1
|
Corredor D, Duchicela J, Flores FJ, Maya M, Guerron E. Review of Explosive Contamination and Bioremediation: Insights from Microbial and Bio-Omic Approaches. TOXICS 2024; 12:249. [PMID: 38668472 PMCID: PMC11053648 DOI: 10.3390/toxics12040249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/07/2024] [Accepted: 01/28/2024] [Indexed: 04/29/2024]
Abstract
Soil pollution by TNT(2,4,6-trinitrotoluene), RDX(hexahydro-1,3,5-trinitro-1,3,5-triazacyclohexane), and HMX(octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), resulting from the use of explosives, poses significant challenges, leading to adverse effects such as toxicity and alteration of microbial communities. Consequently, there is a growing need for effective bioremediation strategies to mitigate this damage. This review focuses on Microbial and Bio-omics perspectives within the realm of soil pollution caused by explosive compounds. A comprehensive analysis was conducted, reviewing 79 articles meeting bibliometric criteria from the Web of Science and Scopus databases from 2013 to 2023. Additionally, relevant patents were scrutinized to establish a comprehensive research database. The synthesis of these findings serves as a critical resource, enhancing our understanding of challenges such as toxicity, soil alterations, and microbial stress, as well as exploring bio-omics techniques like metagenomics, transcriptomics, and proteomics in the context of environmental remediation. The review underscores the importance of exploring various remediation approaches, including mycorrhiza remediation, phytoremediation, bioaugmentation, and biostimulation. Moreover, an examination of patented technologies reveals refined and efficient processes that integrate microorganisms and environmental engineering. Notably, China and the United States are pioneers in this field, based on previous successful bioremediation endeavors. This review underscores research's vital role in soil pollution via innovative, sustainable bioremediation for explosives.
Collapse
Affiliation(s)
- Daniel Corredor
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas, ESPE, Sangolqui 171103, Ecuador;
| | - Jessica Duchicela
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas, ESPE, Sangolqui 171103, Ecuador;
| | - Francisco J. Flores
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas, ESPE, Sangolqui 171103, Ecuador;
- Centro de Investigación de Alimentos, CIAL, Facultad de Ciencias de la Ingeniería e Industrias, Universidad UTE, Quito 170147, Ecuador
| | - Maribel Maya
- Departamento de Ciencias Económicas, Administrativas y de Comercio, Universidad de las Fuerzas Armadas, ESPE, Sangolqui 171103, Ecuador;
| | - Edgar Guerron
- Departamento de Ciencias Exactas, Universidad de las Fuerzas Armadas, ESPE, Sangolqui 171103, Ecuador;
| |
Collapse
|
2
|
Waidner LA, Daniel CE, Kovar SE, Spain JC. Use of qPCR to monitor 2,4-dinitroanisole degrading bacteria in water and soil slurry cultures. J Ind Microbiol Biotechnol 2024; 51:kuae047. [PMID: 39580361 PMCID: PMC11631463 DOI: 10.1093/jimb/kuae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/22/2024] [Indexed: 11/25/2024]
Abstract
Prediction and process monitoring during natural attenuation, bioremediation, and biotreatment require effective strategies for detection and enumeration of the responsible bacteria. The use of 2,4-dinitroanisole (DNAN) as a component of insensitive munitions leads to environmental contamination of firing ranges and manufacturing waste streams. Nocardioides sp. strain JS1661 degrades DNAN under aerobic conditions via a pathway involving an unusual DNAN demethylase. We used the deeply branched sequences of DNAN degradation functional genes as a target for development of a molecular method for detection of the bacteria. A qPCR assay was designed for the junction between dnhA and dnhB, the adjacent genes encoding DNAN demethylase. The assay allowed reproducible enumeration of JS1661 during growth in liquid media and soil slurries. Results were consistent with biodegradation of DNAN, accumulation of products, and classical biomass estimates, including most probable number and OD600. The results provide a sensitive and specific molecular method for prediction of degradation potential and process evaluation during degradation of DNAN. ONE-SENTENCE SUMMARY A unique target sequence in functional genes enables the design of a simple and specific qPCR assay for enumeration of aerobic 2,4-dinitroanisole-degrading bacteria in soil and water.
Collapse
Affiliation(s)
- Lisa A Waidner
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Pkwy, Building 58, Pensacola, USA
| | - Carrie E Daniel
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Pkwy, Building 58, Pensacola, USA
| | - Sarah E Kovar
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Pkwy, Building 58, Pensacola, USA
| | - Jim C Spain
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Pkwy, Building 58, Pensacola, USA
| |
Collapse
|
3
|
Yang X, Zhao SP, Xi HL. Physiological response mechanism of alfalfa seedlings roots to typical explosive cyclotrimethylene trinitramine (RDX). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 200:107756. [PMID: 37216824 DOI: 10.1016/j.plaphy.2023.107756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023]
Abstract
This study explored the physiological response mechanism of alfalfa seedlings roots to a typical explosive, cyclotrimethylenetrinitramine (RDX), so as to improve the efficiency of phytoremediation. The response of plants to different levels of RDX were analyzed from the perspectives of mineral nutrition and metabolic networks. Exposure to RDX at 10-40 mg L-1 had no significant effect on root morphology, but the plant roots significantly accumulated RDX in solution (17.6-40.9%). A 40 mg L-1 RDX exposure induced cell gap expansion and disrupted root mineral metabolism, The key response elements, P, Cu, and Mg, were significantly increased by 1.60-1.66, 1.74-1.90, and 1.85-2.50 times, respectively. The 40 mg L-1 RDX exposure also significantly disturbed root basal metabolism, resulting in a total of 197 differentially expressed metabolites (DEMs). The main response metabolites were lipids and lipid-like molecules, and the key physiological response pathways were arginine biosynthesis and aminoacyl-tRNA biosynthesis. A total of 19 DEMs in root metabolic pathways, including L-arginine, L-asparagine, and ornithine, were significantly responsive to RDX exposure. The physiological response mechanism of roots to RDX therefore involve mineral nutrition and metabolic networks and are of great significance for improving phytoremediation efficiency.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - San-Ping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Hai-Ling Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
4
|
Cupples AM, Li Z, Wilson FP, Ramalingam V, Kelly A. In silico analysis of soil, sediment and groundwater microbial communities to predict biodegradation potential. J Microbiol Methods 2022; 202:106595. [DOI: 10.1016/j.mimet.2022.106595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 12/27/2022]
|
5
|
Pal Y, Mayilraj S, Krishnamurthi S. Uncovering the structure and function of specialist bacterial lineages in environments routinely exposed to explosives. Lett Appl Microbiol 2022; 75:1433-1448. [PMID: 35972393 DOI: 10.1111/lam.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 07/30/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Environmental contamination by hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX), and Octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX), the two most widely used compounds for military operations, is a long-standing problem at the manufacturing and decommissioning plants. Since explosives contamination has previously been shown to favour the growth of specific bacterial communities, the present study attempts to identify the specialist bacterial communities and their potential functional and metabolic roles by using amplicon targeted and whole-metagenome sequencing approaches (WMS) in samples collected from two distinct explosives manufacturing sites. We hypothesize that the community structure and functional attributes of bacterial population are substantially altered by the concentration of explosives and physicochemical conditions. The results highlight the predominance of Planctomycetes in contrast to previous reports from similar habitats. The detailed phylogenetic analysis revealed the presence of OTU's related to bacterial members known for their explosives degradation. Further, the functional and metabolic analyses highlighted the abundance of putative genes and unidentified taxa possibly associated with xenobiotic biodegradation. Our findings suggest that microbial species capable of utilizing explosives as a carbon, energy, or electron source are favoured by certain selective pressures based on the prevailing physicochemical and geographical conditions.
Collapse
Affiliation(s)
- Yash Pal
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh, -160036
| | - Shanmugam Mayilraj
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh, -160036.,Director of Research, Bentoli AgriNutrition, India Pvt Ltd., 3F2, Third Floor, Front Block, Metro Tower, Building No.115, Poonamallee, High Road, Chennai, - 600 084
| | - Srinivasan Krishnamurthi
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR-Institute of Microbial Technology, Sec-39A, Chandigarh, -160036
| |
Collapse
|
6
|
Predicted functional genes for the biodegradation of xenobiotics in groundwater and sediment at two contaminated naval sites. Appl Microbiol Biotechnol 2022; 106:835-853. [DOI: 10.1007/s00253-021-11756-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/23/2021] [Accepted: 12/27/2021] [Indexed: 11/02/2022]
|
7
|
Dang H, Cupples AM. Diversity and abundance of the functional genes and bacteria associated with RDX degradation at a contaminated site pre- and post-biostimulation. Appl Microbiol Biotechnol 2021; 105:6463-6475. [PMID: 34357428 DOI: 10.1007/s00253-021-11457-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 11/28/2022]
Abstract
Bioremediation is becoming an increasingly popular approach for the remediation of sites contaminated with the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Multiple lines of evidence are often needed to assess the success of such approaches, with molecular studies frequently providing important information on the abundance of key biodegrading species. Towards this goal, the current study utilized shotgun sequencing to determine the abundance and diversity of functional genes (xenA, xenB, xplA, diaA, pnrB, nfsI) and species previously associated with RDX biodegradation in groundwater before and after biostimulation at an RDX-contaminated Navy Site. For this, DNA was extracted from four and seven groundwater wells pre- and post-biostimulation, respectively. From a set of 65 previously identified RDX degraders, 31 were found within the groundwater samples, with the most abundant species being Variovorax sp. JS1663, Pseudomonas fluorescens, Pseudomonas putida, and Stenotrophomonas maltophilia. Further, 9 RDX-degrading species significantly (p<0.05) increased in abundance following biostimulation. Both the sequencing data and qPCR indicated that xenA and xenB exhibited the highest relative abundance among the six genes. Several genes (diaA, nsfI, xenA, and pnrB) exhibited higher relative abundance values in some wells following biostimulation. The study provides a comprehensive approach for assessing biomarkers during RDX bioremediation and provides evidence that biostimulation generated a positive impact on a set of key species and genes. KEY POINTS: • A co-occurrence network indicated diverse RDX degraders. • >30 RDX-degrading species were detected. • Nine RDX-degrading species increased following biostimulation. • Sequencing and high-throughput qPCR indicated that xenA and xenB were most abundant.
Collapse
Affiliation(s)
- Hongyu Dang
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, Michigan, 48824, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, Michigan, 48824, USA.
| |
Collapse
|
8
|
Khan MI, Yoo K, Kim S, Cheema SA, Bashir S, Park J. A Sporolactobacillus-, Clostridium-, and Paenibacillus- Dominant Microbial Consortium Improved Anaerobic RDX Detoxification by Starch Addition. J Microbiol Biotechnol 2020; 30:839-847. [PMID: 32160699 PMCID: PMC9728379 DOI: 10.4014/jmb.1910.10034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/05/2020] [Indexed: 12/15/2022]
Abstract
In the present study, an anaerobic microbial consortium for the degradation of hexahydro-1,3,5- trinitro-1,3,5-triazine (RDX) was selectively enriched with the co-addition of RDX and starch under nitrogen-deficient conditions. Microbial growth and anaerobic RDX biodegradation were effectively enhanced by the co-addition of RDX and starch, which resulted in increased RDX biotransformation to nitroso derivatives at a greater specific degradation rate than those for previously reported anaerobic RDX-degrading bacteria (isolates). The accumulation of the most toxic RDX degradation intermediate (MNX [hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine]) was significantly reduced by starch addition, suggesting improved RDX detoxification by the co-addition of RDX and starch. The subsequent MiSeq sequencing that targeted the bacterial 16S rRNA gene revealed that the Sporolactobacillus, Clostridium, and Paenibacillus populations were involved in the enhanced anaerobic RDX degradation. These results suggest that these three bacterial populations are important for anaerobic RDX degradation and detoxification. The findings from this work imply that the Sporolactobacillus, Clostridium, and Paenibacillus dominant microbial consortium may be valuable for the development of bioremediation resources for RDX-contaminated environments.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Department of Civil and Environmental Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea,Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan,Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research- UFZ, 0318 Leipzig, Germany
| | - Keunje Yoo
- Department of Civil and Environmental Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea,Department of Environmental Engineering, College of Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Seonghoon Kim
- Department of Civil and Environmental Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad 8040, Pakistan
| | - Safdar Bashir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Joonhong Park
- Department of Civil and Environmental Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea,Corresponding author Phone: +82-2-2123-7768 Fax: +82-2-312-5798 E-mail:
| |
Collapse
|
9
|
Yadav S, Sharma A, Khan MA, Sharma R, Celin M, Malik A, Sharma S. Enhancing hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) remediation through water-dispersible Microbacterium esteraromaticum granules. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 264:110446. [PMID: 32250888 DOI: 10.1016/j.jenvman.2020.110446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/21/2020] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
In the current manuscript, we explored the remediation potential of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Gram-positive Microbacterium esteraromaticum 12849. The strain detoxified 70.9 and 63.93% RDX in minimal nutrient medium and soil, respectively. Subsequently, the strain 12849 was formulated in form of water-dispersible granules (WDG) using talcum powder and alginic acid as inert ingredients. During the microcosm study, WDG exhibited 8.98% enhanced RDX degradation in contrast to the unformulated Microbacterium esteraromaticum. The LC-MS analysis revealed the presence of two intermediates, namely N-methyl-N, N'-dinitromethanediamine, and methylenedintramine, during the RDX degradation by strain 12849 in soil. Interestingly, no significant difference was observed in the rate of RDX degradation by strain 12849 due to the formulation process. The first-order kinetics was seen in RDX degradation with a degradation coefficient of 0.04 and 0.0339 day-1 by formulated and unformulated strain, respectively. The current investigation implies M. esteraromaticum as a potential microbe for RDX degradation and opens up the possibility of exploiting it in its effective WDG form for explosive contaminated sites.
Collapse
Affiliation(s)
- Sonal Yadav
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110016, India
| | - Abhishek Sharma
- Amity Food and Agriculture Foundation, Amity University Uttar Pradesh, Noida, 201313, India
| | - Mohd Aamir Khan
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110016, India
| | - Ranju Sharma
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110016, India
| | - Mary Celin
- Centre for Fire, Explosives and Environment Safety, Defence Research & Development Organization, Min. of Defence, Brig. Mazumdar Road, Delhi, 110 054, India
| | - Anushree Malik
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110016, India
| | - Satyawati Sharma
- Centre for Rural Development and Technology, Indian Institute of Technology Delhi, Hauz Khas, Delhi, 110016, India.
| |
Collapse
|
10
|
Collier JM, Chai B, Cole JR, Michalsen MM, Cupples AM. High throughput quantification of the functional genes associated with RDX biodegradation using the SmartChip real-time PCR system. Appl Microbiol Biotechnol 2019; 103:7161-7175. [PMID: 31352507 DOI: 10.1007/s00253-019-10022-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023]
Abstract
The explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a contaminant at many military sites. RDX bioremediation as a clean-up approach has been gaining popularity because of cost benefits compared to other methods. RDX biodegradation has primarily been linked to six functional genes (diaA, nfsI, pnrB, xenA, xenB, xplA). However, current methods for gene quantification have the risk of false negative results because of low theoretical primer coverage. To address this, the current study designed new primer sets using the EcoFunPrimer tool based on sequences collected by the Functional Gene Pipeline and Repository and these were verified based on residues and motifs. The primers were also designed to be compatible with the SmartChip Real-Time PCR system, a massively parallel singleplex PCR platform (high throughput qPCR), that enables quantitative gene analysis using 5,184 simultaneous reactions on a single chip with low volumes of reagents. This allows multiple genes and/or multiple primer sets for a single gene to be used with multiple samples. Following primer design, the six genes were quantified in RDX-contaminated groundwater (before and after biostimulation), RDX-contaminated sediment, and uncontaminated samples. The final 49 newly designed primer sets improved upon the theoretical coverage of published primer sets, and this corresponded to more detections in the environmental samples. All genes, except diaA, were detected in the environmental samples, with xenA and xenB being the most predominant. In the sediment samples, nfsI was the only gene detected. The new approach provides a more comprehensive tool for understanding RDX biodegradation potential at contaminated sites.
Collapse
Affiliation(s)
- J M Collier
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA
| | - B Chai
- Department of Plant, Soil and Microbial Sciences, Plant and Soil Sciences Building, 1066 Bogue St., East Lansing, MI, 48824, USA
| | - J R Cole
- Department of Plant, Soil and Microbial Sciences, Plant and Soil Sciences Building, 1066 Bogue St., East Lansing, MI, 48824, USA
| | - M M Michalsen
- U.S. Army Engineer Research Development Center, 4735 E. Marginal Way S., Seattle, WA, 98134, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA.
| |
Collapse
|
11
|
Effects of chitin and temperature on sub-Arctic soil microbial and fungal communities and biodegradation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitrotoluene (DNT). Biodegradation 2019; 30:415-431. [DOI: 10.1007/s10532-019-09884-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/19/2019] [Indexed: 02/06/2023]
|
12
|
Dong W, Chen S, Jin S, Chen M, Yan B, Chen Y. Effect of Sodium Alginate on the Morphology and Properties of High Energy Insensitive Explosive TKX‐50. PROPELLANTS EXPLOSIVES PYROTECHNICS 2019. [DOI: 10.1002/prep.201800279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wenbo Dong
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing P.R. China
| | - Shusen Chen
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing P.R. China
| | - Shaohua Jin
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing P.R. China
| | - Minglei Chen
- Research InstituteGansu Yinguang Chemical Industry Group Co., Ltd. Baiyin P.R. China
| | - Bo Yan
- Research InstituteGansu Yinguang Chemical Industry Group Co., Ltd. Baiyin P.R. China
| | - Yu Chen
- School of Materials Science and EngineeringBeijing Institute of Technology Beijing P.R. China
| |
Collapse
|
13
|
Chatterjee S, Deb U, Datta S, Walther C, Gupta DK. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation. CHEMOSPHERE 2017; 184:438-451. [PMID: 28618276 DOI: 10.1016/j.chemosphere.2017.06.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/10/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
Explosive materials are energetic substances, when released into the environment, contaminate by posing toxic hazards to environment and biota. Throughout the world, soils are contaminated by such contaminants either due to manufacturing operations, military activities, conflicts of different levels, open burning/open detonation (OB/OD), dumping of munitions etc. Among different forms of chemical explosives, 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine (HMX) are most common. These explosives are highly toxic as USEPA has recommended restrictions for lifetime contact through drinking water. Although, there are several utilitarian aspects in anthropogenic activities, however, effective remediation of explosives is very important. This review article emphasizes the details of appropriate practices to ameliorate the contamination. Critical evaluation has also been made to encompass the recent knowledge and advancement about bioremediation and phytoremediation of explosives (especially TNT, RDX and HMX) along with the molecular mechanisms of biodegradation.
Collapse
Affiliation(s)
- Soumya Chatterjee
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, 784001, Assam, India
| | - Utsab Deb
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, 784001, Assam, India
| | - Sibnarayan Datta
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, 784001, Assam, India
| | - Clemens Walther
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), Herrenhäuser Str. 2, Gebäude 4113, 30419, Hannover, Germany
| | - Dharmendra K Gupta
- Gottfried Wilhelm Leibniz Universität Hannover, Institut für Radioökologie und Strahlenschutz (IRS), Herrenhäuser Str. 2, Gebäude 4113, 30419, Hannover, Germany.
| |
Collapse
|
14
|
Starke R, Müller M, Gaspar M, Marz M, Küsel K, Totsche KU, von Bergen M, Jehmlich N. Candidate Brocadiales dominates C, N and S cycling in anoxic groundwater of a pristine limestone-fracture aquifer. J Proteomics 2017; 152:153-160. [DOI: 10.1016/j.jprot.2016.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/28/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022]
|
15
|
Wang D, Boukhalfa H, Marina O, Ware DS, Goering TJ, Sun F, Daligault HE, Lo CC, Vuyisich M, Starkenburg SR. Biostimulation and microbial community profiling reveal insights on RDX transformation in groundwater. Microbiologyopen 2016; 6. [PMID: 27860341 PMCID: PMC5387309 DOI: 10.1002/mbo3.423] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/29/2016] [Accepted: 10/06/2016] [Indexed: 11/06/2022] Open
Abstract
Hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX) is a high explosive released to the environment as a result of weapons manufacturing and testing worldwide. At Los Alamos National Laboratory, the Technical Area (TA) 16 260 Outfall discharged high‐explosives‐bearing water from a high‐explosives‐machining facility to Cañon de Valle during 1951 through 1996. These discharges served as a primary source of high‐explosives and inorganic‐element contamination in the area. Data indicate that springs, surface water, alluvial groundwater, and perched‐intermediate groundwater contain explosive compounds, including RDX (hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine); HMX (octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine); and TNT (2,4,6‐trinitrotoluene). RDX has been detected in the regional aquifer in several wells, and a corrective measures evaluation is planned to identify remedial alternatives to protect the regional aquifer. Perched‐intermediate groundwater at Technical Area 16 is present at depths from 650 ft to 1200 ft bgs. In this study, we examined the microbial diversity in a monitoring well completed in perched‐intermediate groundwater contaminated by RDX, and examined the response of the microbial population to biostimulation under varying geochemical conditions. Results show that the groundwater microbiome was dominated by Actinobacteria and Proteobacteria. A total of 1,605 operational taxonomic units (OTUs) in 96 bacterial genera were identified. Rhodococcus was the most abundant genus (30.6%) and a total of 46 OTUs were annotated as Rhodococcus. One OTU comprising 25.2% of total sequences was closely related to a RDX ‐degrading strain R. erythropolis HS4. A less abundant OTU from the Pseudomonas family closely related to RDX‐degrading strain P. putida II‐B was also present. Biostimulation significantly enriched Proteobacteria but decreased/eliminated the population of Actinobacteria. Consistent with RDX degradation, the OTU closely related to the RDX‐degrading P. putida strain II‐B was specifically enriched in the RDX‐degrading samples. Analysis of the accumulation of RDX‐degradation products reveals that during active RDX degradation, there is a transient increase in the concentration of the degradation products MNX, DNX, TNX, and NDAB. The accumulation of these degradation products suggests that RDX is degraded via sequential reduction of the nitro functional groups followed by abiotic ring‐cleavage. The results suggest that strict anaerobic conditions are needed to stimulate RDX degradation under the TA‐16 site‐specific conditions.
Collapse
Affiliation(s)
- Dongping Wang
- Earth Systems Observations EES-14, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Hakim Boukhalfa
- Earth Systems Observations EES-14, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Oana Marina
- Earth Systems Observations EES-14, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Doug S Ware
- Earth Systems Observations EES-14, Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Tim J Goering
- Environmental Programs ADEP, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Fengjie Sun
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, USA
| | - Hajnalka E Daligault
- Bioenergy and Biome Sciences, Biology Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Chien-Chi Lo
- Bioenergy and Biome Sciences, Biology Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Momchilo Vuyisich
- Bioenergy and Biome Sciences, Biology Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shawn R Starkenburg
- Bioenergy and Biome Sciences, Biology Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|