propanol titers, coculturing Propionibacterium freudenreichii and Clostridium beijerinckii at various inoculation ratios yielded much higher solvent concentrations, with as much as 21 g/L of solvents (58% increase compared to C. beijerinckii monoculture) and 12 g/L of propanol (98% increase). Taken together, our results underline how artificial cocultures can be used to foster metabolic synergies, increasing fermentative performances and orienting the carbon flow towards a desired product.
Collapse
Affiliation(s)
- Rémi Hocq
- CD-Laboratory for Biotechnology of Glycerol, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
- Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael Sauer
- CD-Laboratory for Biotechnology of Glycerol, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
- Institute of Microbiology and Microbial Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
2
|
Hospet R, Thangadurai D, Cruz-Martins N, Sangeetha J, Anu Appaiah KA, Chowdhury ZZ, Bedi N, Soytong K, Al Tawahaj ARM, Jabeen S, Tallur MM. Genome shuffling for phenotypic improvement of industrial strains through recursive protoplast fusion technology. Crit Rev Food Sci Nutr 2021:1-10. [PMID: 34592865 DOI: 10.1080/10408398.2021.1983763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Strains' improvement technology plays an essential role in enhancing the quality of industrial strains. Several traditional methods and modern techniques have been used to further improve strain engineering programs. The advances stated in strain engineering and the increasing demand for microbial metabolites leads to the invention of the genome shuffling technique, which ensures a specific phenotype improvement through inducing mutation and recursive protoplast fusion. In such technique, the selection of multi-parental strains with distinct phenotypic traits is crucial. In addition, as this evolutionary strain improvement technique involves combinative approaches, it does not require any gene sequence data for genome alteration and, therefore, strains developed by this elite technique will not be considered as genetically modified organisms. In this review, the different stages involved in the genome shuffling technique and its wide applications in various phenotype improvements will be addressed. Taken together, data discussed here highlight that the use of genome shuffling for strain improvement will be a plus for solving complex phenotypic traits and in promoting the rapid development of other industrially important strains.
Collapse
Affiliation(s)
| | | | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal.,Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Gandra PRD, Portugal
| | - Jeyabalan Sangeetha
- Department of Environmental Science, Central University of Kerala, Kasaragod, Kerala, India
| | - Konerira Aiyappa Anu Appaiah
- Department of Microbiology and Fermentation Technology, Central Food Technological Research Institute (CSIR), Mysore, Karnataka, India
| | - Zaira Zaman Chowdhury
- Nanotechnology and Catalysis Research Center (NANOCAT), Institute of Advanced Studies (IAS), University of Malaya, Kuala Lumpur, Malaysia
| | - Namita Bedi
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Kasem Soytong
- Department of Plant Production Technology, King Mongkut's Institute of Technology Ladkrabang (KMITL), Ladkrabang, Bangkok, Thailand
| | | | - Shoukat Jabeen
- Department of Botany, Karnatak University, Dharwad, Karnataka, India
| | | |
Collapse
|
3
|
Wawro A. Improvement of Acetic Acid Tolerance in Saccharomyces cerevisiae by Novel Genome Shuffling. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Wang L, Li B, Wang SP, Xia ZY, Gou M, Tang YQ. Improving multiple stress-tolerance of a flocculating industrial Saccharomyces cerevisiae strain by random mutagenesis and hybridization. Process Biochem 2021. [DOI: 10.1016/j.procbio.2020.12.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Gao X, Jing X, Liu X, Lindblad P. Biotechnological Production of the Sunscreen Pigment Scytonemin in Cyanobacteria: Progress and Strategy. Mar Drugs 2021; 19:129. [PMID: 33673485 PMCID: PMC7997468 DOI: 10.3390/md19030129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
Scytonemin is a promising UV-screen and antioxidant small molecule with commercial value in cosmetics and medicine. It is solely biosynthesized in some cyanobacteria. Recently, its biosynthesis mechanism has been elucidated in the model cyanobacterium Nostoc punctiforme PCC 73102. The direct precursors for scytonemin biosynthesis are tryptophan and p-hydroxyphenylpyruvate, which are generated through the shikimate and aromatic amino acid biosynthesis pathway. More upstream substrates are the central carbon metabolism intermediates phosphoenolpyruvate and erythrose-4-phosphate. Thus, it is a long route to synthesize scytonemin from the fixed atmospheric CO2 in cyanobacteria. Metabolic engineering has risen as an important biotechnological means for achieving sustainable high-efficiency and high-yield target metabolites. In this review, we summarized the biochemical properties of this molecule, its biosynthetic gene clusters and transcriptional regulations, the associated carbon flux-driving progresses, and the host selection and biosynthetic strategies, with the aim to expand our understanding on engineering suitable cyanobacteria for cost-effective production of scytonemin in future practices.
Collapse
Affiliation(s)
- Xiang Gao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China;
| | - Xin Jing
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China;
| | - Xufeng Liu
- Microbial Chemistry, Department of Chemistry-Ångstrom, Uppsala University, Box 523, 751 20 Uppsala, Sweden;
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångstrom, Uppsala University, Box 523, 751 20 Uppsala, Sweden;
| |
Collapse
|
6
|
Schalck T, den Bergh BV, Michiels J. Increasing Solvent Tolerance to Improve Microbial Production of Alcohols, Terpenoids and Aromatics. Microorganisms 2021; 9:249. [PMID: 33530454 PMCID: PMC7912173 DOI: 10.3390/microorganisms9020249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Fuels and polymer precursors are widely used in daily life and in many industrial processes. Although these compounds are mainly derived from petrol, bacteria and yeast can produce them in an environment-friendly way. However, these molecules exhibit toxic solvent properties and reduce cell viability of the microbial producer which inevitably impedes high product titers. Hence, studying how product accumulation affects microbes and understanding how microbial adaptive responses counteract these harmful defects helps to maximize yields. Here, we specifically focus on the mode of toxicity of industry-relevant alcohols, terpenoids and aromatics and the associated stress-response mechanisms, encountered in several relevant bacterial and yeast producers. In practice, integrating heterologous defense mechanisms, overexpressing native stress responses or triggering multiple protection pathways by modifying the transcription machinery or small RNAs (sRNAs) are suitable strategies to improve solvent tolerance. Therefore, tolerance engineering, in combination with metabolic pathway optimization, shows high potential in developing superior microbial producers.
Collapse
Affiliation(s)
- Thomas Schalck
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Bram Van den Bergh
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| | - Jan Michiels
- VIB Center for Microbiology, Flanders Institute for Biotechnology, B-3001 Leuven, Belgium; (T.S.); (B.V.d.B.)
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, B-3001 Leuven, Belgium
| |
Collapse
|
7
|
How to outwit nature: Omics insight into butanol tolerance. Biotechnol Adv 2020; 46:107658. [PMID: 33220435 DOI: 10.1016/j.biotechadv.2020.107658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
The energy crisis, depletion of oil reserves, and global climate changes are pressing problems of developed societies. One possibility to counteract that is microbial production of butanol, a promising new fuel and alternative to many petrochemical reagents. However, the high butanol toxicity to all known microbial species is the main obstacle to its industrial implementation. The present state of the art review aims to expound the recent advances in modern omics approaches to resolving this insurmountable to date problem of low butanol tolerance. Genomics, transcriptomics, and proteomics show that butanol tolerance is a complex phenomenon affecting multiple genes and their expression. Efflux pumps, stress and multidrug response, membrane transport, and redox-related genes are indicated as being most important during butanol challenge, in addition to fine-tuning of global regulators of transcription (Spo0A, GntR), which may further improve tolerance. Lipidomics shows that the alterations in membrane composition (saturated lipids and plasmalogen increase) are very much species-specific and butanol-related. Glycomics discloses the pleiotropic effect of CcpA, the role of alternative sugar transport, and the production of exopolysaccharides as alternative routes to overcoming butanol stress. Unfortunately, the strain that simultaneously syntheses and tolerates butanol in concentrations that allow its commercialization has not yet been discovered or produced. Omics insight will allow the purposeful increase of butanol tolerance in natural and engineered producers and the effective heterologous expression of synthetic butanol pathways in strains hereditary butanol-resistant up to 3.2 - 4.9% (w/v). Future breakthrough can be achieved by a detailed study of the membrane proteome, of which 21% are proteins with unknown functions.
Collapse
|
8
|
Diallo M, Kint N, Monot M, Collas F, Martin-Verstraete I, van der Oost J, Kengen SWM, López-Contreras AM. Transcriptomic and Phenotypic Analysis of a spoIIE Mutant in Clostridium beijerinckii. Front Microbiol 2020; 11:556064. [PMID: 33042064 PMCID: PMC7522474 DOI: 10.3389/fmicb.2020.556064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/20/2020] [Indexed: 11/26/2022] Open
Abstract
SpoIIE is a phosphatase involved in the activation of the first sigma factor of the forespore, σ F , during sporulation. A ΔspoIIE mutant of Clostridium beijerinckii NCIMB 8052, previously generated by CRISPR-Cas9, did not sporulate but still produced granulose and solvents. Microscopy analysis also showed that the cells of the ΔspoIIE mutant are elongated with the presence of multiple septa. This observation suggests that in C. beijerinckii, SpoIIE is necessary for the completion of the sporulation process, as seen in Bacillus and Clostridium acetobutylicum. Moreover, when grown in reactors, the spoIIE mutant produced higher levels of solvents than the wild type strain. The impact of the spoIIE inactivation on gene transcription was assessed by comparative transcriptome analysis at three time points (4 h, 11 h and 23 h). Approximately 5% of the genes were differentially expressed in the mutant compared to the wild type strain at all time points. Out of those only 12% were known sporulation genes. As expected, the genes belonging to the regulon of the sporulation specific transcription factors (σ F , σ E , σ G , σ K ) were strongly down-regulated in the mutant. Inactivation of spoIIE also caused differential expression of genes involved in various cell processes at each time point. Moreover, at 23 h, genes involved in butanol formation and tolerance, as well as in cell motility, were up-regulated in the mutant. In contrast, several genes involved in cell wall composition, oxidative stress and amino acid transport were down-regulated. These results indicate an intricate interdependence of sporulation and stationary phase cellular events in C. beijerinckii.
Collapse
Affiliation(s)
- Mamou Diallo
- Wageningen Food and Biobased Research, Wageningen, Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Nicolas Kint
- Laboratoire Pathogènese des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Marc Monot
- Biomics platform, C2RT, Institut Pasteur, Paris, France
| | - Florent Collas
- Wageningen Food and Biobased Research, Wageningen, Netherlands
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogènese des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
- Institut Universitaire de France, Paris, France
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | | |
Collapse
|
9
|
Guo S, Liu R, Wang W, Hu H, Li Z, Zhang X. Designing an Artificial Pathway for the Biosynthesis of a Novel Phenazine N-Oxide in Pseudomonas chlororaphis HT66. ACS Synth Biol 2020; 9:883-892. [PMID: 32197042 DOI: 10.1021/acssynbio.9b00515] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aromatic N-oxides are valuable due to their versatile chemical, pharmaceutical, and agricultural applications. Natural phenazine N-oxides possess potent biological activities and can be applied in many ways; however, few N-oxides have been identified. Herein, we developed a microbial system to synthesize phenazine N-oxides via an artificial pathway. First, the N-monooxygenase NaphzNO1 was predicted and screened in Nocardiopsis sp. 13-12-13 through a product comparison and gene sequencing. Subsequently, according to similarities in the chemical structures of substrates, an artificial pathway for the synthesis of a phenazine N-oxide in Pseudomonas chlororaphis HT66 was designed and established using three heterologous enzymes, a monooxygenase (PhzS) from P. aeruginosa PAO1, a monooxygenase (PhzO) from P. chlororaphis GP72, and the N-monooxygenase NaphzNO1. A novel phenazine derivative, 1-hydroxyphenazine N'10-oxide, was obtained in an engineered strain, P. chlororaphis HT66-SN. The phenazine N-monooxygenase NaphzNO1 was identified by metabolically engineering the phenazine-producing platform P. chlororaphis HT66. Moreover, the function of NaphzNO1, which can catalyze the conversion of 1-hydroxyphenazine but not that of 2-hydroxyphenazine, was confirmed in vitro. Additionally, 1-hydroxyphenazine N'10-oxide demonstrated substantial cytotoxic activity against two human cancer cell lines, MCF-7 and HT-29. Furthermore, the highest microbial production of 1-hydroxyphenazine N'10-oxide to date was achieved at 143.4 mg/L in the metabolically engineered strain P3-SN. These findings demonstrate that P. chlororaphis HT66 has the potential to be engineered as a platform for phenazine-modifying gene identification and derivative production. The present study also provides a promising alternative for the sustainable synthesis of aromatic N-oxides with unique chemical structures by N-monooxygenase.
Collapse
Affiliation(s)
- Shuqi Guo
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rongfeng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
10
|
Dos Santos Vieira CF, Maugeri Filho F, Maciel Filho R, Pinto Mariano A. Acetone-free biobutanol production: Past and recent advances in the Isopropanol-Butanol-Ethanol (IBE) fermentation. BIORESOURCE TECHNOLOGY 2019; 287:121425. [PMID: 31085056 DOI: 10.1016/j.biortech.2019.121425] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
Production of butanol for fuel via the conventional Acetone-Butanol-Ethanol fermentation has been considered economically risky because of a potential oversupply of acetone. Alternatively, acetone is converted into isopropanol by specific solventogenic Clostridium species in the Isopropanol-Butanol-Ethanol (IBE) fermentation. This route, although less efficient, has been gaining attention because IBE mixtures are a potential fuel. The present work is dedicated to reviewing past and recent advances in microorganisms, feedstock, and fermentation equipment for IBE production. In our analysis we demonstrate the importance of novel engineered IBE-producing Clostridium strains and cell retention systems to decrease the staggering number of fermentation tanks required by IBE plants equipped with conventional technology. We also summarize the recent progress on recovery techniques integrated with fermentation, especially gas stripping. In addition, we assessed ongoing pilot-plant efforts that have been enabling IBE production from woody feedstock.
Collapse
Affiliation(s)
- Carla Ferreira Dos Santos Vieira
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Francisco Maugeri Filho
- Bioprocess and Metabolic Engineering Laboratory (LEMeB), School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rubens Maciel Filho
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Adriano Pinto Mariano
- Laboratory of Optimization, Design, and Advanced Control - Fermentation Division (LOPCA-Ferm), School of Chemical Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
11
|
Adaptation and application of a two-plasmid inducible CRISPR-Cas9 system in Clostridium beijerinckii. Methods 2019; 172:51-60. [PMID: 31362039 DOI: 10.1016/j.ymeth.2019.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 11/22/2022] Open
Abstract
Recent developments in CRISPR technologies have opened new possibilities for improving genome editing tools dedicated to the Clostridium genus. In this study we adapted a two-plasmid tool based on this technology to enable scarless modification of the genome of two reference strains of Clostridium beijerinckii producing an Acetone/Butanol/Ethanol (ABE) or an Isopropanol/Butanol/Ethanol (IBE) mix of solvents. In the NCIMB 8052 ABE-producing strain, inactivation of the SpoIIE sporulation factor encoding gene resulted in sporulation-deficient mutants, and this phenotype was reverted by complementing the mutant strain with a functional spoIIE gene. Furthermore, the fungal cellulase-encoding celA gene was inserted into the C. beijerinckii NCIMB 8052 chromosome, resulting in mutants with endoglucanase activity. A similar two-plasmid approach was next used to edit the genome of the natural IBE-producing strain C. beijerinckii DSM 6423, which has never been genetically engineered before. Firstly, the catB gene conferring thiamphenicol resistance was deleted to make this strain compatible with our dual-plasmid editing system. As a proof of concept, our dual-plasmid system was then used in C. beijerinckii DSM 6423 ΔcatB to remove the endogenous pNF2 plasmid, which led to a sharp increase of transformation efficiencies.
Collapse
|
12
|
σ 54 (σ L) plays a central role in carbon metabolism in the industrially relevant Clostridium beijerinckii. Sci Rep 2019; 9:7228. [PMID: 31076628 PMCID: PMC6510779 DOI: 10.1038/s41598-019-43822-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/23/2019] [Indexed: 11/09/2022] Open
Abstract
The solventogenic C. beijerinckii DSM 6423, a microorganism that naturally produces isopropanol and butanol, was previously modified by random mutagenesis. In this work, one of the resulting mutants was characterized. This strain, selected with allyl alcohol and designated as the AA mutant, shows a dominant production of acids, a severely diminished butanol synthesis capacity, and produces acetone instead of isopropanol. Interestingly, this solvent-deficient strain was also found to have a limited consumption of two carbohydrates and to be still able to form spores, highlighting its particular phenotype. Sequencing of the AA mutant revealed point mutations in several genes including CIBE_0767 (sigL), which encodes the σ54 sigma factor. Complementation with wild-type sigL fully restored solvent production and sugar assimilation and RT-qPCR analyses revealed its transcriptional control of several genes related to solventogensis, demonstrating the central role of σ54 in C. beijerinckii DSM 6423. Comparative genomics analysis suggested that this function is conserved at the species level, and this hypothesis was further confirmed through the deletion of sigL in the model strain C. beijerinckii NCIMB 8052.
Collapse
|
13
|
Tian K, Li Y, Wang B, Wu H, Caiyin Q, Zhang Z, Qiao J. The genome and transcriptome of Lactococcus lactis ssp. lactis F44 and G423: Insights into adaptation to the acidic environment. J Dairy Sci 2018; 102:1044-1058. [PMID: 30594364 DOI: 10.3168/jds.2018-14882] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/27/2018] [Indexed: 12/13/2022]
Abstract
Nisin, as a common green (environmentally friendly), nontoxic antibacterial peptide secreted by Lactococcus lactis, is widely used to prevent the decomposition of meat and dairy products and maintains relatively high stability at low pH. However, the growth of Lc. lactis is frequently inhibited by high lactic acid concentrations produced during fermentation. This phenomenon has become a great challenge in enhancing the nisin yield for this strain. Here, the shuffled strain G423 that could survive on a solid plate at pH 3.7 was generated through protoplast fusion-mediated genome shuffling. The nisin titer of G423 peaked at 4,543 IU/mL, which was 59.9% higher than that of the same batch of the initial strain Lc. lactis F44. The whole genome comparisons between G423 and F44 indicated that 6 large fragments (86,725 bp) were inserted in G423 compared with that of Lc. lactis F44. Transcriptome data revealed that 4 novel noncoding transcripts, and the significantly upregulated genes were involved in multiple processes in G423. In particular, the expression of genes involved in cell wall and membrane biosynthesis was obviously perturbed under acidic stress. Quantitative real-time PCR analysis showed that the transcription of noncoding small RNA NC-1 increased by 2.35-fold at pH 3.0 compared with that of the control (pH 7.0). Overexpression assays indicated that small RNA NC-1 could significantly enhance the acid tolerance and nisin production of G423 and F44. Our work provided new insights into the sophisticated genetic mechanisms involved in Lc. lactis in an acidic environment, which might elucidate its potential application in food and dairy industries.
Collapse
Affiliation(s)
- Kairen Tian
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P.R. China
| | - Yanni Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P.R. China
| | - Binbin Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P.R. China
| | - Hao Wu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P.R. China
| | - Qinggele Caiyin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P.R. China
| | - Zhijun Zhang
- Forestry and Fruit Research Institute of Tianjin Academy of Agricultural Sciences, Tianjin 300072, P.R. China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjian 300072, P.R. China; SynBio Research Platform Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P.R. China.
| |
Collapse
|
14
|
Evolutionary engineering of industrial microorganisms-strategies and applications. Appl Microbiol Biotechnol 2018; 102:4615-4627. [DOI: 10.1007/s00253-018-8937-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
|
15
|
Current and Emerging Topical Antibacterials and Antiseptics: Agents, Action, and Resistance Patterns. Clin Microbiol Rev 2017; 30:827-860. [PMID: 28592405 DOI: 10.1128/cmr.00112-16] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bacterial skin infections represent some of the most common infectious diseases globally. Prevention and treatment of skin infections can involve application of a topical antimicrobial, which may be an antibiotic (such as mupirocin or fusidic acid) or an antiseptic (such as chlorhexidine or alcohol). However, there is limited evidence to support the widespread prophylactic or therapeutic use of topical agents. Challenges involved in the use of topical antimicrobials include increasing rates of bacterial resistance, local hypersensitivity reactions (particularly to older agents, such as bacitracin), and concerns about the indiscriminate use of antiseptics potentially coselecting for antibiotic resistance. We review the evidence for the major clinical uses of topical antibiotics and antiseptics. In addition, we review the mechanisms of action of common topical agents and define the clinical and molecular epidemiology of antimicrobial resistance in these agents. Moreover, we review the potential use of newer and emerging agents, such as retapamulin and ebselen, and discuss the role of antiseptic agents in preventing bacterial skin infections. A comprehensive understanding of the clinical efficacy and drivers of resistance to topical agents will inform the optimal use of these agents to preserve their activity in the future.
Collapse
|
16
|
Chae TU, Choi SY, Kim JW, Ko YS, Lee SY. Recent advances in systems metabolic engineering tools and strategies. Curr Opin Biotechnol 2017; 47:67-82. [DOI: 10.1016/j.copbio.2017.06.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/12/2017] [Indexed: 12/16/2022]
|
17
|
Tanaka Y, Kasahara K, Hirose Y, Morimoto Y, Izawa M, Ochi K. Enhancement of butanol production by sequential introduction of mutations conferring butanol tolerance and streptomycin resistance. J Biosci Bioeng 2017; 124:400-407. [PMID: 28566234 DOI: 10.1016/j.jbiosc.2017.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/01/2017] [Accepted: 05/06/2017] [Indexed: 12/19/2022]
Abstract
Ribosome engineering, originally applied to Streptomyces lividans, has been widely utilized for strain improvement, especially for the activation of bacterial secondary metabolism. This study assessed ribosome engineering technology to modulate primary metabolism, taking butanol production as a representative example. The introduction into Clostridium saccharoperbutylacetonicum of mutations conferring resistance to butanol (ButR) and of the str mutation (SmR; a mutation in the rpsL gene encoding ribosomal protein S12), conferring high-level resistance to streptomycin, increased butanol production 1.6-fold, to 16.5 g butanol/L. Real-time qPCR analysis demonstrated that the genes involved in butanol metabolism by C. saccharoperbutylacetonicum were activated at the transcriptional level in the drug-resistant mutants, providing a mechanism for the higher yields of butanol by the mutants. Moreover, the activity of enzymes butyraldehyde dehydrogenase (AdhE) and butanol dehydrogenases (BdhAB), the key enzymes involved in butanol synthesis, was both markedly increased in the ButR SmR mutant, reflecting the significant up-regulation of adhE and bdhA at transcriptional level in this mutant strain. These results demonstrate the efficacy of ribosome engineering for the production of not only secondary metabolites but of industrially important primary metabolites. The possible ways to overcome the reduced growth rate and/or fitness cost caused by the mutation were also discussed.
Collapse
Affiliation(s)
- Yukinori Tanaka
- Department of Life Sciences, Hiroshima Institute of Technology, Saeki-ku, Hiroshima 731-5193, Japan
| | - Ken Kasahara
- Chitose Laboratory Corp., Biotechnology Research Center, Nogawa, Miyamae-ku, Kawasaki 216-0001, Japan
| | - Yutaka Hirose
- Chitose Laboratory Corp., Biotechnology Research Center, Nogawa, Miyamae-ku, Kawasaki 216-0001, Japan
| | - Yu Morimoto
- Department of Life Sciences, Hiroshima Institute of Technology, Saeki-ku, Hiroshima 731-5193, Japan
| | - Masumi Izawa
- Department of Life Sciences, Hiroshima Institute of Technology, Saeki-ku, Hiroshima 731-5193, Japan
| | - Kozo Ochi
- Department of Life Sciences, Hiroshima Institute of Technology, Saeki-ku, Hiroshima 731-5193, Japan.
| |
Collapse
|
18
|
Arai S, Hayashihara K, Kanamoto Y, Shimizu K, Hirokawa Y, Hanai T, Murakami A, Honda H. Alcohol‐tolerant mutants of cyanobacterium
Synechococcus elongatus
PCC 7942 obtained by single‐cell mutant screening system. Biotechnol Bioeng 2017; 114:1771-1778. [DOI: 10.1002/bit.26307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/02/2017] [Accepted: 04/04/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Sayuri Arai
- Department of BiotechnologyGraduate School of EngineeringNagoya UniversityFuro‐choChikusa‐kuNagoyaAichi464‐8603Japan
| | | | - Yuki Kanamoto
- Kobe University Research Center for Inland SeasAwajiHyogoJapan
| | - Kazunori Shimizu
- Department of BiotechnologyGraduate School of EngineeringNagoya UniversityFuro‐choChikusa‐kuNagoyaAichi464‐8603Japan
| | - Yasutaka Hirokawa
- Laboratory for BioinformaticsGraduate School of Systems Life SciencesKyushu UniversityHigashi‐kuFukuokaJapan
| | - Taizo Hanai
- Laboratory for BioinformaticsGraduate School of Systems Life SciencesKyushu UniversityHigashi‐kuFukuokaJapan
| | - Akio Murakami
- Kobe University Research Center for Inland SeasAwajiHyogoJapan
| | - Hiroyuki Honda
- Department of BiotechnologyGraduate School of EngineeringNagoya UniversityFuro‐choChikusa‐kuNagoyaAichi464‐8603Japan
| |
Collapse
|
19
|
ARTP mutation and genome shuffling of ABE fermentation symbiotic system for improvement of butanol production. Appl Microbiol Biotechnol 2017; 101:2189-2199. [DOI: 10.1007/s00253-017-8093-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 12/20/2022]
|
20
|
Kubota T, Watanabe A, Suda M, Kogure T, Hiraga K, Inui M. Production of para-aminobenzoate by genetically engineered Corynebacterium glutamicum and non-biological formation of an N-glucosyl byproduct. Metab Eng 2016; 38:322-330. [DOI: 10.1016/j.ymben.2016.07.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/23/2016] [Accepted: 07/25/2016] [Indexed: 11/26/2022]
|
21
|
Youn SH, Lee KM, Kim KY, Lee SM, Woo HM, Um Y. Effective isopropanol-butanol (IB) fermentation with high butanol content using a newly isolated Clostridium sp. A1424. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:230. [PMID: 27800016 PMCID: PMC5080687 DOI: 10.1186/s13068-016-0650-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/18/2016] [Indexed: 05/17/2023]
Abstract
BACKGROUND Acetone-butanol-ethanol fermentation has been studied for butanol production. Alternatively, to achieve acetone-free butanol production, use of clostridium strains producing butanol and 1,3-propanediol (1,3-PDO) from glycerol, natural and engineered isopropanol-butanol-ethanol (IBE) producers has been attempted; however, residual 1,3-PDO and acetone, low IBE production by natural IBE producers, and complicated gene modification are limitations. RESULTS Here, we report an effective isopropanol and butanol (IB) fermentation using a newly isolated Clostridium sp. A1424 capable of producing IB from various substrates with a small residual acetone. Notably, this strain also utilized glycerol and produced butanol and 1,3-PDO. After 46.35 g/L of glucose consumption at pH 5.5-controlled batch fermentation, Clostridium sp. A1424 produced 9.43 g/L of butanol and 13.92 g/L of IB at the productivity of 0.29 and 0.44 g/L/h, respectively, which are the highest values in glucose-based batch fermentations using natural IB producers. More interestingly, using glucose-glycerol mixtures at ratios ranging from 20:2 to 14:8 led to not only acetone-free and 1,3-PDO-free IB fermentation but also enhanced IB production along with a much higher butanol content (butanol/isopropanol ratio of 1.81 with glucose vs. 2.07-6.14 with glucose-glycerol mixture). Furthermore, when the mixture of glucose and crude glycerol at the ratio of 14:8 (total concentration of 35.68 g/L) was used, high butanol/isopropanol ratio (3.44) and butanol titer (9.86 g/L) were achieved with 1.4-fold enhanced butanol yield (0.28 g/g) and productivity (0.41 g/L/h) compared to those with glucose only at pH 5.5. CONCLUSIONS A newly isolated Clostridium sp. A1424 was able to produce butanol and isopropanol from various carbon sources. The productivity and titer of butanol and total alcohol obtained in this study were higher than the previously reported results obtained using other natural IB producers. Use of the mixture of glucose and glycerol was successful to achieve acetone-free, 1,3-PDO-free, and enhanced IB production with higher yield, productivity, and selectivity of butanol compared to those with glucose only, providing great advantages from the perspective of carbon recovery to alcohols. This notable result could be accomplished by isolating an effective IB producer Clostridium sp. A1424 as well as by utilizing glucose-glycerol mixtures.
Collapse
Affiliation(s)
- Sung Hun Youn
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14‑gil 5, Seongbuk‑gu, Seoul, 02792 South Korea
| | - Kyung Min Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14‑gil 5, Seongbuk‑gu, Seoul, 02792 South Korea
| | - Ki-Yeon Kim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14‑gil 5, Seongbuk‑gu, Seoul, 02792 South Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14‑gil 5, Seongbuk‑gu, Seoul, 02792 South Korea
- Clean Energy and Chemical Engineering, Korea University of Science and Technology, 217 Gajeong‑ro, Yuseong‑gu, Daejeon, 34113 South Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419 South Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarangno 14‑gil 5, Seongbuk‑gu, Seoul, 02792 South Korea
- Clean Energy and Chemical Engineering, Korea University of Science and Technology, 217 Gajeong‑ro, Yuseong‑gu, Daejeon, 34113 South Korea
| |
Collapse
|