1
|
Li X, Hou W, Lei J, Chen H, Wang Q. The Unique Light-Harvesting System of the Algal Phycobilisome: Structure, Assembly Components, and Functions. Int J Mol Sci 2023; 24:ijms24119733. [PMID: 37298688 DOI: 10.3390/ijms24119733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
The phycobilisome (PBS) is the major light-harvesting apparatus in cyanobacteria and red algae. It is a large multi-subunit protein complex of several megadaltons that is found on the stromal side of thylakoid membranes in orderly arrays. Chromophore lyases catalyse the thioether bond between apoproteins and phycobilins of PBSs. Depending on the species, composition, spatial assembly, and, especially, the functional tuning of different phycobiliproteins mediated by linker proteins, PBSs can absorb light between 450 and 650 nm, making them efficient and versatile light-harvesting systems. However, basic research and technological innovations are needed, not only to understand their role in photosynthesis but also to realise the potential applications of PBSs. Crucial components including phycobiliproteins, phycobilins, and lyases together make the PBS an efficient light-harvesting system, and these provide a scheme to explore the heterologous synthesis of PBS. Focusing on these topics, this review describes the essential components needed for PBS assembly, the functional basis of PBS photosynthesis, and the applications of phycobiliproteins. Moreover, key technical challenges for heterologous biosynthesis of phycobiliproteins in chassis cells are discussed.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wenwen Hou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jiaxi Lei
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Hui Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475001, China
| |
Collapse
|
2
|
Shang MH, Sun JF, Bi Y, Xu XT, Zang XN. Fluorescence and antioxidant activity of heterologous expression of phycocyanin and allophycocyanin from Arthrospira platensis. Front Nutr 2023; 10:1127422. [PMID: 36891162 PMCID: PMC9987159 DOI: 10.3389/fnut.2023.1127422] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Phycocyanin and allophycocyanin are important active substances in Arthrospira platensis, because of their fluorescent characteristic and antioxidant capacity. In order to solve the problem of insufficient production and inconvenient modification of natural protein, recombinant expression was performed and the fluorescence activity and antioxidant activity was analyzed to meet the demand for phycocyanin and allophycocyanin. A total of seven recombinant strains were constructed in this study, including individual phycocyanin or allophycocyanin, co-expression of phycocyanin-allophycocyanin, and their co-expression with chromophore, and the expression strain for individual chromophore. Different molecular weights of phycocyanin and allophycocyanin were detected in the recombinant strains, which indicated the different polymers expressed. Through mass spectrometry identification, phycocyanin and allophycocyanin may form a dimer of 66 kDa and a polymer of 300 kDa. The results of fluorescence detection showed that phycocyanin and allophycocyanin combined with phycocyanobilin to show fluorescence activity. The fluorescence peak of recombinant phycocyanin was mainly concentrated at 640 nm, which was similar to natural phycocyanin, the fluorescence peak of purified recombinant allophycocyanin was at about 642 nm. The fluorescence peak of the co-expressed recombinant phycocyanin-allophycocyanin is located at 640 nm, and the fluorescence intensity is between the recombinant phycocyanin and the recombinant allophycocyanin. After purification, the fluorescence peak of the recombinant phycocyanin is more concentrated and the fluorescence intensity is higher, which is about 1.3 times of recombinant phycocyanin-allophycocyanin, 2.8 times of recombinant allophycocyanin, indicating that phycocyanin may be more suitable to be used as fluorescence probe in medicine. The antioxidant capacity was measured by using total antioxidant capacity (T-AOC) and DPPH (2,2'-diphenyl-1-triphenylhydrazino) free radical scavenging method, and the recombinant phycobiliprotein showed antioxidant activity. Phycocyanobilin also has certain antioxidant activity and could enhance the antioxidant activity of phycobiliprotein to a certain extent. Recombinant phycocyanin-allophycocyanin polymer has stronger T-AOC, which is about 1.17-2.25 times that of the other five recombinant proteins. And recombinant phycocyanin has stronger DPPH antioxidant activity, which is about 1.2-2.5 times that of the other five recombinant proteins. This study laid the foundation for the application of recombinant phycocyanin and allophycocyanin in medical detection and drug development.
Collapse
Affiliation(s)
- Meng-Hui Shang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China
| | - Jian-Fei Sun
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China
| | - Ying Bi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xiao-Ting Xu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xiao-Nan Zang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, China
| |
Collapse
|
3
|
Feng Y, Lu H, Hu J, Zheng B, Zhang Y. Anti-Aging Effects of R-Phycocyanin from Porphyra haitanensis on HUVEC Cells and Drosophila melanogaster. Mar Drugs 2022; 20:md20080468. [PMID: 35892936 PMCID: PMC9329955 DOI: 10.3390/md20080468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Aging has become a global public health challenge. Many studies have revealed that the excessive generation of ROS and oxidative stress could be the major causative factors contributing to aging. In this study, R-phycocyanin (R-PC) was isolated from Porphyra haitanensis, and its anti-aging ability was explored by natural aging Drosophila melanogaster and H2O2-induced HUVEC cells as the aging model. Results showed that R-PC α and β subunits expressed have antioxidant activity and can inhibit the generation of radicals, exhibiting a protective effect against H2O2-induced apoptotic HUVEC cells death. R-PC prevented the H2O2-induced HUVEC cell cycle phase arrest by regulating cell cycle-related protein. Furthermore, R-PC prevented the H2O2-induced HUVEC cell cycle phase arrest by regulating cell-cycle-related protein expression. In vivo study also indicated that R-PC significantly increased the survival time and alleviated the oxidative stress of Drosophila melanogaster. Moreover, R-PC notably decreased levels of ROS in natural aging flies and inhibited lipid peroxidation by enhancing the expressions of the endogenous stress marker genes (SOD1, SOD2, CAT of Drosophila melanogaster). Taken together, a study on the antioxidation extract from Porphyra haitanensis, such as R-PC, may open a new window for the prevention of anti-aging.
Collapse
Affiliation(s)
- Yanyu Feng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350000, China; (Y.F.); (H.L.); (J.H.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Hanjin Lu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350000, China; (Y.F.); (H.L.); (J.H.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Jiamiao Hu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350000, China; (Y.F.); (H.L.); (J.H.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China
| | - Baodong Zheng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350000, China; (Y.F.); (H.L.); (J.H.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- Correspondence: (B.Z.); (Y.Z.)
| | - Yi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350000, China; (Y.F.); (H.L.); (J.H.)
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350000, China
- Correspondence: (B.Z.); (Y.Z.)
| |
Collapse
|
4
|
Development and fabrication of disease resistance protein in recombinant Escherichia coli. BIORESOUR BIOPROCESS 2020. [DOI: 10.1186/s40643-020-00343-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractCyanobacteria and Spirulina produce C-phycocyanin (CPC), a water soluble protein associated pigment, which is extensively used in food and pharmaceutical industries. Other therapeutic proteins might exist in microalgal cells, of which there is limited knowledge. Such proteins/peptides with antibiotic properties are crucial due to the emergence of multi-drug resistant pathogens. In addition, the native expression levels of such disease resistant proteins are low, hindering further investigation. Thus, screening and overexpression of such novel proteins is urgent and important. In this study, a protein which was identified as a putative disease resistance protein (DRP) in the mixture of Spirulina product has been explored for the first time. To improve protein expression, DRP was cloned in the pET system, co-transformed with pRARE plasmid for codon optimization and was significantly overexpressed in E. coli BL21(DE3) under induction with isopropyl-β-d-1-thiogalactopyranoside (IPTG). Furthermore, soluble DRP exhibited intense antimicrobial activity against predominant pathogens, and an inhibition zone of 1.59 to 1.74 cm was obtained for E. coli. At a concentration 4 mg/mL, DRP significantly elevated the growth of L. rhamnosus ZY up to twofold showing probable prebiotic activities. Moreover, DRP showed potential as an effective antioxidant, and the scavenging ability for ROS was in the order of hydroxyl > DPPH > superoxide radicals. A putative disease resistance protein (DRP) has been identified, sequenced, cloned and over-expressed in E. coli as a functional protein. Thus expressed DRP showed potential anti-microbial and antioxidant properties, with promising therapeutic applications.
Collapse
|
5
|
Biosynthesis of Fluorescent β Subunits of C-Phycocyanin from Spirulina subsalsa in Escherichia coli, and Their Antioxidant Properties. Molecules 2018; 23:molecules23061369. [PMID: 29882804 PMCID: PMC6100522 DOI: 10.3390/molecules23061369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022] Open
Abstract
Phycocyanin, which covalently binds phycocyanobilin chromophores, is not only a candidate fluorescent probe for biological imaging, but also a potential antioxidative agent for healthcare. Herein, a plasmid harboring two cassettes was constructed, with cpcB from Spirulina subsalsa in one cassette and the fusion gene cpcS::ho1::pcyA in the other, and then expressed in Escherichia coli. PCB-CpcB(C-82), a fluorescent phycocyanin β subunit, was biosynthesized in E. coli, exhibiting an absorption maximum at 620 nm and fluorescence emission maximum at 640 nm. When cpcS was replaced by cpcT, PCB-CpcB(C-153), another fluorescent phycocyanin β subunit, was produced, exhibiting an absorption maximum at 590 nm and fluorescence emission maximum at 620 nm. These two fluorescent biliproteins showed stronger scavenging activity toward hydroxyl and DPPH free radicals than apo-CpcB. The IC50 values for hydroxyl radical scavenging by PCB-CpcB(C-82), PCB-CpcB(C-153), and apo-CpcB were 38.72 ± 2.48 µg/mL, 51.06 ± 6.74 µg/mL, and 81.82 ± 0.67 µg/mL, respectively, and the values for DPPH radical scavenging were 201.00 ± 5.86 µg/mL, 240.34 ± 4.03 µg/mL, and 352.93 ± 26.30 µg/mL, respectively. The comparative antioxidant capacities of the proteins were PCB-CpcB(C-82) > PCB-CpcB(C-153) > apo-CpcB, due to bilin binding. The two fluorescent biliproteins exhibited a significant effect on relieving the growth of E. coli cells injured by H2O2. The results of this study suggest that the fluorescent phycocyanin β subunits of S. subsalsa were reconstructed by one expression vector in E. coli, and could be developed as potential antioxidants.
Collapse
|
6
|
Chen GQ, Zhang D, Shen XH. Cloning and characterization of ApCystatin, a plant cystatin gene from Agapanthus praecox ssp. orientalis responds to abiotic stress. Protein Expr Purif 2018; 149:66-74. [PMID: 29684441 DOI: 10.1016/j.pep.2018.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/19/2018] [Accepted: 04/19/2018] [Indexed: 11/18/2022]
Abstract
Plant cystatins are involved in the regulation of protein turnover and play important roles in defense mechanisms. We cloned the ApCystatin gene from Agapanthus praecox ssp. orientalis, a famous ornamental and medical plant. The complete cDNA sequence of ApCystatin is comprised of 1439 nucleotides with a 423 bp ORF encoding 140 amino acids. The mRNA level of ApCystatin was significantly up-regulated under various abiotic stress, such as salt, osmosis, oxidative and cold stresses, which suggested that ApCystatin participated in the plant's resistance to stress. The recombinant ApCystatin fusion protein expressed in E. coli transetta (DE3) cells was approximate 18 kDa. 25 μg of ApCystatin inhibited more than 95% activity of papain, suggesting ApCystatin as a papain-like protease inhibitor. As an exogenous substance, 1.60 μg/mL ApCystatin protein improved the regrowth percentage of Arabidopsis 60-h seedlings after cryopreservation from 30% to 47%. In addition, the relative survival rate of A. praecox embryogenic callus after cryopreservation also increased for 30% with addition of 1.20 μg/mL ApCystatin protein. This indicated that ApCystatin performed protective property against cryoinjury to Arabidopsis 60-h seedlings and A. praecox embryogenic callus during cryopreservation. Under various abiotic stress conditions, the recombinant ApCystatin protein showed significant advantage in growth rates at NaCl, mannitol, PEG6000, cold, acidic and alkaline conditions, compared to control. In conclusion, ApCystatin as a new member of plant cystatins exhibited protective property against cryoinjury in plant cryopreservation and abiotic stress in E. coli.
Collapse
Affiliation(s)
- Guan-Qun Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Di Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiao-Hui Shen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
7
|
Ge B, Lin X, Chen Y, Wang X, Chen H, Jiang P, Huang F. Combinational biosynthesis of dual-functional streptavidin-phycobiliproteins for high-throughput-compatible immunoassay. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.05.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|