1
|
Wang H, Zhu B. Directed preparation of algal oligosaccharides with specific structures by algal polysaccharide degrading enzymes. Int J Biol Macromol 2024; 277:134093. [PMID: 39053825 DOI: 10.1016/j.ijbiomac.2024.134093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
Seaweed polysaccharides have a wide range of sources and rich content, with various biological activities such as anti-inflammatory, anti-tumor, anticoagulant, and blood pressure lowering. They can be applied in fields such as food, agriculture, and medicine. However, the poor solubility of macromolecular seaweed polysaccharides limits their further application. Reports have shown that some biological activities of seaweed oligosaccharides are more extensive and superior to that of seaweed polysaccharides. Therefore, reducing the degree of polymerization of polysaccharides will be the key to the high value utilization of seaweed polysaccharide resources. There are three main methods for degrading algal polysaccharides into algal oligosaccharides, physical, chemical and enzymatic degradation. Among them, enzymatic degradation has been a hot research topic in recent years. Various types of algal polysaccharide hydrolases and related glycosidases are powerful tools for the preparation of algal oligosaccharides, including α-agarases, β-agaroses, α-neoagarose hydrolases and β-galactosidases that are related to agar, κ-carrageenases, ι-carrageenases and λ-carrageenases that are related to carrageenan, β-porphyranases that are related to porphyran, funoran hydrolases that are related to funoran, alginate lyases that are related to alginate and ulvan lyases related to ulvan. This paper describes the bioactivities of agar oligosaccharide, carrageenan oligosaccharide, porphyran oligosaccharide, funoran oligosaccharide, alginate oligosaccharide and ulvan oligosaccharide and provides a detailed review of the progress of research on the enzymatic preparation of these six oligosaccharides. At the same time, the problems and challenges faced are presented to guide and improve the preparation and application of algal oligosaccharides in the future.
Collapse
Affiliation(s)
- Hui Wang
- College of Food Science and Light Industry, Nanjing Tech University, 211086, China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, 211086, China.
| |
Collapse
|
2
|
Praiboon J, Chantorn S, Krangkratok W, Choosuwan P, La-ongkham O. Evaluating the Prebiotic Properties of Agar Oligosaccharides Obtained from the Red Alga Gracilaria fisheri via Enzymatic Hydrolysis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3958. [PMID: 38068595 PMCID: PMC10708334 DOI: 10.3390/plants12233958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 10/16/2024]
Abstract
Currently, the demand in the food market for oligosaccharides with biological activities is rapidly increasing. In this study, agar polysaccharides from Gracilaria fisheri were treated with β-agarases and hydrolyzed to agar oligosaccharides (AOSs). High-performance anion-exchange chromatography/pulsed amperometric detection (HPAEC-PAD), Fourier-transform infrared spectroscopy (FT-IR), and gel permeation chromatography (GPC), were employed to analyze the chemical characteristics of AOSs. The FT-IR spectra revealed that the enzymatic hydrolysis had no effect on specific functional groups in the AOS molecule. To investigate the prebiotic and pathogen inhibitory effects of AOSs, the influence of AOSs on the growth of three probiotic and two pathogenic bacteria was examined. The gastrointestinal tolerance of probiotics in the presence of AOSs was also investigated. AOSs enhanced the growth of Lactobacillus plantarum by 254%, and inhibited the growth of Bacillus cereus by 32.80%, and Escherichia coli by 58.94%. The highest survival rates of L. plantarum and L. acidophilus were maintained by AOSs in the presence of α-amylase and HCl under simulated gastrointestinal conditions. This study demonstrates that AOSs from G. fisheri exhibit potential as a prebiotic additive in foods.
Collapse
Affiliation(s)
- Jantana Praiboon
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Sudathip Chantorn
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Pathum Thani 121200, Thailand
| | - Weerada Krangkratok
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Centre, Pathum Thani 121200, Thailand
| | - Pradtana Choosuwan
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Orawan La-ongkham
- Institute of Food Research and Product Development, Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
3
|
Zhang M, Wang J, Zeng R, Wang D, Wang W, Tong X, Qu W. Agarose-Degrading Characteristics of a Deep-Sea Bacterium Vibrio Natriegens WPAGA4 and Its Cold-Adapted GH50 Agarase Aga3420. Mar Drugs 2022; 20:692. [PMID: 36355015 PMCID: PMC9698624 DOI: 10.3390/md20110692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/23/2023] Open
Abstract
Up until now, the characterizations of GH50 agarases from Vibrio species have rarely been reported compared to GH16 agarases. In this study, a deep-sea strain, WPAGA4, was isolated and identified as Vibrio natriegens due to the maximum similarity of its 16S rRNA gene sequence, the values of its average nucleotide identity, and through digital DNA-DNA hybridization. Two circular chromosomes in V. natriegens WPAGA4 were assembled. A total of 4561 coding genes, 37 rRNA, 131 tRNA, and 59 other non-coding RNA genes were predicted in the genome of V. natriegens WPAGA4. An agarase gene belonging to the GH50 family was annotated in the genome sequence and expressed in E. coli cells. The optimum temperature and pH of the recombinant Aga3420 (rAga3420) were 40 °C and 7.0, respectively. Neoagarobiose (NA2) was the only product during the degradation process of agarose by rAga3420. rAga3420 had a favorable stability following incubation at 10-30 °C for 50 min. The Km, Vmax, and kcat values of rAga3420 were 2.8 mg/mL, 78.1 U/mg, and 376.9 s-1, respectively. rAga3420 displayed cold-adapted properties as 59.7% and 41.2% of the relative activity remained at 10 3 °C and 0 °C, respectively. This property ensured V. natriegens WPAGA4 could degrade and metabolize the agarose in cold deep-sea environments and enables rAga3420 to be an appropriate industrial enzyme for NA2 production, with industrial potential in medical and cosmetic fields.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Jianxin Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Runying Zeng
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| | - Dingquan Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Wenxin Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Xiufang Tong
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| | - Wu Qu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China
| |
Collapse
|
4
|
Wang J, Li Y, Yang Z, Sun T, Yu X, Zhao Y, Tang X, Xiao H. Sex plays a role in the construction of epiphytic bacterial communities on the algal bodies and receptacles of Sargassum thunbergii. Front Microbiol 2022; 13:935222. [PMID: 35958132 PMCID: PMC9360977 DOI: 10.3389/fmicb.2022.935222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022] Open
Abstract
The community structures of epiphytic bacteria on the surface of macroalgae are closely related to their host algae, but there is a lack of research on the differences between the epiphytic bacterial communities of male and female algae and their reproductive tissues. In this study, high-throughput sequencing was used to compare epiphytic bacterial community structures on the intertidal macroalgae Sargassum thunbergii and their receptacles between male and female samples. The epiphytic bacteria on the male and female algal bodies and receptacles had similar community structures with a large number of shared bacteria, but the samples clearly clustered separately, and the abundances of dominant taxa, specific bacteria, and indicator species differed, indicating that epiphytic bacterial communities differed significantly between the male and female S. thunbergii and their receptacles. In addition, the abundance of many predicted functional genes was significantly different between epiphytic bacteria on male and female algal bodies and receptacles, especially metabolism-related genes, and the abundances of predicted functional genes of epiphytic bacteria were significantly higher on both types of male samples than on female samples. Our study confirmed that the sex of the host algae influenced the epiphytic bacterial community structures on algae and algal reproductive tissues, and this role was mainly related to the host metabolism. The results reveal the role of host plant sex in the formation of epiphytic bacterial communities. These findings are helpful for obtaining an in-depth understanding of the construction mechanism of algae-associated bacteria.
Collapse
Affiliation(s)
- Jing Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yang Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Zhibo Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Tao Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinlong Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yayun Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Xuexi Tang,
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Hui Xiao,
| |
Collapse
|
5
|
Zheng Y, Li Y, Yang Y, Zhang Y, Wang D, Wang P, Wong ACY, Hsieh YSY, Wang D. Recent Advances in Bioutilization of Marine Macroalgae Carbohydrates: Degradation, Metabolism, and Fermentation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1438-1453. [PMID: 35089725 DOI: 10.1021/acs.jafc.1c07267] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Marine macroalgae are considered renewable natural resources due to their high carbohydrate content, which gives better utilization value in biorefineries and higher value conversion than first- and second-generation biomass. However, due to the diverse composition, complex structure, and rare metabolic pathways of macroalgae polysaccharides, their bioavailability needs to be improved. In recent years, enzymes and pathways related to the degradation and metabolism of macroalgae polysaccharides have been continuously developed, and new microbial fermentation platforms have emerged. Aiming at the bioutilization and transformation of macroalgae resources, this review describes the latest research results from the direction of green degradation, biorefining, and metabolic pathway design, including summarizing the the latest biorefining technology and the fermentation platform design of agarose, alginate, and other polysaccharides. This information will provide new research directions and solutions for the biotransformation and utilization of marine macroalgae.
Collapse
Affiliation(s)
- Yuting Zheng
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yanping Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuanyuan Yang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ye Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Di Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Peiyao Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Ann C Y Wong
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan
| | - Yves S Y Hsieh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110301, Taiwan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, 11421 Stockholm, Sweden
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Xu J, Cui Z, Zhang W, Lu J, Lu X, Yu W. Characterizing of a new α-agarase AgaE from Thalassomonas sp. LD5 and probing its catalytically essential residues. Int J Biol Macromol 2022; 194:50-57. [PMID: 34863832 DOI: 10.1016/j.ijbiomac.2021.11.194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/15/2021] [Accepted: 11/28/2021] [Indexed: 11/26/2022]
Abstract
A new α-agarase AgaE belonging to glycoside hydrolase (GH) family 96 was identified and cloned from marine bacterium Thalassomonas sp. LD5. AgaE consists of 926 amino acids with a theoretical molecular mass of 97 kDa. The optimum temperature and pH for recombinant AgaE were 35 °C and 7.0, respectively. In contrast to known α-agarases, the activity of AgaE does not depend on Ca2+, but on Na+. Thin-layer chromatography and 13C NMR analysis revealed that AgaE endohydrolytic of agarose to produce agarotetraose and agarohexaose as the final main products. Extensive site-directed mutagenesis studies on the conserved carboxylic amino acids of GH96 revealed two essential amino acids for AgaE, D779 and D781. Replacing D779 with G779 leads to complete inactivation of the enzyme, while D781G results in 70% loss of activity. Later studies showed that site D781 involved in the binding of Na+, and its mutation raised the optimal concentration of Na+ 4 times higher than that of the wild type. However, attempts to rescue the mutant's activities with sodium azide were failed. Kinetic parameters comparison of AgaE, AgaD, another α-agarase from LD5, and their mutants revealed that the former aspartic acid plays critical role in the catalysis.
Collapse
Affiliation(s)
- Jingnan Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Key Laboratory of Marine Drugs, Chinese Ministry of Education, China
| | - Zibo Cui
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Key Laboratory of Marine Drugs, Chinese Ministry of Education, China
| | - Weibin Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Key Laboratory of Marine Drugs, Chinese Ministry of Education, China
| | - Jingxuan Lu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Key Laboratory of Marine Drugs, Chinese Ministry of Education, China
| | - Xinzhi Lu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Key Laboratory of Marine Drugs, Chinese Ministry of Education, China.
| | - Wengong Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Key Laboratory of Marine Drugs, Chinese Ministry of Education, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, China.
| |
Collapse
|
7
|
Dong C, Lin B, Song Y, Peng T, Zhong M, Li J, Hu Z. Characterization and activity enhancement of a novel exo-type agarase Aga575 from Aquimarina agarilytica ZC1. Appl Microbiol Biotechnol 2021; 105:8287-8296. [PMID: 34605970 DOI: 10.1007/s00253-021-11553-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/22/2021] [Accepted: 08/25/2021] [Indexed: 01/14/2023]
Abstract
The novel β-agarase gene aga575 from the agarolytic bacterium Aquimarina agarilytica ZC1 is composed of 2142 bp, and the encoded protein Aga575 has the highest amino acid sequence homology of only 65.2% with known agarases. Though carrying a domain of glycoside hydrolase family 42 in the C-terminal, Aga575 should belong to glycoside hydrolase family 50 according to the phylogenetic analysis. Gene aga575 was successfully cloned and overexpressed in Escherichia coli Rosetta (DE3) cells. The recombinant protein had the maximal agarase activity at pH 8.0 and 37 °C. The values Km and Vmax toward agarose were 8.4 mg/mL and 52.2 U/mg, respectively. Aga575 hydrolyzed agarose and neoagarooligosaccharides to yield neoagarobiose as the sole product. The agarose hydrolysis pattern of Aga575 indicated that it was an exo-type β-agarase. Random mutagenesis was carried out to obtain two beneficial mutants M1 (R534G) and M2 (S4R-R424G) with higher activities. The results showed that the agarase activity of mutant M1 and M2 reached 162% and 192% of the wild-type agarase Aga575, respectively. Moreover, the activity of the mixed mutant M1/M2 (S4R-R424G-R534G) increased to 227%. KEY POINTS: • Aga575 is a novel exo-type β-agarase degrading agarose to yield neoagarobiose as the sole product. • Though owning a domain of glycoside hydrolase family GH42, Aga575 should belong to family GH50. • The agarase activity of one mutant increased to 227% of the wild-type Aga575.
Collapse
Affiliation(s)
- Chaonan Dong
- Department of Biology, Shantou University, Shantou, 515063, China
| | - Bokun Lin
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, China.
| | - Yan Song
- Department of Biology, Shantou University, Shantou, 515063, China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, 515063, China
| | - Mingqi Zhong
- Department of Biology, Shantou University, Shantou, 515063, China
| | - Jin Li
- Department of Biology, Shantou University, Shantou, 515063, China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, 515063, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, China.
| |
Collapse
|
8
|
Wang W, Wang J, Yan R, Zeng R, Zuo Y, Wang D, Qu W. Expression and Characterization of a Novel Cold-Adapted and Stable β-Agarase Gene agaW1540 from the Deep-Sea Bacterium Shewanella sp. WPAGA9. Mar Drugs 2021; 19:md19080431. [PMID: 34436270 PMCID: PMC8398281 DOI: 10.3390/md19080431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/27/2022] Open
Abstract
The neoagaro-oligosaccharides, degraded from agarose by agarases, are important natural substances with many bioactivities. In this study, a novel agarase gene, agaW1540, from the genome of a deep-sea bacterium Shewanella sp. WPAGA9, was expressed, and the recombinant AgaW1540 (rAgaW1540) displayed the maximum activity under the optimal pH and temperature of 7.0 and 35 °C, respectively. rAgaW1540 retained 85.4% of its maximum activity at 0 °C and retained more than 92% of its maximum activity at the temperature range of 20-40 °C and the pH range of 4.0-9.0, respectively, indicating its extensive working temperature and pH values. The activity of rAgaW1540 was dramatically suppressed by Cu2+ and Zn2+, whereas Fe2+ displayed an intensification of enzymatic activity. The Km and Vmax of rAgaW1540 for agarose degradation were 15.7 mg/mL and 23.4 U/mg, respectively. rAgaW1540 retained 94.7%, 97.9%, and 42.4% of its maximum activity after incubation at 20 °C, 25 °C, and 30 °C for 60 min, respectively. Thin-layer chromatography and ion chromatography analyses verified that rAgaW1540 is an endo-acting β-agarase that degrades agarose into neoagarotetraose and neoagarohexaose as the main products. The wide variety of working conditions and stable activity at room temperatures make rAgaW1540an appropriate bio-tool for further industrial production of neoagaro-oligosaccharides.
Collapse
Affiliation(s)
- Wenxin Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China; (W.W.); (J.W.); (Y.Z.); (D.W.)
| | - Jianxin Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China; (W.W.); (J.W.); (Y.Z.); (D.W.)
| | - Ruihua Yan
- Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361000, China; (R.Y.); (R.Z.)
| | - Runying Zeng
- Technical Innovation Center for Utilization of Marine Biological Resources, Ministry of Natural Resources, Xiamen 361000, China; (R.Y.); (R.Z.)
| | - Yaqiang Zuo
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China; (W.W.); (J.W.); (Y.Z.); (D.W.)
| | - Dingquan Wang
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China; (W.W.); (J.W.); (Y.Z.); (D.W.)
| | - Wu Qu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316000, China; (W.W.); (J.W.); (Y.Z.); (D.W.)
- Correspondence:
| |
Collapse
|
9
|
Seo JW, Tsevelkhorloo M, Lee CR, Kim SH, Kang DK, Asghar S, Hong SK. Molecular Characterization of a Novel 1,3-α-3,6-Anhydro-L-Galactosidase, Ahg943, with Cold- and High-Salt-Tolerance from Gayadomonas joobiniege G7. J Microbiol Biotechnol 2020; 30:1659-1669. [PMID: 32876074 PMCID: PMC9728383 DOI: 10.4014/jmb.2008.08017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022]
Abstract
1,3-α-3,6-anhydro-L-galactosidase (α-neoagarooligosaccharide hydrolase) catalyzes the last step of agar degradation by hydrolyzing neoagarobiose into monomers, D-galactose, and 3,6-anhydro-Lgalactose, which is important for the bioindustrial application of algal biomass. Ahg943, from the agarolytic marine bacterium Gayadomonas joobiniege G7, is composed of 423 amino acids (47.96 kDa), including a 22-amino acid signal peptide. It was found to have 67% identity with the α-neoagarooligosaccharide hydrolase ZgAhgA, from Zobellia galactanivorans, but low identity (< 40%) with the other α-neoagarooligosaccharide hydrolases reported. The recombinant Ahg943 (rAhg943, 47.89 kDa), purified from Escherichia coli, was estimated to be a monomer upon gel filtration chromatography, making it quite distinct from other α-neoagarooligosaccharide hydrolases. The rAhg943 hydrolyzed neoagarobiose, neoagarotetraose, and neoagarohexaose into D-galactose, neoagarotriose, and neoagaropentaose, respectively, with a common product, 3,6- anhydro-L-galactose, indicating that it is an exo-acting α-neoagarooligosaccharide hydrolase that releases 3,6-anhydro-L-galactose by hydrolyzing α-1,3 glycosidic bonds from the nonreducing ends of neoagarooligosaccharides. The optimum pH and temperature of Ahg943 activity were 6.0 and 20°C, respectively. In particular, rAhg943 could maintain enzyme activity at 10°C (71% of the maximum). Complete inhibition of rAhg943 activity by 0.5 mM EDTA was restored and even, remarkably, enhanced by Ca2+ ions. rAhg943 activity was at maximum at 0.5 M NaCl and maintained above 73% of the maximum at 3M NaCl. Km and Vmax of rAhg943 toward neoagarobiose were 9.7 mg/ml and 250 μM/min (3 U/mg), respectively. Therefore, Ahg943 is a unique α-neoagarooligosaccharide hydrolase that has cold- and high-salt-adapted features, and possibly exists as a monomer.
Collapse
Affiliation(s)
- Ju Won Seo
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 7058, Republic of Korea
| | - Maral Tsevelkhorloo
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 7058, Republic of Korea
| | - Chang-Ro Lee
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 7058, Republic of Korea
| | - Sang Hoon Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Sajida Asghar
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 7058, Republic of Korea
| | - Soon-Kwang Hong
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 7058, Republic of Korea,Corresponding author Phone: 82-31-330-6198 Fax: 82-31-335-8249 E-mail:
| |
Collapse
|
10
|
Agarose degradation for utilization: Enzymes, pathways, metabolic engineering methods and products. Biotechnol Adv 2020; 45:107641. [PMID: 33035614 DOI: 10.1016/j.biotechadv.2020.107641] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/27/2020] [Accepted: 10/03/2020] [Indexed: 12/14/2022]
Abstract
Red algae are important renewable bioresources with very large annual outputs. Agarose is the major carbohydrate component of many red algae and has potential to be of value in the production of agaro-oligosaccharides, biofuels and other chemicals. In this review, we summarize the degradation pathway of agarose, which includes an upstream part involving transformation of agarose into its two monomers, D-galactose (D-Gal) and 3,6-anhydro-α-L-galactose (L-AHG), and a downstream part involving monosaccharide degradation pathways. The upstream part involves agarolytic enzymes such as α-agarase, β-agarase, α-neoagarobiose hydrolase, and agarolytic β-galactosidase. The downstream part includes the degradation pathways of D-Gal and L-AHG. In addition, the production of functional agaro-oligosaccharides such as neoagarobiose and monosaccharides such as L-AHG with different agarolytic enzymes is reviewed. Third, techniques for the setup, regulation and optimization of agarose degradation to increase utilization efficiency of agarose are summarized. Although heterologous construction of the whole agarose degradation pathway in an engineered strain has not been reported, biotechnologies applied to improve D-Gal utilization efficiency and construct L-AHG catalytic routes are reviewed. Finally, critical aspects that may aid in the construction of engineered microorganisms that can fully utilize agarose to produce agaro-oligosaccharides or as carbon sources for production of biofuels or other value-adding chemicals are discussed.
Collapse
|
11
|
Sun H, Gao L, Xue C, Mao X. Marine-polysaccharide degrading enzymes: Status and prospects. Compr Rev Food Sci Food Saf 2020; 19:2767-2796. [PMID: 33337030 DOI: 10.1111/1541-4337.12630] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022]
Abstract
Marine-polysaccharide degrading enzymes have recently been studied extensively. They are particularly interesting as they catalyze the cleavage of glycosidic bonds in polysaccharide macromolecules and produce oligosaccharides with low degrees of polymerization. Numerous findings have demonstrated that marine polysaccharides and their biotransformed products possess beneficial properties including antitumor, antiviral, anticoagulant, and anti-inflammatory activities, and they have great value in healthcare, cosmetics, the food industry, and agriculture. Exploitation of enzymes that can degrade marine polysaccharides is in the ascendant, and is important for high-value use of marine biomass resources. In this review, we describe research and prospects regarding the classification, biochemical properties, and catalytic mechanisms of the main types of marine-polysaccharide degrading enzymes, focusing on chitinase, chitosanase, alginate lyase, agarase, and carrageenase, and their product oligosaccharides. The state-of-the-art discussion of marine-polysaccharide degrading enzymes and their properties offers information that might enable more efficient production of marine oligosaccharides. We also highlight current problems in the field of marine-polysaccharide degrading enzymes and trends in their development. Understanding the properties, catalytic mechanisms, and modification of known enzymes will aid the identification of novel enzymes to degrade marine polysaccharides and facilitation of their use in various biotechnological processes.
Collapse
Affiliation(s)
- Huihui Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Li Gao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
12
|
Park SH, Lee CR, Hong SK. Implications of agar and agarase in industrial applications of sustainable marine biomass. Appl Microbiol Biotechnol 2020; 104:2815-2832. [PMID: 32036436 DOI: 10.1007/s00253-020-10412-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022]
Abstract
Agar, a major component of the cell wall of red algae, is an interesting heteropolysaccharide containing an unusual sugar, 3,6-anhydro-L-galactose. It is widely used as a valuable material in various industrial and experimental applications due to its characteristic gelling and stabilizing properties. Agar-derived oligosaccharides or mono-sugars produced by various agarases have become a promising subject for research owing to their unique biological activities, including anti-obesity, anti-diabetic, immunomodulatory, anti-tumor, antioxidant, skin-whitening, skin-moisturizing, anti-fatigue, and anti-cariogenic activities. Agar is also considered as an alternative sustainable source of biomass for chemical feedstock and biofuel production to substitute for the fossil resource. In this review, we summarize various biochemically characterized agarases, which are useful for industrial applications, such as neoagarooligosaccharide or agarooligosaccharide production and saccharification of agar. Additionally, we succinctly discuss various recent studies that have been conducted to investigate the versatile biological activities of agar-derived saccharides and biofuel production from agar biomass. This review provides a basic framework for understanding the importance of agarases and agar-derived saccharides with broad applications in pharmaceutical, cosmetic, food, and bioenergy industries.
Collapse
Affiliation(s)
- Si Hyoung Park
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, 17058, Republic of Korea
| | - Chang-Ro Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, 17058, Republic of Korea
| | - Soon-Kwang Hong
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, 17058, Republic of Korea.
| |
Collapse
|
13
|
Ma J, Yan Q, Yi P, Yang S, Liu H, Jiang Z. Biochemical characterization of a truncated β-agarase from Microbulbifer sp. suitable for efficient production of neoagarotetraose. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Lee CH, Lee CR, Hong SK. Biochemical characterization of a novel cold-adapted agarotetraose-producing α-agarase, AgaWS5, from Catenovulum sediminis WS1-A. Appl Microbiol Biotechnol 2019; 103:8403-8411. [PMID: 31375882 DOI: 10.1007/s00253-019-10056-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/21/2019] [Accepted: 07/26/2019] [Indexed: 11/27/2022]
Abstract
Although many β-agarases that hydrolyze the β-1,4 linkages of agarose have been biochemically characterized, only three α-agarases that hydrolyze the α-1,3 linkages are reported to date. In this study, a new α-agarase, AgaWS5, from Catenovulum sediminis WS1-A, a new agar-degrading marine bacterium, was biochemically characterized. AgaWS5 belongs to the glycoside hydrolase (GH) 96 family. AgaWS5 consists of 1295 amino acids (140 kDa) and has the 65% identity to an α-agarase, AgaA33, obtained from an agar-degrading bacterium Thalassomonas agarivorans JAMB-A33. AgaWS5 showed the maximum activity at a pH and temperature of 8 and 40 °C, respectively. AgaWS5 showed a cold-tolerance, and it retained more than 40% of its maximum enzymatic activity at 10 °C. AgaWS5 is predicted to have several calcium-binding sites. Thus, its activity was slightly enhanced in the presence of Ca2+, and was strongly inhibited by EDTA. The Km and Vmax of AgaWS5 for agarose were 10.6 mg/mL and 714.3 U/mg, respectively. Agarose-liquefication, thin layer chromatography, and mass and NMR spectroscopic analyses demonstrated that AgaWS5 is an endo-type α-agarase that degrades agarose and mainly produces agarotetraose. Thus, in this study, a novel cold-adapted GH96 agarotetraose-producing α-agarase was identified.
Collapse
Affiliation(s)
- Choong Hyun Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, 449-728, Republic of Korea
| | - Chang-Ro Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, 449-728, Republic of Korea
| | - Soon-Kwang Hong
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, 449-728, Republic of Korea.
| |
Collapse
|
15
|
Han Z, Zhang Y, Yang J. Biochemical Characterization of a New β-Agarase from Cellulophaga Algicola. Int J Mol Sci 2019; 20:ijms20092143. [PMID: 31052274 PMCID: PMC6539560 DOI: 10.3390/ijms20092143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 01/01/2023] Open
Abstract
Cellulophaga algicola DSM 14237, isolated from the Eastern Antarctic coastal zone, was found to be able to hydrolyze several types of polysaccharide materials. In this study, a predicted β-agarase (CaAga1) from C. algicola was heterologously expressed in Escherichia coli. The purified recombinant CaAga1 showed specific activities of 29.39, 20.20, 14.12, and 8.99 U/mg toward agarose, pure agar, and crude agars from Gracilaria lemaneiformis and Porphyra haitanensis, respectively. CaAga1 exhibited an optimal temperature and pH of 40 °C and 7, respectively. CaAga1 was stable over a wide pH range from 4 to 11. The recombinant enzyme showed an unusual thermostability, that is, it was stable at temperature below or equal to 40 °C and around 70 °C, but was thermolabile at about 50 °C. With the agarose as the substrate, the Km and Vmax values for CaAga1 were 1.19 mg/mL and 36.21 U/mg, respectively. The reducing reagent (dithiothreitol) enhanced the activity of CaAga1 by more than one fold. In addition, CaAga1 was salt-tolerant given that it retained approximately 70% of the maximum activity in the presence of 2 M NaCl. The thin layer chromatography results indicated that CaAga1 is an endo-type β-agarase and efficiently hydrolyzed agarose into neoagarotetraose (NA4) and neoagarohexaose (NA6). A structural model of CaAga1 in complex with neoagarooctaose (NA8) was built by homology modeling and explained the hydrolysis pattern of CaAga1.
Collapse
Affiliation(s)
- Zhenggang Han
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yuxi Zhang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Jiangke Yang
- College of Biology and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
16
|
Chen YP, Wu HT, Wang GH, Wu DY, Hwang IE, Chien MC, Pang HY, Kuo JT, Liaw LL. Inspecting the genome sequence and agarases of Microbulbifer pacificus LD25 from a saltwater hot spring. J Biosci Bioeng 2019; 127:403-410. [DOI: 10.1016/j.jbiosc.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 09/29/2018] [Accepted: 10/02/2018] [Indexed: 12/27/2022]
|
17
|
Choi U, Jung S, Hong SK, Lee CR. Characterization of a Novel Neoagarobiose-Producing GH42 β-Agarase, AgaJ10, from Gayadomonas joobiniege G7. Appl Biochem Biotechnol 2019; 189:1-12. [DOI: 10.1007/s12010-019-02992-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/01/2019] [Indexed: 11/28/2022]
|
18
|
Molecular Cloning and Characterization of a Novel Cold-Adapted Alkaline 1,3-α-3,6-Anhydro-l-galactosidase, Ahg558, from Gayadomonas joobiniege G7. Appl Biochem Biotechnol 2019; 188:1077-1095. [DOI: 10.1007/s12010-019-02963-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/30/2019] [Indexed: 01/25/2023]
|
19
|
Veerakumar S, Manian RP. Recombinant β-agarases: insights into molecular, biochemical, and physiochemical characteristics. 3 Biotech 2018; 8:445. [PMID: 30333947 DOI: 10.1007/s13205-018-1470-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/03/2018] [Indexed: 12/11/2022] Open
Abstract
Agarases (agarose 4-glycanohydrolase; EC 3.2.1.81) are class of enzymes that belong to glycoside hydrolase (GH) family capable of hydrolyzing agar. Their classification depends on hydrolysis pattern and product formation. Among all the agarases, β-agarases and the oligosaccharides formed by its action have fascinated quite a lot of industries. Ample of β-agarase genes have been endowed from marine sources such as algae, sea water, and marine sediments, and the expression of these genes into suitable host gives rise to recombinant β-agarases. These recombinant β-agarases have wide range of industrial applications due to its improved catalytic efficiency and stability in tough environments with ease of production on large scale. In this review, we have perused different types of recombinant β-agarases in consort with their molecular, physiochemical, and kinetic properties in detail and the significant features of those agarases are spotlighted. From the literature reviewed after 2010, we have found that the recombinant β-agarases belonged to the families GH16, GH39, GH50, GH86, and GH118. Among that, GH39, GH50, and GH86 belonged to clan GH-A, while the GH16 family belonged to clan GH-B. It was observed that GH16 is the largest polyspecific glycoside hydrolase family with ample number of β-agarases and the families GH50 and GH118 were found to be monospecific with only β-agarase activity. And, out of 84 non-catalytic carbohydrate-binding modules (CBMs), only CBM6 and CBM13 were professed in β-agarases. We witnessed a larger heterogeneity in molecular, physiochemical, and catalytic characteristics of the recombinant β-agarases including molecular mass: 32-132 kDa, optimum pH: 4.5-9, optimum temperature 16-60 °C, K M: 0.68-59.8 mg/ml, and V max: 0.781-11,400 U/mg. Owing to this extensive range of heterogeneity, they have lion's share in the multibillion dollar enzyme market. This review provides a holistic insight to a few aspects of recombinant β-agarases which can be referred by the upcoming explorers to this area.
Collapse
Affiliation(s)
- Sneeha Veerakumar
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014 India
| | - Ramesh Pathy Manian
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, 632014 India
| |
Collapse
|
20
|
Asghar S, Lee CR, Park JS, Chi WJ, Kang DK, Hong SK. Identification and biochemical characterization of a novel cold-adapted 1,3-α-3,6-anhydro-L-galactosidase, Ahg786, from Gayadomonas joobiniege G7. Appl Microbiol Biotechnol 2018; 102:8855-8866. [PMID: 30128580 DOI: 10.1007/s00253-018-9277-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
Agar is a major polysaccharide of red algal cells and is mainly decomposed into neoagarobiose by the co-operative effort of β-agarases. Neoagarobiose is hydrolyzed into monomers, D-galactose and 3,6-anhydro-L-galactose, via a microbial oxidative process. Therefore, the enzyme, 1,3-α-3,6-anhydro-L-galactosidase (α-neoagarobiose/neoagarooligosaccharide hydrolase) involved in the final step of the agarolytic pathway is crucial for bioindustrial application of agar. A novel cold-adapted α-neoagarooligosaccharide hydrolase, Ahg786, was identified and characterized from an agarolytic marine bacterium Gayadomonas joobiniege G7. Ahg786 comprises 400 amino acid residues (45.3 kDa), including a 25 amino acid signal peptide. Although it was annotated as a hypothetical protein from the genomic sequencing analysis, NCBI BLAST search showed 57, 58, and 59% identities with the characterized α-neoagarooligosaccharide hydrolases from Saccharophagus degradans 2-40, Zobellia galactanivorans, and Bacteroides plebeius, respectively. The signal peptide-deleted recombinant Ahg786 expressed and purified from Escherichia coli showed dimeric forms and hydrolyzed neoagarobiose, neoagarotetraose, and neoagarohexaose into 3,6-anhydro-L-galactose and other compounds by cleaving α-1,3-glycosidic bonds from the non-reducing ends of neoagarooligosaccharides, as confirmed by thin-layer chromatography and mass spectrometry. The optimum pH and temperature for Ahg786 activity were 7.0 and 15 °C, respectively, indicative of its unique cold-adapted features. The enzymatic activity severely inhibited with 0.5 mM ethylenediaminetetraacetic acid was completely restored or remarkably enhanced by Mn2+ in a concentration-dependent manner, suggestive of the dependence of the enzyme on Mn2+ ions. Km and Vmax values for neoagarobiose were 4.5 mM and 1.33 U/mg, respectively.
Collapse
Affiliation(s)
- Sajida Asghar
- Department of Bioscience and Bioinformatics, Myongji-Ro 116, Yongin, Gyeonggi-do, 17058, South Korea.,Department of Biological Sciences, Karakoram International University, Gilgit-Baltistan, Pakistan
| | - Chang-Ro Lee
- Department of Bioscience and Bioinformatics, Myongji-Ro 116, Yongin, Gyeonggi-do, 17058, South Korea
| | - Jae-Seon Park
- Department of Bioscience and Bioinformatics, Myongji-Ro 116, Yongin, Gyeonggi-do, 17058, South Korea
| | - Won-Jae Chi
- Biological and Genetic Resource Assessment Division, National Institute of Biological Resource, Incheon, 17058, South Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Dandae-ro 119, Cheonan, 31116, South Korea
| | - Soon-Kwang Hong
- Department of Bioscience and Bioinformatics, Myongji-Ro 116, Yongin, Gyeonggi-do, 17058, South Korea.
| |
Collapse
|
21
|
Future direction in marine bacterial agarases for industrial applications. Appl Microbiol Biotechnol 2018; 102:6847-6863. [DOI: 10.1007/s00253-018-9156-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 12/13/2022]
|
22
|
Yang X, Liu Z, Jiang C, Sun J, Xue C, Mao X. A novel agaro-oligosaccharide-lytic β-galactosidase from Agarivorans gilvus WH0801. Appl Microbiol Biotechnol 2018; 102:5165-5172. [PMID: 29682702 DOI: 10.1007/s00253-018-8999-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/03/2018] [Accepted: 04/07/2018] [Indexed: 11/30/2022]
Abstract
β-Galactosidases have a wide application in the food and pharmaceutical industries. Recently, β-galactosidase was also found to participate in agar degradation. In this study, the second reported agarolytic β-galactosidase was found in the marine bacterium Agarivorans gilvus WH0801 and characterized. The β-galactosidase named AgWH2A (83 kDa) exhibited good activities under optimal hydrolysis conditions of pH 8.0 and 40 °C. AgWH2A could cleave the first D-galactose of agarooligosaccharides from its nonreducing end to produce neoagarooligosaccharides, but could not act on the neoagarooligosaccharides. AgWH2A has great potential in the comprehensive utilization of marine red algae.
Collapse
Affiliation(s)
- Xiaoqing Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
23
|
Di W, Qu W, Zeng R. Cloning, expression, and characterization of thermal-stable and pH-stable agarase from mangrove sediments. J Basic Microbiol 2018; 58:302-309. [DOI: 10.1002/jobm.201700696] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Wenjie Di
- Key Laboratory of Marine Genetic Resources; Third Institute of Oceanography; State Oceanic Administration (SOA); Xiamen China
| | - Wu Qu
- School of Life Sciences; Xiamen University; Xiamen China
| | - Runying Zeng
- Key Laboratory of Marine Genetic Resources; Third Institute of Oceanography; State Oceanic Administration (SOA); Xiamen China
- Key Laboratory of Marine Genetic Resources; Xiamen Fujian Province China
| |
Collapse
|
24
|
Zhang W, Xu J, Liu D, Liu H, Lu X, Yu W. Characterization of an α-agarase from Thalassomonas sp. LD5 and its hydrolysate. Appl Microbiol Biotechnol 2018; 102:2203-2212. [PMID: 29353307 DOI: 10.1007/s00253-018-8762-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/19/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022]
Abstract
It has been a long time since the first α-agarase was discovered. However, only two α-agarases have been cloned and partially characterized so far and the study of α-agarases has lagged far behind that of β-agarases. Here, we report an α-agarase, AgaD, cloned from marine bacterium Thalassomonas sp. LD5. Its cDNA consists of 4401 bp, encoding a protein of 1466 amino acids. Based on amino acid similarity, AgaD is classified into glycoside hydrolase (GH) family GH96. The recombinant enzyme gave a molecular weight of about 180 kDa on SDS-PAGE and 360 kDa on Native-PAGE indicating it acted as a dimer. However, the recombinant enzyme is labile and easy to be fractured into series of small active fragments, of which the smallest one is about 70 kDa, matching the size of catalytic module. The enzyme has maximal activity at 35 °C and pH 7.4, and shows a strong dependence on the presence of calcium ions. AgaD degrades agarose to yield agarotetraose as the predominate end product. However, the hydrolysates are rapidly degraded to odd-numbered oligosaccharides under strong alkaline condition. The spectra of ESI-MS and 1H-NMR proved that the main hydrolysate agarotetraose is degraded into neoagarotriose, bearing the sequence of G-A-G (G, D-galactose; A, 3,6-anhydro-α-L-galactose). Unlike the alkaline condition, the hydrolysates are further hydrolyzed into smaller degree polymerization (DP) of agaro-oligosaccharides (AOS) in dilute strong acid. Therefore, this study provides more insights into the properties for both the α-agarases and the AOS.
Collapse
Affiliation(s)
- Weibin Zhang
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, 266003, China
| | - Jingnan Xu
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, 266003, China
| | - Dan Liu
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, 266003, China
| | - Huan Liu
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, 266003, China
| | - Xinzhi Lu
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, 266003, China.
| | - Wengong Yu
- School of Medicine and Pharmacy, Key Laboratory of Marine Drugs, Chinese Ministry of Education, Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
25
|
Ramos KRM, Valdehuesa KNG, Nisola GM, Lee WK, Chung WJ. Identification and characterization of a thermostable endolytic β-agarase Aga2 from a newly isolated marine agarolytic bacteria Cellulophaga omnivescoria W5C. N Biotechnol 2017; 40:261-267. [PMID: 28962879 DOI: 10.1016/j.nbt.2017.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/22/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
Research on the enzymatic breakdown of seaweed-derived agar has recently gained attention due to the progress in green technologies for marine biomass utilization. The enzymes known as agarases catalyze the cleavage of glycosidic bonds within the polysaccharide. In this study, a new β-agarase, Aga2, was identified from Cellulophaga omnivescoria W5C. Aga2 is one of four putative agarases from the W5C genome, and it belongs to the glycoside hydrolase 16 family. It was shown to be exclusive to the Cellulophaga genus. Agarase activity assays showed that Aga2 is an endolytic-type β-agarase that produces tetrameric and hexameric neoagaro-oligosaccharides, with optimum activity at 45°C and pH 8.0. Zinc ions slightly enhanced its activity while manganese ions had inhibitory effects even at very low concentrations. Aga2 has a Km of 2.59mgmL-1 and Vmax of 275.48Umg-1. The Kcat is 1.73×102s-1, while the Kcat/Km is 8.04×106s-1M-1. Aga2 also showed good thermostability at 45°C and above, and retained >90% of its activity after repeated freeze-thaw cycles. Bioinformatic analysis of its amino acid sequence revealed that intrinsic properties of the protein (e.g. presence of certain dipeptides and the relative volume occupied by aliphatic amino acids) and tertiary structural elements (e.g. presence of salt bridges, hydrophobic interactions and H-bonding) contributed to its thermostability.
Collapse
Affiliation(s)
- Kristine Rose M Ramos
- Energy and Environment Fusion Technology Center (E(2)FTC), Department of Energy Science and Technology (DEST), Myongji University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Kris Niño G Valdehuesa
- Energy and Environment Fusion Technology Center (E(2)FTC), Department of Energy Science and Technology (DEST), Myongji University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Grace M Nisola
- Energy and Environment Fusion Technology Center (E(2)FTC), Department of Energy Science and Technology (DEST), Myongji University, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Won-Keun Lee
- Division of Bioscience and Bioinformatics, Myongji University, Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Wook-Jin Chung
- Energy and Environment Fusion Technology Center (E(2)FTC), Department of Energy Science and Technology (DEST), Myongji University, Yongin-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
26
|
Yun EJ, Yu S, Kim KH. Current knowledge on agarolytic enzymes and the industrial potential of agar-derived sugars. Appl Microbiol Biotechnol 2017; 101:5581-5589. [DOI: 10.1007/s00253-017-8383-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/05/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022]
|