1
|
Tong KTX, Tan IS, Foo HCY, Hadibarata T, Lam MK, Wong MK. Dilute acid-assisted microbubbles-mediated ozonolysis of Eucheuma denticulatum phycocolloid for biobased L-lactic acid production. BIORESOURCE TECHNOLOGY 2024; 406:131082. [PMID: 38972432 DOI: 10.1016/j.biortech.2024.131082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Biobased L-lactic acid (L-LA) appeals to industries; however, existing technologies are plagued by limited productivity and high energy consumption. This study established an integrated process for producing macroalgae-based L-LA from Eucheuma denticulatum phycocolloid (EDP). Dilute acid-assisted microbubbles-mediated ozonolysis (DAMMO) was selected for the ozonolysis of EDP to optimize D-galactose recovery. Through single-factor optimization of DAMMO treatment, a maximum D-galactose recovery efficiency (59.10 %) was achieved using 0.15 M H2SO4 at 80 °C for 75 min. Fermentation with 3 % (w/v) mixed microbial cells (Bacillus coagulans ATCC 7050 and Lactobacillus acidophilus-14) and fermented residues achieved a 97.67 % L-LA yield. Additionally, this culture approach was further evaluated in repeated-batch fermentation and showed an average L-LA yield of 93.30 %, providing a feasible concept for macroalgae-based L-LA production.
Collapse
Affiliation(s)
- Kevin Tian Xiang Tong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia.
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Tony Hadibarata
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Mee Kee Wong
- PETRONAS Research Sdn Bhd, Lot 3288 & 3289, Off Jalan Ayer Hitam, Kawasan Institusi Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
2
|
Jiang C, Ma Y, Wang W, Sun J, Hao J, Mao X. Systematic review on carrageenolytic enzymes: From metabolic pathways to applications in biotechnology. Biotechnol Adv 2024; 73:108351. [PMID: 38582331 DOI: 10.1016/j.biotechadv.2024.108351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/08/2024]
Abstract
Carrageenan, the major carbohydrate component of some red algae, is an important renewable bioresource with very large annual outputs. Different types of carrageenolytic enzymes in the carrageenan metabolic pathway are potentially valuable for the production of carrageenan oligosaccharides, biofuel, and other chemicals obtained from carrageenan. However, these enzymes are not well-developed for oligosaccharide or biofuel production. For further application, comprehensive knowledge of carrageenolytic enzymes is essential. Therefore, in this review, we first summarize various carrageenolytic enzymes, including the recently discovered β-carrageenase, carrageenan-specific sulfatase, exo-α-3,6-anhydro-D-galactosidase (D-ADAGase), and exo-β-galactosidase (BGase), and describe their enzymatic characteristics. Subsequently, the carrageenan metabolic pathways are systematically presented and applications of carrageenases and carrageenan oligosaccharides are illustrated with examples. Finally, this paper discusses critical aspects that can aid researchers in constructing cascade catalytic systems and engineered microorganisms to efficiently produce carrageenan oligosaccharides or other value-added chemicals through the degradation of carrageenan. Overall, this paper offers a comprehensive overview of carrageenolytic enzymes, providing valuable insights for further exploration and application of these enzymes.
Collapse
Affiliation(s)
- Chengcheng Jiang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Yuqi Ma
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China; College of Fisheries and Life Science, Dalian Ocean University, Dalian 116000, China
| | - Wei Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jingjing Sun
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China
| | - Jianhua Hao
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Drugs and Byproducts, National Laboratory for Marine Science and Technology, Qingdao 266071, China; Jiangsu Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resource, Lianyungang 222005, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
3
|
Tong KTX, Tan IS, Foo HCY, Lam MK, Lim S, Lee KT. Advancement of biorefinery-derived platform chemicals from macroalgae: a perspective for bioethanol and lactic acid. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-37. [PMID: 35316983 PMCID: PMC8929714 DOI: 10.1007/s13399-022-02561-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The extensive growth of energy and plastic demand has raised concerns over the depletion of fossil fuels. Moreover, the environmental conundrums worldwide integrated with global warming and improper plastic waste management have led to the development of sustainable and environmentally friendly biofuel (bioethanol) and biopolymer (lactic acid, LA) derived from biomass for fossil fuels replacement and biodegradable plastic production, respectively. However, the high production cost of bioethanol and LA had limited its industrial-scale production. This paper has comprehensively reviewed the potential and development of third-generation feedstock for bioethanol and LA production, including significant technological barriers to be overcome for potential commercialization purposes. Then, an insight into the state-of-the-art hydrolysis and fermentation technologies using macroalgae as feedstock is also deliberated in detail. Lastly, the sustainability aspect and perspective of macroalgae biomass are evaluated economically and environmentally using a developed cascading system associated with techno-economic analysis and life cycle assessment, which represent the highlights of this review paper. Furthermore, this review provides a conceivable picture of macroalgae-based bioethanol and lactic acid biorefinery and future research directions that can be served as an important guideline for scientists, policymakers, and industrial players. Graphical abstract
Collapse
Affiliation(s)
- Kevin Tian Xiang Tong
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Henry Chee Yew Foo
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
- Centre of Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang, Malaysia
| |
Collapse
|
4
|
Enzymatic Verification and Comparative Analysis of Carrageenan Metabolism Pathways in Marine Bacterium Flavobacterium algicola. Appl Environ Microbiol 2022; 88:e0025622. [PMID: 35293779 DOI: 10.1128/aem.00256-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine bacteria usually contain polysaccharide utilization loci (PUL) for metabolizing red algae polysaccharides. They are of great significance in the carbon cycle of the marine ecosystem, as well as in supporting marine heterotrophic bacterial growth. Here, we described the whole κ-carrageenan (KC), ι-carrageenan (IC), and partial λ-carrageenan (LC) catabolic pathways in a marine Gram-negative bacterium, Flavobacterium algicola, which is involved carrageenan polysaccharide hydrolases, oligosaccharide sulfatases, oligosaccharide glycosidases, and the 3,6-anhydro-d-galactose (d-AHG) utilization-related enzymes harbored in the carrageenan-specific PUL. In the pathways, the KC and IC were hydrolyzed into 4-sugar-unit oligomers by specific glycoside hydrolases. Then, the multifunctional G4S sulfatases would remove their nonreducing ends' G4S sulfate groups, while the ι-neocarratetrose (Nι4) product would further lose the nonreducing end of its DA2S group. Furthermore, the neocarrageenan oligosaccharides (NCOSs) with no G4S and DA2S groups in their nonreducing ends would completely be decomposed into d-Gal and d-AHG. Finally, the released d-AHG would enter the cytoplasmic four-step enzymatic process, and an l-rhamnose-H+ transporter (RhaT) was preliminarily verified for the function for transportation of d-AHG. Moreover, comparative analysis with the reported carrageenan metabolism pathways further implied the diversity of microbial systems for utilizing the red algae carrageenan. IMPORTANCE Carrageenan is the main polysaccharide of red macroalgae and is composed of d-AHG and d-Gal. The carrageenan PUL (CarPUL)-encoded enzymes exist in many marine bacteria for decomposing carrageenan to provide self-growth. Here, the related enzymes in Flavobacterium algicola for metabolizing carrageenan were characterized for describing the catabolic pathways, notably, although the specific polysaccharide hydrolases existed that were like previous studies. A multifunctional G4S sulfatase also existed, which was devoted to the removal of G4S or G2S sulfate groups from three kinds of NCOSs. Additionally, the transformation of three types of carrageenans into two monomers, d-Gal and d-AHG, occurred outside the cell with no periplasmic reactions that existed in previously reported pathways. These results help to clarify the diversity of marine bacteria using macroalgae polysaccharides.
Collapse
|
5
|
Tanaka M, Kumakura D, Mino S, Doi H, Ogura Y, Hayashi T, Yumoto I, Cai M, Zhou YG, Gomez-Gil B, Araki T, Sawabe T. Genomic characterization of closely related species in the Rumoiensis clade infers ecogenomic signatures to non-marine environments. Environ Microbiol 2020; 22:3205-3217. [PMID: 32383332 DOI: 10.1111/1462-2920.15062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/21/2020] [Accepted: 05/03/2020] [Indexed: 11/28/2022]
Abstract
Members of the family Vibrionaceae are generally found in marine and brackish environments, playing important roles in nutrient cycling. The Rumoiensis clade is an unconventional group in the genus Vibrio, currently comprising six species from different origins including two species isolated from non-marine environments. In this study, we performed comparative genome analysis of all six species in the clade using their complete genome sequences. We found that two non-marine species, Vibrio casei and Vibrio gangliei, lacked the genes responsible for algal polysaccharide degradation, while a number of glycoside hydrolase genes were enriched in these two species. Expansion of insertion sequences was observed in V. casei and Vibrio rumoiensis, which suggests ongoing genomic changes associated with niche adaptations. The genes responsible for the metabolism of glucosylglycerate, a compound known to play a role as compatible solutes under nitrogen limitation, were conserved across the clade. These characteristics, along with genes encoding species-specific functions, may reflect the habit expansion which has led to the current distribution of Rumoiensis clade species. Genome analysis of all species in a single clade give us valuable insights into the genomic background of the Rumoiensis clade species and emphasize the genomic diversity and versatility of Vibrionaceae.
Collapse
Affiliation(s)
- Mami Tanaka
- Laboratory of Microbiology, Faculty of Fisheries, Hokkaido University, Hakodate, Japan
| | - Daiki Kumakura
- Laboratory of Microbiology, Faculty of Fisheries, Hokkaido University, Hakodate, Japan
| | - Sayaka Mino
- Laboratory of Microbiology, Faculty of Fisheries, Hokkaido University, Hakodate, Japan
| | - Hidetaka Doi
- R&D Strategic Group, R&D Planning Department, Ajinomoto Co., Inc., Tokyo, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Isao Yumoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, Japan
| | - Man Cai
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yu-Guang Zhou
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bruno Gomez-Gil
- CIAD, AC Mazatlan Unit for Aquaculture and Environmental Management, Mazatlán, Sinaloa, AP 711, Mexico
| | - Toshiyoshi Araki
- Iga Community-based Research Institute, Mie University, Iga, Japan
| | - Tomoo Sawabe
- Laboratory of Microbiology, Faculty of Fisheries, Hokkaido University, Hakodate, Japan
| |
Collapse
|
6
|
A Multifunctional Polysaccharide Utilization Gene Cluster in Colwellia echini Encodes Enzymes for the Complete Degradation of κ-Carrageenan, ι-Carrageenan, and Hybrid β/κ-Carrageenan. mSphere 2020; 5:5/1/e00792-19. [PMID: 31915221 PMCID: PMC6952198 DOI: 10.1128/msphere.00792-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Here, we report that a recently described bacterium, Colwellia echini, harbors a large number of enzymes enabling the bacterium to grow on κ-carrageenan and agar. The genes are organized in two clusters that encode enzymes for the total degradation of κ-carrageenan and agar, respectively. As the first, we report on the structure/function relationship of a new class of enzymes that hydrolyze furcellaran, a partially sulfated β/κ-carrageenan. Using an in silico model, we hypothesize a molecular structure of furcellaranases and compare structural features and active site architectures of furcellaranases with those of other GH16 polysaccharide hydrolases, such as κ-carrageenases, β-agarases, and β-porphyranases. Furthermore, we describe a new class of enzymes distantly related to GH42 and GH160 β-galactosidases and show that this new class of enzymes is active only on hybrid β/κ-carrageenan oligosaccharides. Finally, we propose a new model for how the carrageenolytic enzyme repertoire enables C. echini to metabolize β/κ-, κ-, and ι-carrageenan. Algal cell wall polysaccharides constitute a large fraction in the biomass of marine primary producers and are thus important in nutrient transfer between trophic levels in the marine ecosystem. In order for this transfer to take place, polysaccharides must be degraded into smaller mono- and disaccharide units, which are subsequently metabolized, and key components in this degradation are bacterial enzymes. The marine bacterium Colwellia echini A3T is a potent enzyme producer since it completely hydrolyzes agar and κ-carrageenan. Here, we report that the genome of C. echini A3T harbors two large gene clusters for the degradation of carrageenan and agar, respectively. Phylogenetical and functional studies combined with transcriptomics and in silico structural modeling revealed that the carrageenolytic cluster encodes furcellaranases, a new class of glycoside hydrolase family 16 (GH16) enzymes that are key enzymes for hydrolysis of furcellaran, a hybrid carrageenan containing both β- and κ-carrageenan motifs. We show that furcellaranases degrade furcellaran into neocarratetraose-43-O-monosulfate [DA-(α1,3)-G4S-(β1,4)-DA-(α1,3)-G], and we propose a molecular model of furcellaranases and compare the active site architectures of furcellaranases, κ-carrageenases, β-agarases, and β-porphyranases. Furthermore, C. echini A3T was shown to encode κ-carrageenases, ι-carrageenases, and members of a new class of enzymes, active only on hybrid β/κ-carrageenan tetrasaccharides. On the basis of our genomic, transcriptomic, and functional analyses of the carrageenolytic enzyme repertoire, we propose a new model for how C. echini A3T degrades complex sulfated marine polysaccharides such as furcellaran, κ-carrageenan, and ι-carrageenan. IMPORTANCE Here, we report that a recently described bacterium, Colwellia echini, harbors a large number of enzymes enabling the bacterium to grow on κ-carrageenan and agar. The genes are organized in two clusters that encode enzymes for the total degradation of κ-carrageenan and agar, respectively. As the first, we report on the structure/function relationship of a new class of enzymes that hydrolyze furcellaran, a partially sulfated β/κ-carrageenan. Using an in silico model, we hypothesize a molecular structure of furcellaranases and compare structural features and active site architectures of furcellaranases with those of other GH16 polysaccharide hydrolases, such as κ-carrageenases, β-agarases, and β-porphyranases. Furthermore, we describe a new class of enzymes distantly related to GH42 and GH160 β-galactosidases and show that this new class of enzymes is active only on hybrid β/κ-carrageenan oligosaccharides. Finally, we propose a new model for how the carrageenolytic enzyme repertoire enables C. echini to metabolize β/κ-, κ-, and ι-carrageenan.
Collapse
|
7
|
Hettle AG, Hobbs JK, Pluvinage B, Vickers C, Abe KT, Salama-Alber O, McGuire BE, Hehemann JH, Hui JPM, Berrue F, Banskota A, Zhang J, Bottos EM, Van Hamme J, Boraston AB. Insights into the κ/ι-carrageenan metabolism pathway of some marine Pseudoalteromonas species. Commun Biol 2019; 2:474. [PMID: 31886414 PMCID: PMC6923384 DOI: 10.1038/s42003-019-0721-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/02/2019] [Indexed: 01/07/2023] Open
Abstract
Pseudoalteromonas is a globally distributed marine-associated genus that can be found in a broad range of aquatic environments, including in association with macroalgal surfaces where they may take advantage of these rich sources of polysaccharides. The metabolic systems that confer the ability to metabolize this abundant form of photosynthetically fixed carbon, however, are not yet fully understood. Through genomics, transcriptomics, microbiology, and specific structure-function studies of pathway components we address the capacity of newly isolated marine pseudoalteromonads to metabolize the red algal galactan carrageenan. The results reveal that the κ/ι-carrageenan specific polysaccharide utilization locus (CarPUL) enables isolates possessing this locus the ability to grow on this substrate. Biochemical and structural analysis of the enzymatic components of the CarPUL promoted the development of a detailed model of the κ/ι-carrageenan metabolic pathway deployed by pseudoalteromonads, thus furthering our understanding of how these microbes have adapted to a unique environmental niche.
Collapse
Affiliation(s)
- Andrew G. Hettle
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2 Canada
| | - Joanne K. Hobbs
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2 Canada
| | - Benjamin Pluvinage
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2 Canada
| | - Chelsea Vickers
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2 Canada
- Present Address: School of Biological Sciences, Victoria University, PO Box 600, Wellington, 6012 New Zealand
| | - Kento T. Abe
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2 Canada
- Present Address: Lunenfeld-Tanenbaum Research Institute, Sinai Health System, and Department of Molecular Genetics, University of Toronto, 600 University Ave, Rm 992, Toronto, ON M5G1X5 Canada
| | - Orly Salama-Alber
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2 Canada
| | - Bailey E. McGuire
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2 Canada
| | - Jan-Hendrik Hehemann
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2 Canada
- Present Address: Marum and Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359 Bremen, Germany
| | - Joseph P. M. Hui
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1 Canada
| | - Fabrice Berrue
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1 Canada
| | - Arjun Banskota
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1 Canada
| | - Junzeng Zhang
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 1411 Oxford Street, Halifax, NS B3H 3Z1 Canada
| | - Eric M. Bottos
- Department of Biological Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, British Columbia V2C 0C8 Canada
| | - Jonathan Van Hamme
- Department of Biological Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, British Columbia V2C 0C8 Canada
| | - Alisdair B. Boraston
- Department of Biochemistry and Microbiology, University of Victoria, PO Box 1700 STN CSC, Victoria, British Columbia V8W 2Y2 Canada
| |
Collapse
|
8
|
Kim SM, Lim HS, Lee SB. Discovery of a RuBisCO-like Protein that Functions as an Oxygenase in the Novel d-Hamamelose Pathway. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-018-0305-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Schultz-Johansen M, Bech PK, Hennessy RC, Glaring MA, Barbeyron T, Czjzek M, Stougaard P. A Novel Enzyme Portfolio for Red Algal Polysaccharide Degradation in the Marine Bacterium Paraglaciecola hydrolytica S66 T Encoded in a Sizeable Polysaccharide Utilization Locus. Front Microbiol 2018; 9:839. [PMID: 29774012 PMCID: PMC5943477 DOI: 10.3389/fmicb.2018.00839] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/12/2018] [Indexed: 11/13/2022] Open
Abstract
Marine microbes are a rich source of enzymes for the degradation of diverse polysaccharides. Paraglaciecola hydrolytica S66T is a marine bacterium capable of hydrolyzing polysaccharides found in the cell wall of red macroalgae. In this study, we applied an approach combining genomic mining with functional analysis to uncover the potential of this bacterium to produce enzymes for the hydrolysis of complex marine polysaccharides. A special feature of P. hydrolytica S66T is the presence of a large genomic region harboring an array of carbohydrate-active enzymes (CAZymes) notably agarases and carrageenases. Based on a first functional characterization combined with a comparative sequence analysis, we confirmed the enzymatic activities of several enzymes required for red algal polysaccharide degradation by the bacterium. In particular, we report for the first time, the discovery of novel enzyme activities targeting furcellaran, a hybrid carrageenan containing both β-carrageenan and κ/β-carrageenan motifs. Some of these enzymes represent a new subfamily within the CAZy classification. From the combined analyses, we propose models for the complete degradation of agar and κ/β-type carrageenan by P. hydrolytica S66T. The novel enzymes described here may find value in new bio-based industries and advance our understanding of the mechanisms responsible for recycling of red algal polysaccharides in marine ecosystems.
Collapse
Affiliation(s)
- Mikkel Schultz-Johansen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Pernille K Bech
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Rosanna C Hennessy
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mikkel A Glaring
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Tristan Barbeyron
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Mirjam Czjzek
- Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France
| | - Peter Stougaard
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
10
|
Oh YR, Jung KA, Lee HJ, Jung GY, Park JM. A Novel 3,6-anhydro-L-galactose Dehydrogenase Produced by a Newly Isolated Raoultella ornithinolytica B6-JMP12. BIOTECHNOL BIOPROC E 2018. [DOI: 10.1007/s12257-017-0480-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Valdehuesa KNG, Ramos KRM, Moron LS, Lee I, Nisola GM, Lee WK, Chung WJ. Draft Genome Sequence of Newly Isolated Agarolytic Bacteria Cellulophaga omnivescoria sp. nov. W5C Carrying Several Gene Loci for Marine Polysaccharide Degradation. Curr Microbiol 2018. [PMID: 29536113 DOI: 10.1007/s00284-018-1467-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The continued research in the isolation of novel bacterial strains is inspired by the fact that native microorganisms possess certain desired phenotypes necessary for recombinant microorganisms in the biotech industry. Most studies have focused on the isolation and characterization of strains from marine ecosystems as they present a higher microbial diversity than other sources. In this study, a marine bacterium, W5C, was isolated from red seaweed collected from Yeosu, South Korea. The isolate can utilize several natural polysaccharides such as agar, alginate, carrageenan, and chitin. Genome sequence and comparative genomics analyses suggest that strain W5C belongs to a novel species of the Cellulophaga genus, from which the name Cellulophaga omnivescoria sp. nov. is proposed. Its genome harbors 3,083 coding sequences and 146 carbohydrate-active enzymes (CAZymes). Compared to other reported Cellulophaga species, the genome of W5C contained a higher proportion of CAZymes (4.7%). Polysaccharide utilization loci (PUL) for agar, alginate, and carrageenan were identified in the genome, along with other several putative PULs. These PULs are excellent sources for discovering novel hydrolytic enzymes and pathways with unique characteristics required for biorefinery applications, particularly in the utilization of marine renewable biomass. The type strain is JCM 32108T (= KCTC 13157BPT).
Collapse
Affiliation(s)
- Kris Niño G Valdehuesa
- Department of Energy Science and Technology, Energy and Environment Fusion Technology Center, Myongji University, Yongin, Gyeonggi-do, South Korea
| | - Kristine Rose M Ramos
- Department of Energy Science and Technology, Energy and Environment Fusion Technology Center, Myongji University, Yongin, Gyeonggi-do, South Korea
| | - Llewelyn S Moron
- Department of Energy Science and Technology, Energy and Environment Fusion Technology Center, Myongji University, Yongin, Gyeonggi-do, South Korea
- Biology Department, College of Science, De La Salle University, Manila, Philippines
| | - Imchang Lee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Grace M Nisola
- Department of Energy Science and Technology, Energy and Environment Fusion Technology Center, Myongji University, Yongin, Gyeonggi-do, South Korea
| | - Won-Keun Lee
- Division of Bioscience and Bioinformatics, Myongji University, Yongin, Gyeonggi-do, South Korea
| | - Wook-Jin Chung
- Department of Energy Science and Technology, Energy and Environment Fusion Technology Center, Myongji University, Yongin, Gyeonggi-do, South Korea.
| |
Collapse
|
12
|
Ficko-Blean E, Préchoux A, Thomas F, Rochat T, Larocque R, Zhu Y, Stam M, Génicot S, Jam M, Calteau A, Viart B, Ropartz D, Pérez-Pascual D, Correc G, Matard-Mann M, Stubbs KA, Rogniaux H, Jeudy A, Barbeyron T, Médigue C, Czjzek M, Vallenet D, McBride MJ, Duchaud E, Michel G. Carrageenan catabolism is encoded by a complex regulon in marine heterotrophic bacteria. Nat Commun 2017; 8:1685. [PMID: 29162826 PMCID: PMC5698469 DOI: 10.1038/s41467-017-01832-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 10/17/2017] [Indexed: 12/01/2022] Open
Abstract
Macroalgae contribute substantially to primary production in coastal ecosystems. Their biomass, mainly consisting of polysaccharides, is cycled into the environment by marine heterotrophic bacteria using largely uncharacterized mechanisms. Here we describe the complete catabolic pathway for carrageenans, major cell wall polysaccharides of red macroalgae, in the marine heterotrophic bacterium Zobellia galactanivorans. Carrageenan catabolism relies on a multifaceted carrageenan-induced regulon, including a non-canonical polysaccharide utilization locus (PUL) and genes distal to the PUL, including a susCD-like pair. The carrageenan utilization system is well conserved in marine Bacteroidetes but modified in other phyla of marine heterotrophic bacteria. The core system is completed by additional functions that might be assumed by non-orthologous genes in different species. This complex genetic structure may be the result of multiple evolutionary events including gene duplications and horizontal gene transfers. These results allow for an extension on the definition of bacterial PUL-mediated polysaccharide digestion. Carrageenans, major cell wall polysaccharides of red macroalgae, are metabolised by marine heterotrophic bacteria through unclear mechanisms. Here, the authors identify an unusual polysaccharide-utilization locus encoding carrageenan catabolism in a marine bacterium, and characterise the complete pathway.
Collapse
Affiliation(s)
- Elizabeth Ficko-Blean
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, Bretagne, France
| | - Aurélie Préchoux
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, Bretagne, France
| | - François Thomas
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, Bretagne, France
| | - Tatiana Rochat
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Robert Larocque
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, Bretagne, France
| | - Yongtao Zhu
- Department of Biological Sciences, University of Wisconsin-Milwaukee, 53201, Milwaukee, WI, USA
| | - Mark Stam
- UMR 8030, CNRS, Université Évry-Val-d'Essonne, CEA, Institut de Génomique - Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, F-91000, Évry, France
| | - Sabine Génicot
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, Bretagne, France
| | - Murielle Jam
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, Bretagne, France
| | - Alexandra Calteau
- UMR 8030, CNRS, Université Évry-Val-d'Essonne, CEA, Institut de Génomique - Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, F-91000, Évry, France
| | - Benjamin Viart
- UMR 8030, CNRS, Université Évry-Val-d'Essonne, CEA, Institut de Génomique - Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, F-91000, Évry, France
| | - David Ropartz
- INRA, UR1268 Biopolymers Interactions Assemblies, F-44316, Nantes, France
| | | | - Gaëlle Correc
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, Bretagne, France
| | - Maria Matard-Mann
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, Bretagne, France
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Hélène Rogniaux
- INRA, UR1268 Biopolymers Interactions Assemblies, F-44316, Nantes, France
| | - Alexandra Jeudy
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, Bretagne, France
| | - Tristan Barbeyron
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, Bretagne, France
| | - Claudine Médigue
- UMR 8030, CNRS, Université Évry-Val-d'Essonne, CEA, Institut de Génomique - Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, F-91000, Évry, France
| | - Mirjam Czjzek
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, Bretagne, France
| | - David Vallenet
- UMR 8030, CNRS, Université Évry-Val-d'Essonne, CEA, Institut de Génomique - Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, F-91000, Évry, France
| | - Mark J McBride
- Department of Biological Sciences, University of Wisconsin-Milwaukee, 53201, Milwaukee, WI, USA
| | - Eric Duchaud
- VIM, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Gurvan Michel
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, Roscoff, Bretagne, France.
| |
Collapse
|
13
|
Hong SJ, Lee JH, Kim EJ, Yang HJ, Park JS, Hong SK. Toxicological evaluation of neoagarooligosaccharides prepared by enzymatic hydrolysis of agar. Regul Toxicol Pharmacol 2017; 90:9-21. [PMID: 28782575 DOI: 10.1016/j.yrtph.2017.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 10/19/2022]
Abstract
Agar, a heterogeneous polymer of galactose, is the main component of the cell wall of marine red algae. It is well established as a safe, non-digestible carbohydrate in Oriental countries. Although neoagarooligosaccharides (NAOs) prepared by the hydrolysis of agar by β-agarase have been reported to exert various biological activities, the safety of these compounds has not been reported to date. For safety evaluation, NAOs containing mainly neoagarotetraose and neoagarohexaose were prepared from agar by enzymatic hydrolysis using β-agarase DagA from Streptomyces coelicolor. Genotoxicity tests such as the bacterial reverse mutation assay, eukaryotic chromosome aberration assay, and in vivo micronucleus assay all indicated that NAOs did not exert any mutational effects. The toxicity of NAOs in rat and beagle dog models was investigated by acute, 14-day, and 91-day repeated oral dose toxicity tests. The results showed that NAO intake of up to 5,000 mg/kg body weight resulted in no significant changes in body weight, food intake, water consumption, hematologic and blood biochemistry parameters, organ weight, or clinical symptoms. Collectively, a no-observed-adverse-effect level of 5,000 mg/kg body weight/day for both male and female rats was established for NAO. These findings support the safety of NAO for possible use in food supplements and pharmaceutical and cosmetic products.
Collapse
Affiliation(s)
- Sun Joo Hong
- Department of Biological Science and Bioinformatics, Myongji University, 116 Myongji-Ro, Cheoin-gu, Yongin, Gyeonggido 17058, Republic of Korea; Dynebio Inc., B-B205 Woolimlions Valley II, 45 Sagimagil-Ro, Jungwon-Gu, Seongnam-Si, Gyeonggi-Do 13209, Republic of Korea
| | - Je-Hyeon Lee
- Dynebio Inc., B-B205 Woolimlions Valley II, 45 Sagimagil-Ro, Jungwon-Gu, Seongnam-Si, Gyeonggi-Do 13209, Republic of Korea
| | - Eun Joo Kim
- Dynebio Inc., B-B205 Woolimlions Valley II, 45 Sagimagil-Ro, Jungwon-Gu, Seongnam-Si, Gyeonggi-Do 13209, Republic of Korea
| | - Hea Jung Yang
- Dynebio Inc., B-B205 Woolimlions Valley II, 45 Sagimagil-Ro, Jungwon-Gu, Seongnam-Si, Gyeonggi-Do 13209, Republic of Korea
| | - Jae-Seon Park
- Department of Biological Science and Bioinformatics, Myongji University, 116 Myongji-Ro, Cheoin-gu, Yongin, Gyeonggido 17058, Republic of Korea
| | - Soon-Kwang Hong
- Department of Biological Science and Bioinformatics, Myongji University, 116 Myongji-Ro, Cheoin-gu, Yongin, Gyeonggido 17058, Republic of Korea.
| |
Collapse
|