1
|
Zhao S, Zhang T, Hasunuma T, Kondo A, Zhao XQ, Feng JX. Every road leads to Rome: diverse biosynthetic regulation of plant cell wall-degrading enzymes in filamentous fungi Penicillium oxalicum and Trichoderma reesei. Crit Rev Biotechnol 2024; 44:1241-1261. [PMID: 38035670 DOI: 10.1080/07388551.2023.2280810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023]
Abstract
Cellulases and xylanases are plant cell wall-degrading enzymes (CWDEs) that are critical to sustainable bioproduction based on renewable lignocellulosic biomass to reduce carbon dioxide emission. Currently, these enzymes are mainly produced from filamentous fungi, especially Trichoderma reesei and Penicillium oxalicum. However, an in-depth comparison of these two producers has not been performed. Although both P. oxalicum and T. reesei harbor CWDE systems, they exhibit distinct features regulating the production of these enzymes, mainly through different transcriptional regulatory networks. This review presents the strikingly different modes of genome-wide regulation of cellulase and xylanase biosynthesis in P. oxalicum and T. reesei, including sugar transporters, signal transduction cascades, transcription factors, chromatin remodeling, and three-dimensional organization of chromosomes. In addition, different molecular breeding approaches employed, based on the understanding of the regulatory networks, are summarized. This review highlights the existence of very different regulatory modes leading to the efficient regulation of CWDE production in filamentous fungi, akin to the adage that "every road leads to Rome." An understanding of this divergence may help further improvements in fungal enzyme production through the metabolic engineering and synthetic biology of certain fungal species.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Engineering Biology Research Center, Kobe University, Kobe, Japan
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
2
|
Ma B, Luo XM, Zhao S, Feng JX. Protein Kinase PoxMKK1 Regulates Plant-Polysaccharide-Degrading Enzyme Biosynthesis, Mycelial Growth and Conidiation in Penicillium oxalicum. J Fungi (Basel) 2023; 9:jof9040397. [PMID: 37108852 PMCID: PMC10143691 DOI: 10.3390/jof9040397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
The ability to adapt to changing environmental conditions is crucial for living organisms, as it enables them to successfully compete in natural niches, a process which generally depends upon protein phosphorylation-mediated signaling transduction. In the present study, protein kinase PoxMKK1, an ortholog of mitogen-activated protein kinase kinase Ste7 in Saccharomyces cerevisiae, was identified and characterized in the filamentous fungus Penicillium oxalicum. Deletion of PoxMKK1 in P. oxalicum ΔPoxKu70 led the fungus to lose 64.4-88.6% and 38.0-86.1% of its plant-polysaccharide-degrading enzyme (PPDE) production on day 4 after a shift under submerged- and solid-state fermentation, respectively, compared with the control strain ΔPoxKu70. In addition, PoxMKK1 affected hypha growth and sporulation, though this was dependent on culture formats and carbon sources. Comparative transcriptomics and real-time quantitative reverse transcription PCR assay revealed that PoxMKK1 activated the expression of genes encoding major PPDEs, known regulatory genes (i.e., PoxClrB and PoxCxrB) and cellodextrin transporter genes (i.e., PoxCdtD and PoxCdtC), while it inhibited the essential conidiation-regulating genes, including PoxBrlA, PoxAbaA and PoxFlbD. Notably, regulons modulated by PoxMKK1 and its downstream mitogen-activated protein kinase PoxMK1 co-shared 611 differential expression genes, including 29 PPDE genes, 23 regulatory genes, and 16 sugar-transporter genes. Collectively, these data broaden our insights into the diverse functions of Ste7-like protein kinase, especially regulation of PPDE biosynthesis, in filamentous fungi.
Collapse
Affiliation(s)
- Bo Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
A new function of a putative UDP-glucose 4-epimerase on the expression of glycoside hydrolase genes in Aspergillus aculeatus. Appl Microbiol Biotechnol 2023; 107:785-795. [PMID: 36625911 DOI: 10.1007/s00253-022-12337-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023]
Abstract
In order to figure out the induction mechanisms of glycoside hydrolase genes in Aspergillus aculeatus, we screened approximately 9,000 transfer DNA (T-DNA)-inserted mutants for positive regulators involved in the induction. Since the mutants possess the orotidine 5'-monophosphate decarboxylase gene as a reporter gene to monitor the cellulose-responsive expression of the cellobiohydrolase I gene (cbhI), candidate strains were isolated by counterselection against 5-fluoroorotic acid (5-FOA). One 5-FOA-resistant mutant harboring the T-DNA at the uge5 locus showed reduced cellulose utilization and cbhI expression. A. aculeatus Uge5 is homologous to Aspergillus fumigatus uge5 (Afu5g10780; E-value, 0.0; identities, 93%), which catalyzes the conversion of uridine diphosphate (UDP)-glucose to UDP-galactopyranose. The uge5 deletion mutant in A. aculeatus (Δuge5) showed reduced conidium formation on minimal media supplemented with galactose, locust bean gum (LBG), and guar gum as a carbon source. β-1,4-Endoglucanase and β-1,4-mannanase production in submerged culture containing LBG was reduced to 10% and 6% of the control strain at day 5, respectively, but no difference was observed in cultures containing wheat bran. The expression of major cellulolytic and mannolytic genes in the presence of mannobiose in Δuge5 was reduced to less than 15% of the control strain, while cellobiose-responsive expression was only modestly reduced at early inducing time points. Since all test genes were controlled by a transcription factor ManR, these data demonstrate that Uge5 is involved in inducer-dependent selective expression of genes controlled via ManR. KEY POINTS: • UDP-glucose 4-epimerase (Uge5) regulates expression of glycosyl hydrolase genes. • ManR regulates both cellobiose- and mannobiose-responsive expression. • Uge5 plays a key role in mannobiose-responsive expression.
Collapse
|
4
|
Insights into the Lignocellulose-Degrading Enzyme System of Humicola grisea var. thermoidea Based on Genome and Transcriptome Analysis. Microbiol Spectr 2021; 9:e0108821. [PMID: 34523973 PMCID: PMC8557918 DOI: 10.1128/spectrum.01088-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Humicola grisea var. thermoidea is a thermophilic ascomycete and important enzyme producer that has an efficient enzymatic system with a broad spectrum of thermostable carbohydrate-active (CAZy) enzymes. These enzymes can be employed in lignocellulose biomass deconstruction and other industrial applications. In this work, the genome of H. grisea var. thermoidea was sequenced. The acquired sequence reads were assembled into a total length of 28.75 Mbp. Genome features correlate with what was expected for thermophilic Sordariomycetes. The transcriptomic data showed that sugarcane bagasse significantly upregulated genes related to primary metabolism and polysaccharide deconstruction, especially hydrolases, at both pH 5 and pH 8. However, a number of exclusive and shared genes between the pH values were found, especially at pH 8. H. grisea expresses an average of 211 CAZy enzymes (CAZymes), which are capable of acting in different substrates. The top upregulated genes at both pH values represent CAZyme-encoding genes from different classes, including acetylxylan esterase, endo-1,4-β-mannosidase, exoglucanase, and endoglucanase genes. For the first time, the arsenal that the thermophilic fungus H. grisea var. thermoidea possesses to degrade the lignocellulosic biomass is shown. Carbon source and pH are of pivotal importance in regulating gene expression in this organism, and alkaline pH is a key regulatory factor for sugarcane bagasse hydrolysis. This work paves the way for the genetic manipulation and robust biotechnological applications of this fungus. IMPORTANCE Most studies regarding the use of fungi as enzyme producers for biomass deconstruction have focused on mesophile species, whereas the potential of thermophiles has been evaluated less. This study revealed, through genome and transcriptome analyses, the genetic repertoire of the biotechnological relevant thermophile fungus Humicola grisea. Comparative genomics helped us to further understand the biology and biotechnological potential of H. grisea. The results demonstrate that this fungus possesses an arsenal of carbohydrate-active (CAZy) enzymes to degrade the lignocellulosic biomass. Indeed, it expresses more than 200 genes encoding CAZy enzymes when cultivated in sugarcane bagasse. Carbon source and pH are key factors for regulating the gene expression in this organism. This work shows, for the first time, the great potential of H. grisea as an enzyme producer and a gene donor for biotechnological applications and provides the base for the genetic manipulation and robust biotechnological applications of this fungus.
Collapse
|
5
|
Draft genome of the glucose tolerant β-glucosidase producing rare Aspergillus unguis reveals complete cellulolytic machinery with multiple beta-glucosidase genes. Fungal Genet Biol 2021; 151:103551. [PMID: 33737204 DOI: 10.1016/j.fgb.2021.103551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/24/2021] [Accepted: 03/07/2021] [Indexed: 11/20/2022]
Abstract
Draft genome sequence of the glucose tolerant beta glucosidase (GT-BGL) producing rare fungus Aspergillus unguis NII 08,123 was generated through Next Generation Sequencing (NGS). The genome size of the fungus was estimated to be 37.1 Mb. A total of 3116 contigs were assembled using SPades, and 15,161 proteins were predicted using AUGUSTUS 3.1. Among them, 13,850 proteins were annotated using UniProt. Distribution of CAZyme genes specifically those encoding lignocellulose degrading enzymes were analyzed and compared with those from the industrial cellulase producer Trichoderma reesei in view of the huge differences in detectable enzyme activities between the fungi, despite the ability of A. unguis to grow on lignocellulose as sole carbon source. Full length gene sequence of the inducible GT-BGL could be identified through tracing back from peptide mass fingerprint. A total of 403 CAZymes were predicted from the genome, which includes 232 glycoside hydrolases (GHs), 12 carbohydrate esterases (CEs), 109 glycosyl transferases (GTs), 15 polysaccharide lyases (PLs), and 35 genes with auxiliary activities (AAs). The high level of zinc finger motif containing transcription factors could possibly hint a tight regulation of the cellulolytic machinery, which may also explain the low cellulase activities even when a complete repertoire of cellulase degrading enzyme genes are present in the fungus.
Collapse
|
6
|
Miao Y, Chen X, Li T, Zhu H, Tang S, Liu D, Shen Q. Proteomic analysis reflects an environmental alkalinization-coupled pH-dependent mechanism of regulating lignocellulases in Trichoderma guizhouense NJAU4742. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:6. [PMID: 31938041 PMCID: PMC6954547 DOI: 10.1186/s13068-020-1651-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Filamentous fungi have the ability to efficiently decompose plant biomass, and thus are widely used in the biofuel and bioprocess industries. In process, ambient pH has been reported to strongly affect the performance of the applied functional filamentous fungi. In this study, Trichoderma guizhouense NJAU4742 was investigated under the fermentation of rice straw at different initial pH values for a detailed study. RESULTS The results showed that NJAU4742 strain could tolerate ambient pH values ranging from 3.0 to 9.0, but had significantly higher growth speed and extracellular enzyme activities under acidic conditions. At low ambient pH (< 4), NJAU4742 strain achieved rapid degradation of rice straw by elevating the ambient pH to an optimal range through environmental alkalinization. Further proteomic analysis identified a total of 1139 intracellular and extracellular proteins during the solid-state fermentation processes, including the quantified 190 carbohydrate-active enzymes (CAZymes) responsible for rice straw degradation, such as 19 cellulases, 47 hemicellulases and 11 chitinases. Meanwhile, the analysis results clearly showed that the secreted lignocellulases had a synergistic trend in distribution according to the ambient pH, and thus led to a pH-dependent classification of lignocellulases in T. guizhouense NJAU4742. CONCLUSIONS Most functional lignocellulases were found to be differently regulated by the ambient pH in T. guizhouense NJAU4742, which had the ability of speeding up biomass degradation by elevating the ambient pH through environmental alkalinization. These findings contribute to the theoretical basis for the biodegradation of plant biomass by filamentous fungi in the biofuel and bioprocess industries.
Collapse
Affiliation(s)
- Youzhi Miao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Xing Chen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Tuo Li
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Han Zhu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Siyu Tang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Dongyang Liu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Science, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| |
Collapse
|
7
|
Transcription Factor Atf1 Regulates Expression of Cellulase and Xylanase Genes during Solid-State Fermentation of Ascomycetes. Appl Environ Microbiol 2019; 85:AEM.01226-19. [PMID: 31604764 DOI: 10.1128/aem.01226-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/03/2019] [Indexed: 11/20/2022] Open
Abstract
Transcriptional regulation of cellulolytic and xylolytic genes in ascomycete fungi is controlled by specific carbon sources in different external environments. Here, comparative transcriptomic analyses of Penicillium oxalicum grown on wheat bran (WB), WB plus rice straw (WR), or WB plus Avicel (WA) as the sole carbon source under solid-state fermentation (SSF) revealed that most of the differentially expressed genes (DEGs) were involved in metabolism, specifically, carbohydrate metabolism. Of the DEGs, the basic core carbohydrate-active enzyme-encoding genes which responded to the plant biomass resources were identified in P. oxalicum, and their transcriptional levels changed to various extents depending on the different carbon sources. Moreover, this study found that three deletion mutants of genes encoding putative transcription factors showed significant alterations in filter paper cellulase production compared with that of a parental P. oxalicum strain with a deletion of Ku70 (ΔPoxKu70 strain) when grown on WR under SSF. Importantly, the ΔPoxAtf1 mutant (with a deletion of P. oxalicum Atf1, also called POX03016) displayed 46.1 to 183.2% more cellulase and xylanase production than a ΔPoxKu70 mutant after 2 days of growth on WR. RNA sequencing and quantitative reverse transcription-PCR revealed that PoxAtf1 dynamically regulated the expression of major cellulase and xylanase genes under SSF. PoxAtf1 bound to the promoter regions of the key cellulase and xylanase genes in vitro This study provides novel insights into the regulatory mechanism of fungal cellulase and xylanase gene expression under SSF.IMPORTANCE The transition to a more environmentally friendly economy encourages studies involving the high-value-added utilization of lignocellulosic biomass. Solid-state fermentation (SSF), that simulates the natural habitat of soil microorganisms, is used for a variety of applications such as biomass biorefinery. Prior to the current study, our understanding of genome-wide gene expression and of the regulation of gene expression of lignocellulose-degrading enzymes in ascomycete fungi during SSF was limited. Here, we employed RNA sequencing and genetic analyses to investigate transcriptomes of Penicillium oxalicum strain EU2101 cultured on medium containing different carbon sources and to identify and characterize transcription factors for regulating the expression of cellulase and xylanase genes during SSF. The results generated will provide novel insights into genetic engineering of filamentous fungi to further increase enzyme production.
Collapse
|
8
|
Ballmann P, Lightfoot J, Müller M, Dröge S, Prade R. Redesigning the Aspergillus nidulans xylanase regulatory pathway to enhance cellulase production with xylose as the carbon and inducer source. Microb Cell Fact 2019; 18:193. [PMID: 31699093 PMCID: PMC6839167 DOI: 10.1186/s12934-019-1243-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/24/2019] [Indexed: 11/10/2022] Open
Abstract
Background Biomass contains cellulose (C6-sugars), hemicellulose (C5-sugars) and lignin. Biomass ranks amongst the most abundant hydrocarbon resources on earth. However, biomass is recalcitrant to enzymatic digestion by cellulases. Physicochemical pretreatment methods make cellulose accessible but partially destroy hemicellulose, producing a C5-sugar-rich liquor. Typically, digestion of pretreated LCB is performed with commercial cellulase preparations, but C5-sugars could in principle be used for “on site” production of cellulases by genetically engineered microorganism, thereby reducing costs. Results Here we report a succession of genetic interventions in Aspergillus nidulans that redesign the natural regulatory circuitry of cellulase genes in such a way that recombinant strains use C5-sugar liquors (xylose) to grow a vegetative tissue and simultaneously accumulate large amounts of cellulases. Overexpression of XlnR showed that under xylose-induction conditions only xylanase C was produced. XlnR overexpression strains were constructed that use the xynCp promoter to drive the production of cellobiohydrolases, endoglucanases and β-glucosidase. All five cellulases accumulated at high levels when grown on xylose. Production of cellulases in the presence of pretreated-biomass C5-sugar liquors was investigated, and cellulases accumulated to much higher enzyme titers than those obtained for traditional fungal cell factories with cellulase-inducing substrates. Conclusions By replacing expensive substrates with a cheap by-product carbon source, the use of C5-sugar liquors directly derived from LCB pretreatment processes not only reduces enzyme production costs, but also lowers operational costs by eliminating the need for off-site enzyme production, purification, concentration, transport and dilution.
Collapse
Affiliation(s)
- Patrick Ballmann
- Prüf- und Forschungsinstitut Pirmasens e.V., Marie-Curie-Strasse 19, 66953, Pirmasens, Germany
| | - Jorge Lightfoot
- Department of Microbiology & Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Michael Müller
- Prüf- und Forschungsinstitut Pirmasens e.V., Marie-Curie-Strasse 19, 66953, Pirmasens, Germany
| | - Stephan Dröge
- Prüf- und Forschungsinstitut Pirmasens e.V., Marie-Curie-Strasse 19, 66953, Pirmasens, Germany
| | - Rolf Prade
- Department of Microbiology & Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
9
|
CreA-independent carbon catabolite repression of cellulase genes by trimeric G-protein and protein kinase A in Aspergillus nidulans. Curr Genet 2019; 65:941-952. [PMID: 30796472 DOI: 10.1007/s00294-019-00944-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
Abstract
Cellulase production in filamentous fungi is repressed by various carbon sources. In our preliminary survey in Aspergillus nidulans, degree of de-repression differed depending on carbon sources in a mutant of creA, encoding the transcriptional repressor for carbon catabolite repression (CCR). To further understand mechanisms of CCR of cellulase production, we compared the effects of creA deletion with deletion of protein kinase A (pkaA) and G (ganB) genes, which constitute a nutrient sensing and signaling pathway. In plate culture with carboxymethyl cellulose and D-glucose, deletion of pkaA and ganB, but not creA, led to significant de-repression of cellulase production. In submerged culture with cellobiose and D-glucose or 2-deoxyglucose, both creA or pkaA single deletion led to partial de-repression of cellulase genes with the highest level by their double deletion, while ganB deletion caused de-repression comparable to that of the creA/pkaA double deletion. With ball-milled cellulose and D-glucose, partial de-repression was detected by deletion of creA but not of pkaA or ganB. The creA/pkaA or creA/ganB double deletion led to earlier expression than the creA deletion. Furthermore, the effect of each deletion with D-xylose or L-arabinose as the repressing carbon source was significantly different from that with D-glucose, D-fructose, and D-mannose. Consequently, this study revealed that PkaA and GanB participate in CreA-independent CCR and that contribution of CreA, PkaA, and GanB in CCR differs depending on the inducers, repressing carbon sources, and culture conditions (plate or submerged). Further study of CreA-independent mechanisms is needed to fully understand CCR in filamentous fungi.
Collapse
|
10
|
Zhao S, Liu Q, Wang JX, Liao XZ, Guo H, Li CX, Zhang FF, Liao LS, Luo XM, Feng JX. Differential transcriptomic profiling of filamentous fungus during solid-state and submerged fermentation and identification of an essential regulatory gene PoxMBF1 that directly regulated cellulase and xylanase gene expression. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:103. [PMID: 31164922 PMCID: PMC6489320 DOI: 10.1186/s13068-019-1445-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/18/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Solid-state fermentation (SSF) mimics the natural decay environment of soil fungi and can be employed to investigate the production of plant biomass-degrading enzymes. However, knowledge on the transcriptional regulation of fungal genes during SSF remains limited. Herein, transcriptional profiling was performed on the filamentous fungus Penicillium oxalicum strain HP7-1 cultivated in medium containing wheat bran plus rice straw (WR) under SSF (WR_SSF) and submerged fermentation (WR_SmF; control) conditions. Novel key transcription factors (TFs) regulating fungal cellulase and xylanase gene expression during SSF were identified via comparative transcriptomic and genetic analyses. RESULTS Expression of major cellulase genes was higher under WR_SSF condition than that under WR_SmF, but the expression of genes involved in the citric acid cycle was repressed under WR_SSF condition. Fifty-six candidate regulatory genes for cellulase production were screened out from transcriptomic profiling of P. oxalicum HP7-1 for knockout experiments in the parental strain ∆PoxKu70, resulting in 43 deletion mutants including 18 constructed in the previous studies. Enzyme activity assays revealed 14 novel regulatory genes involved in cellulase production in P. oxalicum during SSF. Remarkably, deletion of the essential regulatory gene PoxMBF1, encoding Multiprotein Bridging Factor 1, resulted in doubled cellulase and xylanase production at 2 days after induction during both SSF and SmF. PoxMBF1 dynamically and differentially regulated transcription of a subset of cellulase and xylanase genes during SSF and SmF, and conferred stress resistance. Importantly, PoxMBF1 bound specifically to the putative promoters of major cellulase and xylanase genes in vitro. CONCLUSIONS We revealed differential transcriptional regulation of P. oxalicum during SSF and SmF, and identified PoxMBF1, a novel TF that directly regulates cellulase and xylanase gene expression during SSF and SmF. These findings expand our understanding of regulatory mechanisms of cellulase and xylanase gene expression during fungal fermentation.
Collapse
Affiliation(s)
- Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Qi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Jiu-Xiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Xu-Zhong Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Hao Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Cheng-Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Feng-Fei Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Lu-Sheng Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| |
Collapse
|
11
|
Rascle C, Dieryckx C, Dupuy JW, Muszkieta L, Souibgui E, Droux M, Bruel C, Girard V, Poussereau N. The pH regulator PacC: a host-dependent virulence factor in Botrytis cinerea. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:555-568. [PMID: 30066486 DOI: 10.1111/1758-2229.12663] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/21/2018] [Indexed: 05/29/2023]
Abstract
The phytopathogenic fungus Botrytis cinerea is able to infect a wide variety of plants and plant tissues with differing chemical compositions. During its interaction with the host, this pathogen modulates its ambient pH by secreting acids or ammonia. In this work, we examined the Pal/Pac pathway, the fungal ambient pH-responsive signalling circuit, and investigated the role of the PacC transcription factor. Characterization of the BcpacC deletion mutant revealed an alteration of both fungal growth and virulence depending on the pH of the culture medium or of the host tissue. The pathogenicity of the mutant was altered on plants exhibiting a neutral pH and not on plants with acidic tissues. The capacity of the mutant to acidify its environment and, more particularly, to produce oxalic acid was affected, as was production of reactive oxygen species. Finally, proteomic profiling of the mutant secretome revealed significant changes in plant cell wall polysaccharides proteins and lipid degradation and oxidoreduction, highlighting the importance of BcPacC in the necrotrophic lifestyle of B. cinerea.
Collapse
Affiliation(s)
- Christine Rascle
- Univ Lyon, Université Lyon 1, CNRS, Bayer SAS, UMR5240, Microbiologie, Adaptation, Pathogénie, 14-18 impasse P. Baizet, F-69009, LYON, France
| | - Cindy Dieryckx
- Univ Lyon, Université Lyon 1, CNRS, Bayer SAS, UMR5240, Microbiologie, Adaptation, Pathogénie, 14-18 impasse P. Baizet, F-69009, LYON, France
| | - Jean William Dupuy
- Plateforme protéome, Centre de Génomique Fonctionnelle, Université de Bordeaux, Bordeaux, France
| | - Laetitia Muszkieta
- Univ Lyon, Université Lyon 1, CNRS, Bayer SAS, UMR5240, Microbiologie, Adaptation, Pathogénie, 14-18 impasse P. Baizet, F-69009, LYON, France
| | - Eytham Souibgui
- Univ Lyon, Université Lyon 1, CNRS, Bayer SAS, UMR5240, Microbiologie, Adaptation, Pathogénie, 14-18 impasse P. Baizet, F-69009, LYON, France
| | - Michel Droux
- Univ Lyon, Université Lyon 1, CNRS, Bayer SAS, UMR5240, Microbiologie, Adaptation, Pathogénie, 14-18 impasse P. Baizet, F-69009, LYON, France
| | - Christophe Bruel
- Univ Lyon, Université Lyon 1, CNRS, Bayer SAS, UMR5240, Microbiologie, Adaptation, Pathogénie, 14-18 impasse P. Baizet, F-69009, LYON, France
| | - Vincent Girard
- Univ Lyon, Université Lyon 1, CNRS, Bayer SAS, UMR5240, Microbiologie, Adaptation, Pathogénie, 14-18 impasse P. Baizet, F-69009, LYON, France
| | - Nathalie Poussereau
- Univ Lyon, Université Lyon 1, CNRS, Bayer SAS, UMR5240, Microbiologie, Adaptation, Pathogénie, 14-18 impasse P. Baizet, F-69009, LYON, France
| |
Collapse
|
12
|
Mäkelä MR, Aguilar-Pontes MV, van Rossen-Uffink D, Peng M, de Vries RP. The fungus Aspergillus niger consumes sugars in a sequential manner that is not mediated by the carbon catabolite repressor CreA. Sci Rep 2018; 8:6655. [PMID: 29703914 PMCID: PMC5923239 DOI: 10.1038/s41598-018-25152-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/17/2018] [Indexed: 11/09/2022] Open
Abstract
In nature, the fungus Aspergillus niger degrades plant biomass polysaccharides to monomeric sugars, transports them into its cells, and uses catabolic pathways to convert them into biochemical building blocks and energy. We show that when grown in liquid cultures, A. niger takes up plant-biomass derived sugars in a largely sequential manner. Interestingly, this sequential uptake was not mediated by the fungal general carbon catabolite repressor protein CreA. Furthermore, transcriptome analysis strongly indicated that the preferential use of the monomeric sugars is arranged at the level of transport, but it is not reflected in transcriptional regulation of sugar catabolism. Therefore, the results indicate that the regulation of sugar transport and catabolism are separate processes in A. niger.
Collapse
Affiliation(s)
- Miia R Mäkelä
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.,Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - María Victoria Aguilar-Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Diana van Rossen-Uffink
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Mao Peng
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands. .,Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
13
|
Comparison of the paralogous transcription factors AraR and XlnR in Aspergillus oryzae. Curr Genet 2018; 64:1245-1260. [PMID: 29654355 DOI: 10.1007/s00294-018-0837-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 10/17/2022]
Abstract
The paralogous transcription factors AraR and XlnR in Aspergillus regulate genes that are involved in degradation of cellulose and hemicellulose and catabolism of pentose. AraR and XlnR target the same genes for pentose catabolism but target different genes encoding enzymes for polysaccharide degradation. To uncover the relationship between these paralogous transcription factors, we examined their contribution to regulation of the PCP genes and compared their preferred recognition sequences. Both AraR and XlnR are involved in induction of all the pentose catabolic genes in A. oryzae except larA encoding L-arabinose reductase, which was regulated by AraR but not by XlnR. DNA-binding studies revealed that the recognition sequences of AraR and XlnR also differ only slightly; AraR prefers CGGDTAAW, while XlnR prefers CGGNTAAW. All the pentose catabolic genes possess at least one recognition site to which both AraR and XlnR can bind. Cooperative binding by the factors was not observed. Instead, they competed to bind to the shared sites. XlnR bound to the recognition sites mentioned above as a monomer, but bound to the sequence TTAGSCTAA on the xylanase promoters as a dimer. Consequently, AraR and XlnR have significantly similar, but not the same, DNA-binding properties. Such a slight difference in these paralogous transcription factors may lead to complex outputs in enzyme production depending on the concentrations of coexisting inducer molecules in the natural environment.
Collapse
|
14
|
Manfrão-Netto JHC, Mello-de-Sousa TM, Mach-Aigner AR, Mach RL, Poças-Fonseca MJ. The DNA-methyltransferase inhibitor 5-aza-2-deoxycytidine affects Humicola grisea enzyme activities and the glucose-mediated gene repression. J Basic Microbiol 2017; 58:144-153. [PMID: 29193198 DOI: 10.1002/jobm.201700415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 10/27/2017] [Accepted: 11/09/2017] [Indexed: 11/07/2022]
Abstract
Humicola grisea var. thermoidea (Hgvt) is a thermophilic ascomycete that produces lignocellulolytic enzymes and it is proposed for the conversion of agricultural residues into useful byproducts. Drugs that inhibit the DNA methyltransferases (DNMTs) activity are employed in epigenetic studies but nothing is known about a possible effect on the production of fungal enzymes. We evaluated the effect of 5-aza-2'-deoxycytidine (5-Aza; a chemical inhibitor of DNMTs activity) on the secreted enzyme activity and on the transcription of cellulase and xylanase genes from Hgvt grown in agricultural residues and in glucose. Upon cultivation on wheat bran (WB), the drug provoked an increase in the xylanase activity at 96 h. When Hgvt was grown in glucose (GLU), a repressor of Hgvt glycosyl hydrolase genes, 5-Aza led to increased transcript accumulation for the cellobiohydrolases and for the xyn2 xylanase genes. In WB, 5-Aza enhanced the expression of the transcription factor CreA gene. Growth on WB or GLU, in presence of 5-Aza, led to a significant increase in transcripts of the pH-response regulator PacC gene. To our knowledge, this is the first report on the effect of a DNMT inhibitor in the production of fungal plant cell wall degradation enzymes.
Collapse
Affiliation(s)
| | - Thiago M Mello-de-Sousa
- Research Area of Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Astrid R Mach-Aigner
- Research Area of Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Robert L Mach
- Research Area of Biochemical Technology, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Marcio J Poças-Fonseca
- Graduation Program in Molecular Biology, University of Brasilia, Brasilia-DF, Brazil.,Department of Genetics and Morphology, University of Brasilia, Brasilia-DF, Brazil
| |
Collapse
|
15
|
Virgilio S, Bertolini MC. Functional diversity in the pH signaling pathway: an overview of the pathway regulation in Neurospora crassa. Curr Genet 2017; 64:529-534. [DOI: 10.1007/s00294-017-0772-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 10/20/2017] [Accepted: 10/25/2017] [Indexed: 10/18/2022]
|
16
|
Borin GP, Sanchez CC, de Santana ES, Zanini GK, Dos Santos RAC, de Oliveira Pontes A, de Souza AT, Dal'Mas RMMTS, Riaño-Pachón DM, Goldman GH, Oliveira JVDC. Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei. BMC Genomics 2017; 18:501. [PMID: 28666414 PMCID: PMC5493111 DOI: 10.1186/s12864-017-3857-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/09/2017] [Indexed: 12/12/2022] Open
Abstract
Background Second generation (2G) ethanol is produced by breaking down lignocellulosic biomass into fermentable sugars. In Brazil, sugarcane bagasse has been proposed as the lignocellulosic residue for this biofuel production. The enzymatic cocktails for the degradation of biomass-derived polysaccharides are mostly produced by fungi, such as Aspergillus niger and Trichoderma reesei. However, it is not yet fully understood how these microorganisms degrade plant biomass. In order to identify transcriptomic changes during steam-exploded bagasse (SEB) breakdown, we conducted a RNA-seq comparative transcriptome profiling of both fungi growing on SEB as carbon source. Results Particular attention was focused on CAZymes, sugar transporters, transcription factors (TFs) and other proteins related to lignocellulose degradation. Although genes coding for the main enzymes involved in biomass deconstruction were expressed by both fungal strains since the beginning of the growth in SEB, significant differences were found in their expression profiles. The expression of these enzymes is mainly regulated at the transcription level, and A. niger and T. reesei also showed differences in TFs content and in their expression. Several sugar transporters that were induced in both fungal strains could be new players on biomass degradation besides their role in sugar uptake. Interestingly, our findings revealed that in both strains several genes that code for proteins of unknown function and pro-oxidant, antioxidant, and detoxification enzymes were induced during growth in SEB as carbon source, but their specific roles on lignocellulose degradation remain to be elucidated. Conclusions This is the first report of a time-course experiment monitoring the degradation of pretreated bagasse by two important fungi using the RNA-seq technology. It was possible to identify a set of genes that might be applied in several biotechnology fields. The data suggest that these two microorganisms employ different strategies for biomass breakdown. This knowledge can be exploited for the rational design of enzymatic cocktails and 2G ethanol production improvement. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3857-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gustavo Pagotto Borin
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Camila Cristina Sanchez
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Eliane Silva de Santana
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Guilherme Keppe Zanini
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Renato Augusto Corrêa Dos Santos
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Angélica de Oliveira Pontes
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Aline Tieppo de Souza
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Roberta Maria Menegaldo Tavares Soares Dal'Mas
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil
| | - Diego Mauricio Riaño-Pachón
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil.,Current address: Laboratório de Biologia de Sistemas Regulatórios, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748 - Butantã - São Paulo - SP, São Paulo, CEP 05508-000, Brazil
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av do Café S/N, Ribeirão Preto, CEP, São Paulo, 14040-903, Brazil
| | - Juliana Velasco de Castro Oliveira
- Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Av Giuseppe Maximo Scolfaro 10000, Campinas, São Paulo, Caixa Postal 6170, 13083-970, Brazil.
| |
Collapse
|
17
|
Conservation and diversity of the regulators of cellulolytic enzyme genes in Ascomycete fungi. Curr Genet 2017; 63:951-958. [DOI: 10.1007/s00294-017-0695-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 04/14/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023]
|
18
|
Campos Antoniêto AC, Ramos Pedersoli W, dos Santos Castro L, da Silva Santos R, Cruz AHDS, Nogueira KMV, Silva-Rocha R, Rossi A, Silva RN. Deletion of pH Regulator pac-3 Affects Cellulase and Xylanase Activity during Sugarcane Bagasse Degradation by Neurospora crassa. PLoS One 2017; 12:e0169796. [PMID: 28107376 PMCID: PMC5249074 DOI: 10.1371/journal.pone.0169796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 12/21/2016] [Indexed: 11/18/2022] Open
Abstract
Microorganisms play a vital role in bioethanol production whose usage as fuel energy is increasing worldwide. The filamentous fungus Neurospora crassa synthesize and secrete the major enzymes involved in plant cell wall deconstruction. The production of cellulases and hemicellulases is known to be affected by the environmental pH; however, the regulatory mechanisms of this process are still poorly understood. In this study, we investigated the role of the pH regulator PAC-3 in N. crassa during their growth on sugarcane bagasse at different pH conditions. Our data indicate that secretion of cellulolytic enzymes is reduced in the mutant Δpac-3 at alkaline pH, whereas xylanases are positively regulated by PAC-3 in acidic (pH 5.0), neutral (pH 7.0), and alkaline (pH 10.0) medium. Gene expression profiles, evaluated by real-time qPCR, revealed that genes encoding cellulases and hemicellulases are also subject to PAC-3 control. Moreover, deletion of pac-3 affects the expression of transcription factor-encoding genes. Together, the results suggest that the regulation of holocellulase genes by PAC-3 can occur as directly as in indirect manner. Our study helps improve the understanding of holocellulolytic performance in response to PAC-3 and should thereby contribute to the better use of N. crassa in the biotechnology industry.
Collapse
Affiliation(s)
- Amanda Cristina Campos Antoniêto
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Wellington Ramos Pedersoli
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lílian dos Santos Castro
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo da Silva Santos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Aline Helena da Silva Cruz
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Karoline Maria Vieira Nogueira
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Silva-Rocha
- Systems and Synthetic Biology Laboratory, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Roberto Nascimento Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
19
|
Benocci T, Aguilar-Pontes MV, Zhou M, Seiboth B, de Vries RP. Regulators of plant biomass degradation in ascomycetous fungi. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:152. [PMID: 28616076 PMCID: PMC5468973 DOI: 10.1186/s13068-017-0841-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/06/2017] [Indexed: 05/05/2023]
Abstract
Fungi play a major role in the global carbon cycle because of their ability to utilize plant biomass (polysaccharides, proteins, and lignin) as carbon source. Due to the complexity and heterogenic composition of plant biomass, fungi need to produce a broad range of degrading enzymes, matching the composition of (part of) the prevalent substrate. This process is dependent on a network of regulators that not only control the extracellular enzymes that degrade the biomass, but also the metabolic pathways needed to metabolize the resulting monomers. This review will summarize the current knowledge on regulation of plant biomass utilization in fungi and compare the differences between fungal species, focusing in particular on the presence or absence of the regulators involved in this process.
Collapse
Affiliation(s)
- Tiziano Benocci
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Maria Victoria Aguilar-Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Miaomiao Zhou
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Bernhard Seiboth
- Research Area Biochemical Technology, Institute of Chemical and Biological Engineering, TU Wien, 1060 Vienna, Austria
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
20
|
Yan YS, Zhao S, Liao LS, He QP, Xiong YR, Wang L, Li CX, Feng JX. Transcriptomic profiling and genetic analyses reveal novel key regulators of cellulase and xylanase gene expression in Penicillium oxalicum. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:279. [PMID: 29201143 PMCID: PMC5700522 DOI: 10.1186/s13068-017-0966-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 11/10/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND The transition to a more environmentally friendly economy has prompted studies of modern biorefineries, including the utilization of low-value lignocellulose. The major challenge facing the widespread application of biorefineries is the high cost of enzymes that can efficiently hydrolyze recalcitrant cellulose to sugars. Penicillium oxalicum produces large amounts of plant-cell-wall-degrading enzymes, but their production is tightly controlled by complex regulatory networks, resulting in low yields of the native enzymes. Regulatory genes have been the targets of genetic engineering to improve enzyme production in microorganisms. In this study, we used transcriptomic profiling and genetic analyses to screen for and identify novel key regulators of cellulase and xylanase gene expression in P. oxalicum. RESULTS A comparative analysis of the transcriptomes of P. oxalicum HP7-1 on different carbon sources, including glucose, wheat bran, and wheat bran plus Avicel, identified 40 candidate genes regulating the expression of cellulolytic enzyme genes. Deletion mutants of 31 candidate genes were constructed in P. oxalicum ∆PoxKu70 and 11 resultant mutants showed significant changes in their filter-paper cellulase production compared with the parental strain ∆PoxKu70. Among these 11 mutants, ΔPoxCxrA, ΔPoxCxrB, and ΔPoxNsdD showed the most significant reduction in the enzyme production (96.8, 75.9, and 58.5%, respectively). Ten of these 11 genes are here reported to be involved in cellulase production for the first time. Further tests revealed that ΔPoxCxrA, ΔPoxCxrB, and ΔPoxNsdD displayed significantly reduced xylanase production, whereas ΔPoxCxrA produced negligible xylanase. Interestingly, ΔPoxCxrB and ΔPoxNsdD showed significantly increased β-glucosidase production. Real-time quantitative reverse transcription-PCR and an electrophoretic mobility shift assay (EMSA) showed that PoxCxrA, PoxCxrB, and PoxNsdD regulate the expression of one another, but the mode of regulation changes dynamically during the growth of fungal cells in the presence of cellulose. EMSA showed that PoxCxrA, PoxCxrB, and PoxNsdD directly bind the putative promoters of major cellulase and xylanase genes. CONCLUSIONS We have detected and identified three key new regulatory genes, PoxCxrA, PoxCxrB, and PoxNsdD, that directly and indirectly regulate the expression of cellulase and xylanase genes in P. oxalicum. This study provides novel insights into the regulatory mechanisms of fungal cellulase and xylanase gene expression.
Collapse
Affiliation(s)
- Yu-Si Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Lu-Sheng Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Qi-Peng He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Ya-Ru Xiong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Long Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Cheng-Xi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004 Guangxi People’s Republic of China
| |
Collapse
|
21
|
Li N, Kunitake E, Aoyama M, Ogawa M, Kanamaru K, Kimura M, Koyama Y, Kobayashi T. McmA-dependent and -independent regulatory systems governing expression of ClrB-regulated cellulase and hemicellulase genes in Aspergillus nidulans. Mol Microbiol 2016; 102:810-826. [PMID: 27588830 DOI: 10.1111/mmi.13493] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 01/04/2023]
Abstract
Fungal cellulolytic and hemicellulolytic enzymes are promising tools for industrial hydrolysis of cellulosic biomass; however, the regulatory network underlying their production is not well understood. The recent discovery of the transcriptional activators ClrB and McmA in Aspergillus nidulans implied a novel regulatory mechanism driven by their interaction, experimental evidence for which was obtained from transcriptional and DNA-binding analyses in this study. It was found that ClrB was essential for induced expression of all the genes examined in this study, while McmA dependency of their expression was gene-dependent. DNA-binding studies revealed McmA assisted in the recruitment of ClrB to the cellulose-responsive element (CeRE) in the promoters of eglA and eglB, expression of which was significantly reduced in the mcmA mutant. The CCG triplet within the CeRE served as the recognition sequence for the ClrB monomer. In contrast, ClrB did not require McmA for binding as a homodimer to the CGGN8 CCG sequences in the promoter of mndB, expression of which was affected less in the mcmA mutant than in all other examined genes. Thus, there are two types of ClrB-mediated regulation: McmA-assisted and McmA-independent. This novel McmA-ClrB synergistic system provides new insights into the complex regulatory network involved in cellulase and hemicellulase production.
Collapse
Affiliation(s)
- Nuo Li
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, Aichi, 464-8601, Japan
| | - Emi Kunitake
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, Aichi, 464-8601, Japan
| | - Miki Aoyama
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, Aichi, 464-8601, Japan
| | - Masahiro Ogawa
- Noda Institute for Scientific Research, 399 Noda, Noda City, Chiba, 278-0037, Japan
| | - Kyoko Kanamaru
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, Aichi, 464-8601, Japan
| | - Makoto Kimura
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, Aichi, 464-8601, Japan
| | - Yasuji Koyama
- Noda Institute for Scientific Research, 399 Noda, Noda City, Chiba, 278-0037, Japan
| | - Tetsuo Kobayashi
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya-shi, Aichi, 464-8601, Japan
| |
Collapse
|