1
|
Liu Q, Sun Z, Pan J, Feng L, Zhou H, Li Y, Li G. Response of food waste anaerobic digestion to the dimensions of micron-biochar under 30 g VS/L organic loading rate: Focus on gas production and microbial community structure. CHEMOSPHERE 2024; 365:143358. [PMID: 39299463 DOI: 10.1016/j.chemosphere.2024.143358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/24/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Biochar modification is an effective approach to enhance its ability to promote anaerobic digestion (AD). Focusing on the physical properties of biochar, the impact of different particle sizes of biochar on AD of food waste (FW) at high organic loading rate (OLR) was investigated. Four biochar with different sizes (40-200 mesh) were prepared and used in AD systems at OLR 30 g VS/L. The research results found that biochar with a volume particle size of 102 μm (RBC-P140) had top-performance in promoting cumulative methane production, increasing by 13.20% compared to the control group. The analysis results of the variety in volatile acids and alkalinity in the system did not show a correlation with the size of biochar, but small size has the potential to improve the environmental tolerance of the system to high acidity. Microbial community analysis showed that the abundance of aceticlastic methanogen and the composition of zoogloea were optimized through relatively small-sized biochar. Through revealing the effect of biochar particle size on AD system at high OLR, this work provided theoretical guidance for regulating fermentation systems using biochar.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing, 102249, China
| | - Ziyan Sun
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing, 102249, China
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lu Feng
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431, Ås, Norway
| | - Hongjun Zhou
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing, 102249, China; Shandong Institute of Petroleum and Chemical Technology, Carbon Neutrality Research Institute, Dongying, 257061, China
| | - Yeqing Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing, 102249, China; Shandong Institute of Petroleum and Chemical Technology, Carbon Neutrality Research Institute, Dongying, 257061, China.
| | - Gang Li
- School of Artificial Intelligence, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
2
|
Xie H, Wang Y, Chen Y, Hu Y, Adeleke R, Obi L, Wang Y, Cao W, Lin JG, Zhang Y. Carbon flow, energy metabolic intensity and metagenomic characteristics of a Fe (III)-enhanced anerobic digestion system during treating swine wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173431. [PMID: 38782283 DOI: 10.1016/j.scitotenv.2024.173431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
Deep treatment and bioenergy recovery of swine wastewater (SW) are beneficial for constructing a low-carbon footprint and resource-recycling society. In this study, Fe (III) addition from 0 to 600 mg/L significantly increased the methane (CH4) content of the recovered biogas from 61.4 ± 2.0 to 89.3 ± 2.0 % during SW treatment in an anaerobic membrane digestion system. The specific methane yields (SMY) also increased significantly from 0.20 ± 0.05 to 0.29 ± 0.02 L/g COD. Fe (III) and its bio-transformed products which participated in establishing direct interspecific electron transfer (DIET), upregulated the abundance of e-pili and Nicotinamide adenine dinucleotide (NADH), enriched electroactive bacteria. The increase in cellular adenosine triphosphate (cATP) from 6583 to 14,518 ng/gVSS and electron transport system (ETS) from 1468 to 1968 mg/(g·h) promoted the intensity of energy flow and electron flow during anaerobic digestion of SW. Moreover, Fe (III) promoted the hydrolysis and acidification of organic matters, and strengthened the acetoacetic methanogenesis pathway. This study established an approach for harvesting high quality bioenergy from SW and revealed the effects and mechanisms from the view of carbon flow, energy metabolic intensity and metagenomics.
Collapse
Affiliation(s)
- Hongyu Xie
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuzheng Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuqi Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yong Hu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Linda Obi
- University of South Africa, Department of Environmental Sciences, Pretoria, South Africa
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China
| | - Wenzhi Cao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Jih-Gaw Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China; National Yang Ming Chiao Tung University, Taiwan
| | - Yanlong Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control (CPPC), College of Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China; Fujian Institute for Sustainable Oceans, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
3
|
Fundneider-Kale S, Kerres J, Engelhart M. Impact of benzalkonium chloride on anaerobic granules and its long-term effects on reactor performance. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135183. [PMID: 39024763 DOI: 10.1016/j.jhazmat.2024.135183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/06/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
This study assessed the inhibitory and performance-degrading effects induced by the cationic surfactant benzalkonium chloride (BAC) on anaerobic granules during the long-term operation of a laboratory-scale expanded granular sludge bed (EGSB) reactor. To address the critical scientific problem of how BAC affects the efficiency of EGSB reactors, this research uniquely evaluated the long-term stress response to BAC by systematically comparing continuous and discontinuous inhibitor exposure scenarios. The novel comparison demonstrated that inhibitor concentration is of minor relevance compared to the biomass-specific cumulative inhibitor load in the reactor. After exceeding a critical biomass-specific cumulative inhibitor load of 6.1-6.5 mg BAC/g VS, continuous and discontinuous exposure to BAC caused comparable significant deterioration in reactor performance, including accumulation of volatile fatty acids (VFA), decreased removal efficiency, reduced methane production, as well as the wash-out, flotation, and disintegration of anaerobic granules. BAC exposures had a more detrimental effect on methanogenesis than on acidogenesis. Moreover, long-term stress by BAC led to an inhibition of protein production, resulting in a decreased protein-to-polysaccharide ratio of extracellular polymeric substances (EPS) that promoted destabilizing effects on the granules. Finally, hydrogenotrophic methanogenesis was triggered. Reactor performance could not be restored due to the severe loss of granular sludge.
Collapse
Affiliation(s)
- S Fundneider-Kale
- Technical University of Darmstadt, Institute IWAR, Chair of Wastewater Technology, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany.
| | - J Kerres
- Technical University of Darmstadt, Institute IWAR, Chair of Wastewater Technology, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| | - M Engelhart
- Technical University of Darmstadt, Institute IWAR, Chair of Wastewater Technology, Franziska-Braun-Straße 7, D-64287 Darmstadt, Germany
| |
Collapse
|
4
|
Ramos JGVDS, Richter CP, Silva MA, Singolano GL, Hauagge G, Lorençon E, Junior ILC, Edwiges T, de Arruda PV, Vidal CMDS. Effects of ciprofloxacin on biogas production and microbial community composition in anaerobic digestion of swine wastewater in ASBR type reactor. ENVIRONMENTAL TECHNOLOGY 2024; 45:2076-2088. [PMID: 36621001 DOI: 10.1080/09593330.2022.2164744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In swine farming, antibiotics are often used to reduce disease and promote animal growth. Part of these compounds is not absorbed by the swine body, being excreted and later reaching the treatment systems, soil, and nearby waterbodies. This research sought to investigate the influence of adding ciprofloxacin (CIP) on the anaerobic digestion of swine wastewater. For that, a bench-scale anaerobic sequential batch reactor (ASBR) was used, with 5 L of working volume in six different phases, with volumetric organic loading rate (VOLR) and CIP dosage variation. According to the results, the optimal VOLR for the reactor was 0.60 ± 0.11 gSV L-1 d-1, resulting in biogas productivity of 0.51 ± 0.03 Lbiogas L-1 d-1. After initial stability, adding substrate with 0.5 mgCIP L-1 resulted in an abrupt drop of 82% in the productivity from the 7th to 11th day of addition, coinciding with volatile acids accumulation. Afterward, the reactor recovered and reached apparent stability, with productivity similar to the previous step without the drug. For 2.5 mgCIP L-1 in the substrate, the biogas productivity at equilibrium was 11.8% lower than in the phases with the same VOLR and 0.0 and 0.5 mgCIP L-1. Organic matter removals near 80% were achieved for both dosages. The 16S rRNA metagenomic analyses showed an increase in the relative abundance of most of the phyla found, indicating that the dosages used allowed the acclimatization of microorganisms and possibly the compound biodegradation.
Collapse
Affiliation(s)
- José Gustavo Venâncio da Silva Ramos
- Civil Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
- Technical Residency in Environmental Engineering and Management, State University of Ponta Grossa (UEPG), Ponta Grossa, Brazil
| | - Camila Palacio Richter
- Bioprocess and Biotechnology Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | - Maria Alice Silva
- Bioprocess and Biotechnology Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | - Giordana Longo Singolano
- Civil Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | - Gabriel Hauagge
- Bioprocess and Biotechnology Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | - Eduarda Lorençon
- Bioprocess and Biotechnology Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | | | - Thiago Edwiges
- Biological and Environmental Sciences, The Federal University of Technology - Paraná (UTFPR), Medianeira, Brazil
| | - Priscila Vaz de Arruda
- Bioprocess and Biotechnology Engineering Academic Department, The Federal University of Technology - Paraná (UTFPR), Toledo, Brazil
| | | |
Collapse
|
5
|
Liu B, Zhou T, Xue S, Chen J, Zhang X, Zheng C, Wang J, Li G. Improved Formation of Biomethane by Enriched Microorganisms from Different Rank Coal Seams. ACS OMEGA 2024; 9:11987-11997. [PMID: 38496961 PMCID: PMC10938392 DOI: 10.1021/acsomega.3c09742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 03/19/2024]
Abstract
The influence of enrichment of culturable microorganisms in in situ coal seams on biomethane production potential of other coal seams has been rarely studied. In this study, we enriched culturable microorganisms from three in situ coal seams with three coal ranks and conducted indoor anaerobic biomethane production experiments. Microbial community composition, gene functions, and metabolites in different culture units by 16S rRNA high-throughput sequencing combined with liquid chromatography-mass spectrometry-time-of-flight (LC-MS-TOF). The results showed that biomethane production in the bituminous coal group (BC)cc resulted in the highest methane yield of 243.3 μmol/g, which was 12.3 times higher than that in the control group (CK). Meanwhile, Methanosarcina was the dominant archaeal genus in the three experimental groups (37.42 ± 11.16-52.62 ± 2.10%), while its share in the CK was only 2.91 ± 0.48%. Based on the functional annotation, the relative abundance of functional genes in the three experimental groups was mainly related to the metabolism of nitrogen-containing heterocyclic compounds such as purines and pyrimidines. Metabolite analysis showed that enriched microorganisms promoted the degradation of a total of 778 organic substances in bituminous coal, including 55 significantly different metabolites (e.g., purines and pyrimidines). Based on genomic and metabolomic analyses, this paper reconstructed the heterocyclic compounds degradation coupled methane metabolism pathway and thereby preliminarily elucidated that enriched culturable bacteria from different coal-rank seams could promote the degradation of bituminous coal and intensify biogenic methane yields.
Collapse
Affiliation(s)
- Bingjun Liu
- State
Key Laboratory of Mining Response and Disaster Prevention and Control
in Deep Coal Mines, Anhui University of
Science & Technology, Huainan, Anhui 232001, China
| | - Tianyao Zhou
- School
of Safety Science and Engineering, Anhui
University of Science & Technology, Huainan, Anhui 232001, China
| | - Sheng Xue
- Joint
National-Local Engineering Research Centre for Safe and Precise Coal
Mining, Anhui University of Science &
Technology, Huainan, Anhui 232001, China
| | - Jian Chen
- Huainan
Mining Group Co., Ltd, Huainan, Anhui 232001, China
| | - Xun Zhang
- State
Key Laboratory of Mining Response and Disaster Prevention and Control
in Deep Coal Mines, Anhui University of
Science & Technology, Huainan, Anhui 232001, China
| | - Chunshan Zheng
- School
of Safety Science and Engineering, Anhui
University of Science & Technology, Huainan, Anhui 232001, China
| | - Junyu Wang
- State
Key Laboratory of Mining Response and Disaster Prevention and Control
in Deep Coal Mines, Anhui University of
Science & Technology, Huainan, Anhui 232001, China
| | - Guofu Li
- State
Key Laboratory of Coal and Coalbed Methane Co-Mining, Jincheng 048012, China
| |
Collapse
|
6
|
Li W, Chen J, Pang L, Lu Y, Yang P. Dosage effect of micron zero-valent iron during thermophilic anaerobic digestion of waste activated sludge: Performance and functional community. ENVIRONMENTAL RESEARCH 2023; 237:116997. [PMID: 37634689 DOI: 10.1016/j.envres.2023.116997] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
This work examined the performance and microbial traits in a thermophilic anaerobic digestion (TAD) of waste activated sludge that was impacted by micron zero valent iron (mZVI). Results showed that methane production was promoted by 0.8, 11.9, and 12.0 times, respectively, when mZVI was at dosages of 25, 100, and 250 mg/g total solid (TS). Also, the consumption of volatile fatty acids was increased by mZVI at higher dosages (100 and 250 mg/g TS). Furthermore, 16S rRNA sequencing demonstrated that microbial community stabilized after day 18 regardless of the dosage of mZVI, and that different dosages of mZVI induced different shifts in the functional community of the archaea rather than the bacteria involved in TAD. As a result, mZVI at 100 mg/g TS could increase the relative abundance of archaeal genera Methanothermobacter the most, increasing by 22.8% at the end of TAD compared to CK. Besides, redundancy analysis revealed that the physicochemical properties explained 79.65% and 89.10% of the variations of bacterial and archaeal abundance, respectively. Also, the findings of the correlation analysis revealed that total dissolved iron, ferrous iron, pH, and ammonium nitrogen, may be the key divers of altering functional communities, particularly archaea. Moreover, mZVI at 100 and 250 mg/g TS boosted the metabolic pathways of environmental information processing (ABC transporters) in bacteria and carbon metabolism and methane metabolism for archaea, as well as relative abundances of enzymes and their activities involved in various methanogenic pathways. This study provides new perspectives on the application of mZVI in solid wastes treatments.
Collapse
Affiliation(s)
- Wenqian Li
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| | - Jianglin Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| | - Lina Pang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China.
| | - Yuanyuan Lu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| |
Collapse
|
7
|
Qin Y, Wang N, Zheng L, Li Q, Wang L, Xu X, Yin X. Study of Archaeal Diversity in the Arctic Meltwater Lake Region. BIOLOGY 2023; 12:1023. [PMID: 37508452 PMCID: PMC10376139 DOI: 10.3390/biology12071023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/04/2023] [Accepted: 07/16/2023] [Indexed: 07/30/2023]
Abstract
Two typical lakes formed from meltwater in the Ny-Ålesund area were taken as the study subjects in 2018. To investigate the archaeal community compositions of the two lakes, 16S rRNA genes from soil samples from the intertidal and subtidal zones of the two lakes were sequenced with high throughput. At the phylum level, the intertidal zone was dominated by Crenarchaeota and the subtidal zone was dominated by Halobacter; at the genus level, the intertidal zone was dominated by Nitrososphaeraceae_unclassified and Candidatus_Nitrocosmicus, while the subtidal zone was dominated by Methanoregula. The soil physicochemical factors pH, moisture content (MC), total organic carbon (TOC), total organic nitrogen (TON), nitrite nitrogen (NO2--N), and nitrate nitrogen (NO3--N) were significantly different in the intertidal and subtidal zones of the lake. By redundancy analysis, the results indicated that NH4+-N, SiO32--Si, MC, NO3--N, and NO2--N have had highly significant effects on the archaeal diversity and distribution. A weighted gene co-expression network analysis (WGCNA) was used to search for hub archaea associated with physicochemical factors. The results suggested that these physicochemical factors play important roles in the diversity and structure of the archaeal community at different sites by altering the abundance of certain hub archaea. In addition, Woesearchaeales was found to be the hub archaea genus at every site.
Collapse
Affiliation(s)
- Yiling Qin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Nengfei Wang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Li Zheng
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Qinxin Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Long Wang
- Department of Bioengineering, College of Marine Sciences and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xiaoyu Xu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Xiaofei Yin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| |
Collapse
|
8
|
Li J, Chen Q, Fan Y, Wang F, Meng J. Improved methane production of two-phase anaerobic digestion by cobalt: efficiency and mechanism. BIORESOURCE TECHNOLOGY 2023; 381:129123. [PMID: 37146694 DOI: 10.1016/j.biortech.2023.129123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Two-phase anaerobic digestion (AD) is a promising technology, but its performance is sensitive to methanogen. In this study, the effect of cobalt (Co) on two-phase AD was investigated and the enhanced mechanism was revealed. Though no obvious effect of Co2+ was observed in acidogenic phase, the activity of methanogens was significantly affected by Co2+ with an optimal Co2+ concentration of 2.0 mg/L. Ethylenediamine-N'-disuccinic acid (EDDS) was the most effective for improving Co bioavailability and increasing methane production. The role of Co-EDDS in improving methanogenic phase was also verified by operating three reactors for two months. The Co-EDDS supplement increased the level of Vitamin B12 (VB12) and coenzyme F420, and enriched Methanofollis and Methanosarcina, thereby successfully improving methane production and accelerating reactor recovery from ammonium and acid wastewater treatment. This study provides a promising approach to improve the efficiency and stability of anaerobic digester.
Collapse
Affiliation(s)
- Jianzheng Li
- National Engineering Research Centre for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qiyi Chen
- National Engineering Research Centre for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yiyang Fan
- National Engineering Research Centre for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Furao Wang
- National Engineering Research Centre for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jia Meng
- National Engineering Research Centre for Safe Sludge Disposal and Resource Recovery, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
9
|
Swanson CS, Dhand R, Cao L, Ferris J, Elder CS, He Q. Microbiome-scale analysis of aerosol facemask contamination during nebulization therapy in hospital. J Hosp Infect 2023; 134:80-88. [PMID: 36690253 DOI: 10.1016/j.jhin.2023.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/31/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND Microbial contamination of aerosol facemasks could be a source of nosocomial infections during nebulization therapy in hospital, prompting efforts to identify these contaminants. Identification of micro-organisms in medical devices has traditionally relied on culture-dependent methods, which are incapable of detecting the majority of these microbial contaminants. This challenge could be overcome with culture-independent sequencing-based techniques that are suited for the profiling of complex microbiomes. AIM To characterize the microbial contaminants in aerosol facemasks used for nebulization therapy, and identify factors influencing the composition of these microbial contaminants with the acquisition and analysis of comprehensive microbiome-scale profiles using culture-independent high-throughput sequencing. METHODS Used aerosol facemasks collected from hospitalized patients were analysed with culture-independent 16S rRNA gene-based amplicon sequencing to acquire microbiome-scale comprehensive profiles of the microbial contaminants. Microbiome-based analysis was performed to identify potential sources of microbial contamination in facemasks. FINDINGS Culture-independent high-throughput sequencing was demonstrated for the capacity to acquire microbiome-scale profiles of microbial contaminants on aerosol facemasks. Microbial source identification enabled by the microbiome-scale profiles linked microbial contamination on aerosol facemasks to the human skin and oral microbiota. Antibiotic treatment with levofloxacin was found to reduce contamination of the facemasks by oral microbiota. CONCLUSION Sequencing-based microbiome-scale analysis is capable of providing comprehensive characterization of microbial contamination in aerosol facemasks. Insight gained from microbiome-scale analysis facilitates the development of effective strategies for the prevention and mitigation of the risk of nosocomial infections arising from exposure to microbial contamination of aerosol facemasks, such as targeted elimination of potential sources of contamination.
Collapse
Affiliation(s)
- C S Swanson
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, USA
| | - R Dhand
- Department of Medicine, The University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - L Cao
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, USA
| | - J Ferris
- Department of Medicine, The University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - C S Elder
- Respiratory Therapy Department, The University of Tennessee Medical Center, Knoxville, TN, USA
| | - Q He
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, TN, USA; Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
10
|
Wu F, Xie J, Xin X, He J. Effect of activated carbon/graphite on enhancing anaerobic digestion of waste activated sludge. Front Microbiol 2022; 13:999647. [DOI: 10.3389/fmicb.2022.999647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The conductive media was capable to enhance anaerobic digestion and promote direct interspecific electron transfer (DIET). In this study, the effects of activated carbon- and graphite-conductive media on promoting anaerobic digestion efficiency of waste activated sludge were experimentally studied. The results show that the 100 mesh-activated carbon group reactor produced a largest biogas yield of 468.2 mL/g VSS, which was 13.8% higher than the blank test. The graphite group reactor with 400-grain size produced a largest biogas yield of 462.9 mL/g VSS, which was 12.5% higher than the blank test. Moreover, the optimal particle size of such two carbon- conductive mediators were optimized for enhancing degradation efficiency of VSS, TCOD, total protein and total polysaccharide of waste sludge. Activated carbon was capable to promote the hydrolytic acidification stage in anaerobic digestion of waste sludge. When the particle size reduced to the optimal particle size, the promoting effect could be strengthened for producing more hydrolytic acidification products for methanogenesis. However, in the graphite group, the methane production is increased by promoting the consumption of hydrolysis and acidification products and is enhanced with the particle size reduction, thus promoting the methanogenesis process, and improving the anaerobic digestion efficiency. Microbial community analysis showed that both activated carbon and graphite cultivated the genera of Methanosaeta, Methanobacterium, Nitrososphaeraceae, which promoted the improvement of methane production through the acetate debris methanogenesis pathway.
Collapse
|
11
|
Gagliano MC, Sampara P, Plugge CM, Temmink H, Sudmalis D, Ziels RM. Functional Insights of Salinity Stress-Related Pathways in Metagenome-Resolved Methanothrix Genomes. Appl Environ Microbiol 2022; 88:e0244921. [PMID: 35477253 PMCID: PMC9128505 DOI: 10.1128/aem.02449-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
Recently, methanogenic archaea belonging to the genus Methanothrix were reported to have a fundamental role in maintaining stable ecosystem functioning in anaerobic bioreactors under different configurations/conditions. In this study, we reconstructed three Methanothrix metagenome-assembled genomes (MAGs) from granular sludge collected from saline upflow anaerobic sludge blanket (UASB) reactors, where Methanothrix harundinacea was previously implicated with the formation of compact and stable granules under elevated salinity levels (up to 20 g/L Na+). Genome annotation and pathway analysis of the Methanothrix MAGs revealed a genetic repertoire supporting their growth under high salinity. Specifically, the most dominant Methanothrix (MAG_279), classified as a subspecies of Methanothrix_A harundinacea_D, had the potential to augment its salinity resistance through the production of different glycoconjugates via the N-glycosylation process, and via the production of compatible solutes as Nε-acetyl-β-lysine and ectoine. The stabilization and reinforcement of the cell membrane via the production of isoprenoids was identified as an additional stress-related pathway in this microorganism. The improved understanding of the salinity stress-related mechanisms of M. harundinacea highlights its ecological niche in extreme conditions, opening new perspectives for high-efficiency methanisation of organic waste at high salinities, as well as the possible persistence of this methanogen in highly-saline natural anaerobic environments. IMPORTANCE Using genome-centric metagenomics, we discovered a new Methanothrix harundinacea subspecies that appears to be a halotolerant acetoclastic methanogen with the flexibility for adaptation in the anaerobic digestion process both at low (5 g/L Na+) and high salinity conditions (20 g/L Na+). Annotation of the recovered M. harundinacea genome revealed salinity stress-related functions, including the modification of EPS glycoconjugates and the production of compatible solutes. This is the first study reporting these genomic features within a Methanothrix sp., a milestone further supporting previous studies that identified M. harundinacea as a key-driver in anaerobic granulation under high salinity stress.
Collapse
Affiliation(s)
- Maria Cristina Gagliano
- Wetsus – European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Pranav Sampara
- Civil Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Caroline M. Plugge
- Wetsus – European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, the Netherlands
| | - Hardy Temmink
- Wetsus – European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
- Department of Environmental Technology, Wageningen University and Research, Wageningen, the Netherlands
| | - Dainis Sudmalis
- Department of Environmental Technology, Wageningen University and Research, Wageningen, the Netherlands
| | - Ryan M. Ziels
- Civil Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Ottoni JR, Bernal SPF, Marteres TJ, Luiz FN, Dos Santos VP, Mari ÂG, Somer JG, de Oliveira VM, Passarini MRZ. Cultured and uncultured microbial community associated with biogas production in anaerobic digestion processes. Arch Microbiol 2022; 204:340. [PMID: 35590017 DOI: 10.1007/s00203-022-02819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/07/2022] [Accepted: 02/25/2022] [Indexed: 11/02/2022]
Abstract
The search for sustainable development has increased interest in the improvement of technologies that use renewable energy sources. One of the alternatives in the production of renewable energy comes from the use of waste including urban solids, animal excrement from livestock, and biomass residues from agro-industrial plants. These materials may be used in the production of biogas, making its production highly sustainable and environmentally friendly. The present study aimed to evaluate the cultivated and uncultivated microbial community from a substrate (starter) used as an adapter for biogas production in anaerobic digestion processes. 16S rDNA metabarcoding revealed the domain of bacteria belonging to the phyla Firmicutes, Bacteroidota, Chloroflexi and Synergistota. The methanogenic group was represented by the phyla Halobacterota and Euryarchaeota. Through 16S rRNA sequencing of isolates recovered from the starter culture, the genera Rhodococcus (Actinobacteria phylum), Vagococcus, Lysinibacillus, Niallia, Priestia, Robertmurraya, Proteiniclasticum (Firmicutes phylum), and Luteimonas (Proteobacteria phylum) were identified, genera that were not observed in the metabarcoding data. The volatile solids, volatile organic acids, and total inorganic carbon reached 659.10 g kg-1, 717.70 g kg-1, 70,005.0 g kg-1, respectively. The cultured groups are involved in the metabolism of sugars and other compounds derived from lignocellulosic material, as well as in anaerobic methane production processes. The results demonstrate that culture-dependent approaches, such as isolation and sequencing, and culture-independent studies, such as the Metabarcoding approach, are complementary methodologies that, when integrated provide robust and comprehensive information about the microbial communities involved in processes of the production of biogas in anaerobic digestion processes.
Collapse
Affiliation(s)
- Júlia Ronzella Ottoni
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino-Americana - Unila., Jd Universitário, Av. Tarquínio Joslin dos Santos, 1000, Foz do Iguaçu, PR, 85870-650, Brazil
| | - Suzan Prado Fernandes Bernal
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino-Americana - Unila., Jd Universitário, Av. Tarquínio Joslin dos Santos, 1000, Foz do Iguaçu, PR, 85870-650, Brazil
| | - Tiago Joelzer Marteres
- Centro Internacional de Energias Renováveis - Biogás (CIBiogás-ER), Av. Tancredo Neves, 6731, Itaipu, Foz do Iguaçu, PR, Brazil
| | - Franciele Natividade Luiz
- Centro Internacional de Energias Renováveis - Biogás (CIBiogás-ER), Av. Tancredo Neves, 6731, Itaipu, Foz do Iguaçu, PR, Brazil
| | - Viviane Piccin Dos Santos
- CPQBA/UNICAMP - Divisão de Recursos Microbianos, Campinas, Av. Alexandre Cazelatto, 999. Betel, Paulínia, SP, Brazil
| | - Ângelo Gabriel Mari
- Centro Internacional de Energias Renováveis - Biogás (CIBiogás-ER), Av. Tancredo Neves, 6731, Itaipu, Foz do Iguaçu, PR, Brazil
| | - Juliana Gaio Somer
- Centro Internacional de Energias Renováveis - Biogás (CIBiogás-ER), Av. Tancredo Neves, 6731, Itaipu, Foz do Iguaçu, PR, Brazil
| | - Valéria Maia de Oliveira
- CPQBA/UNICAMP - Divisão de Recursos Microbianos, Campinas, Av. Alexandre Cazelatto, 999. Betel, Paulínia, SP, Brazil
| | - Michel Rodrigo Zambrano Passarini
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino-Americana - Unila., Jd Universitário, Av. Tarquínio Joslin dos Santos, 1000, Foz do Iguaçu, PR, 85870-650, Brazil.
| |
Collapse
|
13
|
Swanson CS, Dhand R, Cao L, Ferris J, Elder CS, He Q. Microbiome Profiles of Nebulizers in Hospital Use. J Aerosol Med Pulm Drug Deliv 2022; 35:212-222. [PMID: 35230145 DOI: 10.1089/jamp.2021.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Nebulizers are used to provide treatment to respiratory patients. Concerns over nosocomial infection risks from contaminated nebulizers raise the critical need to identify all microbial populations in nebulizers used by patients. However, conventional culture-dependent techniques are inadequate with the ability to identify specific microbial populations only. Therefore, the aims of this study were to acquire complete profiles of microbiomes in nebulizers used by in-patients with culture-independent high-throughput sequencing and identify sources of microbial contaminants for the development of effective practices to reduce microbial contamination in nebulizer devices. Methods: This study was conducted at the University of Tennessee Medical Center in Knoxville, TN. Nebulizers were collected between May 2018 and October 2018 from inpatients admitted to the floors for pneumonia or chronic obstructive pulmonary disease exacerbations. Nebulizers were sampled for 16S rRNA gene-based amplicon sequencing to profile nebulizer microbiomes and perform phylogenetic analysis. A Bayesian community-wide culture-independent microbial source tracking technique was used to quantify the contribution of human-associated microbiota as potential sources of nebulizer contamination. Results: Culture-independent sequencing detected diverse microbial populations in nebulizers, represented by 18 abundant genera. Stenotrophomonas was identified as the most abundant genus, accounting for 12.4% of the nebulizer microbiome, followed by Rhizobium, Staphylococcus, Streptococcus, and Ralstonia. Phylogenetic analysis revealed the presence of multiple phylotypes with close relationship to potential pathogens. Contributing up to 15% to nebulizer microbiomes, human-associated microbiota was not identified as the primary sources of nebulizer contamination. Conclusion: Culture-independent sequencing was demonstrated to be capable of acquiring comprehensive profiles of microbiomes in nebulizers used by in-patients. Phylogenetic analysis identified differences in pathogenicity between closely related phylotypes. Microbiome profile-enabled community-wide culture-independent microbial source tracking suggested greater importance of environmental sources than human sources as contributors to nebulizer microbiomes, providing important insight for the development of effective strategies for the monitoring and control of nebulizer devices to mitigate infection risks in the hospital.
Collapse
Affiliation(s)
- Clifford S Swanson
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Tennessee, USA
| | - Rajiv Dhand
- Department of Medicine, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, USA
| | - Liu Cao
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Tennessee, USA
| | - Jennifer Ferris
- Department of Medicine, The University of Tennessee Graduate School of Medicine, Knoxville, Tennessee, USA
| | - C Scott Elder
- Department of Respiratory Therapy, The University of Tennessee Medical Center, Knoxville, Tennessee, USA
| | - Qiang He
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Tennessee, USA.,Institute for a Secure and Sustainable Environment, The University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
14
|
Prem EM, Mutschlechner M, Stres B, Illmer P, Wagner AO. Lignin intermediates lead to phenyl acid formation and microbial community shifts in meso- and thermophilic batch reactors. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:27. [PMID: 33472684 PMCID: PMC7816434 DOI: 10.1186/s13068-020-01855-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/09/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND Lignin intermediates resulting from lignocellulose degradation have been suspected to hinder anaerobic mineralisation of organic materials to biogas. Phenyl acids like phenylacetate (PAA) are early detectable intermediates during anaerobic digestion (AD) of aromatic compounds. Studying the phenyl acid formation dynamics and concomitant microbial community shifts can help to understand the microbial interdependencies during AD of aromatic compounds and may be beneficial to counteract disturbances. RESULTS The length of the aliphatic side chain and chemical structure of the benzene side group(s) had an influence on the methanogenic system. PAA, phenylpropionate (PPA), and phenylbutyrate (PBA) accumulations showed that the respective lignin intermediate was degraded but that there were metabolic restrictions as the phenyl acids were not effectively processed. Metagenomic analyses confirmed that mesophilic genera like Fastidiosipila or Syntrophomonas and thermophilic genera like Lactobacillus, Bacillus, Geobacillus, and Tissierella are associated with phenyl acid formation. Acetoclastic methanogenesis was prevalent in mesophilic samples at low and medium overload conditions, whereas Methanoculleus spp. dominated at high overload conditions when methane production was restricted. In medium carbon load reactors under thermophilic conditions, syntrophic acetate oxidation (SAO)-induced hydrogenotrophic methanogenesis was the most important process despite the fact that acetoclastic methanogenesis would thermodynamically be more favourable. As acetoclastic methanogens were restricted at medium and high overload conditions, syntrophic acetate oxidising bacteria and their hydrogenotrophic partners could step in for acetate consumption. CONCLUSIONS PAA, PPA, and PBA were early indicators for upcoming process failures. Acetoclastic methanogens were one of the first microorganisms to be impaired by aromatic compounds, and shifts to syntrophic acetate oxidation coupled to hydrogenotrophic methanogenesis occurred in thermophilic reactors. Previously assumed associations of specific meso- and thermophilic genera with anaerobic phenyl acid formation could be confirmed.
Collapse
Affiliation(s)
- Eva Maria Prem
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria.
| | - Mira Mutschlechner
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| | - Blaz Stres
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000, Ljubljana, Slovenia
- Institute of Sanitary Engineering, Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jamova 2, 1000, Ljubljana, Slovenia
- Department of Automation, Biocybernetics and Robotics, Jozef Štefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Paul Illmer
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| | - Andreas Otto Wagner
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, 6020, Innsbruck, Austria
| |
Collapse
|
15
|
Liu J, Wang C, Wu K, Tang Z, Peng S, Huang J, Li F, Zhao X, Yin F, Yang B, Liu J, Yang H, Zhang W. Comparison of long-term energy efficiency and microbial community dynamics of different reactors in response to increased loadings of water hyacinth juice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140812. [PMID: 32711308 DOI: 10.1016/j.scitotenv.2020.140812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Water hyacinth is considered to be among the worst invasive weed species globally, causing detrimental environmental and social problems worldwide. It rapidly grows, and therefore has significant potential as a resource. Due to its high moisture content (approximately 95%), the by-product obtained by dehydrating water hyacinth yields a considerable amount of water hyacinth juice (WHJ). In this study, we performed a comparative assessment of long-term energy efficiency, maximum treatment capacity limits, and microbial community dynamics of modified internal circulation (MIC) and up-flow anaerobic sludge blanket (UASB) reactors in response to increasing loadings of WHJ. The MIC reactor exhibited a higher energy recovery rate and stronger performance compared with the UASB reactor. The optimal organic loading rates of the MIC and UASB reactors were 17.93 and 8.85 kg chemical oxygen demand (COD)/m3/d, with methane conversion rates of 0.21 and 0.15 m3 CH4/kg COD, respectively. Furthermore, the engineering costs and project floor space required by the MIC reactor are less than those in the case of the UASB reactor. The high-throughput sequencing analysis indicated that the dominant phyla (e.g. Firmicutes and Bacteroidetes) were more abundant using the MIC reactor than with the UASB reactor, which may indicate WHJ degradation efficiency. Both reactors had similar predominant methanogens, suggesting that acetoclastic methanogenesis was the predominant metabolic pathway of methane formation. The results of this study provide new insights into the sustainable management of water hyacinth as a resource by establishing a regional ecosystem with biogas engineering applications.
Collapse
Affiliation(s)
- Jianfeng Liu
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China; Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua 134118, PR China; DongMing Agriculture and Animal Husbandry Development (Group) Co., LTD, Tonghua 134118, PR China
| | - Changmei Wang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China; Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua 134118, PR China
| | - Kai Wu
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China
| | - Zhengkang Tang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Suyi Peng
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Jiang Huang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Fuyuan Li
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Xingling Zhao
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China
| | - Fang Yin
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China; Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua 134118, PR China
| | - Bin Yang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China
| | - Jing Liu
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Hong Yang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Wudi Zhang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China; Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua 134118, PR China; DongMing Agriculture and Animal Husbandry Development (Group) Co., LTD, Tonghua 134118, PR China.
| |
Collapse
|
16
|
Liu J, Wang C, Wu K, Huang L, Tang Z, Zhang C, Wang C, Zhao X, Yin F, Yang B, Liu J, Yang H, Zhang W. Novel start-up process for the efficient degradation of high COD wastewater with up-flow anaerobic sludge blanket technology and a modified internal circulation reactor. BIORESOURCE TECHNOLOGY 2020; 308:123300. [PMID: 32278996 DOI: 10.1016/j.biortech.2020.123300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 05/21/2023]
Abstract
To avoid wastage of water resources and operating cost increases caused by the traditional start-up process of large amounts of dilution influent chemical oxygen demand (COD), a novel start-up process (NSP) was developed and verified with water hyacinth juice (WHJ) on an up-flow anaerobic sludge blanket (UASB) and modified internal circulation (MIC) reactor. Results show that UASB and MIC reactors were started successfully and that the MIC reactor exhibited a superior performance. The NSP time of the MIC reactor (46 days) was less than that of the UASB reactor (52 days), although the start-up organic loading rate (OLR) of the MIC reactor was higher than that of the UASB reactor. Interestingly, high-throughput sequencing analysis indicated that the reactor configuration significantly impacted the microbial diversity, however, the UASB and MIC reactors had similar predominant methanogens: Methanosaeta and Methanosarcina. Therefore, acetoclastic methanogenesis is the primary pathway of methane formation during WHJ treatment.
Collapse
Affiliation(s)
- Jianfeng Liu
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China; Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua 134118, PR China
| | - Chengxian Wang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Kai Wu
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Li Huang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Zhengkang Tang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Chengbo Zhang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China
| | - Changmei Wang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Xingling Zhao
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Fang Yin
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China; Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua 134118, PR China
| | - Bin Yang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China
| | - Jing Liu
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Hong Yang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China
| | - Wudi Zhang
- Yunnan Research Center of Biogas Technology and Engineering, School of Energy and Environment Science, Yunnan Normal University, Kunming 650500, PR China; Engineering and Research Center of Sustainable Development and Utilization of Bioenergy, Ministry of Education, Yunnan Normal University, Kunming 650500, PR China; Jilin Dongsheng Institute of Biomass Energy Engineering, Tonghua 134118, PR China.
| |
Collapse
|
17
|
Biogas from Tannery Solid Waste Anaerobic Digestion Is Driven by the Association of the Bacterial Order Bacteroidales and Archaeal Family Methanosaetaceae. Appl Biochem Biotechnol 2020; 192:482-493. [PMID: 32399839 DOI: 10.1007/s12010-020-03326-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
The search for renewable energies has been one of the biggest challenges of the last decades. Sludge and solid wastes of many sources have been used to produce biogas of high calorific value. Thus, this work aimed to evaluate the biogas production of solid waste originating from a tannery that uses chromium salts as a tanning agent and to characterize the physicochemical parameters and microbial composition of the biogas-producing biomass. Wastes were collected and the parameters were evaluated at the initial and final time points of the anaerobic incubation process. At the end of 150 days, there was a production of 26.1 mL g-1 VSS of biogas with 52% of methane. The highest amount of biomethane observed was related to the archaeal family Methanosaetaceae and bacterial order Bacteroidales. Knowledge about changes in the microbial composition can provide tools for manipulation, isolation, and inoculation of the microorganisms inside the bioreactors to maximize methane production.
Collapse
|
18
|
Paulo LM, Castilla-Archilla J, Ramiro-Garcia J, Escamez-Picón JA, Hughes D, Mahony T, Murray M, Wilmes P, O'Flaherty V. Microbial Community Redundancy and Resilience Underpins High-Rate Anaerobic Treatment of Dairy-Processing Wastewater at Ambient Temperatures. Front Bioeng Biotechnol 2020; 8:192. [PMID: 32232038 PMCID: PMC7082317 DOI: 10.3389/fbioe.2020.00192] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/27/2020] [Indexed: 11/25/2022] Open
Abstract
High-rate anaerobic digestion (AD) is a reliable, efficient process to treat wastewaters and is often operated at temperatures exceeding 30°C, involving energy consumption of biogas in temperate regions, where wastewaters are often discharged at variable temperatures generally below 20°C. High-rate ambient temperature AD, without temperature control, is an economically attractive alternative that has been proven to be feasible at laboratory-scale. In this study, an ambient temperature pilot scale anaerobic reactor (2 m3) was employed to treat real dairy wastewater in situ at a milk processing plant, at organic loading rates of 1.3 ± 0.6 to 10.6 ± 3.7 kg COD/m3/day and hydraulic retention times (HRT) ranging from 36 to 6 h. Consistent high levels of COD removal efficiencies, ranging from 50 to 70% for total COD removal and 70 to 84% for soluble COD removal, were achieved during the trial. Within the reactor biomass, stable active archaeal populations were observed, consisting mainly of Methanothrix (previously Methanosaeta) species, which represented up to 47% of the relative abundant active species in the reactor. The decrease in HRT, combined with increases in the loading rate had a clear effect on shaping the structure and composition of the bacterial fraction of the microbial community, however, without affecting reactor performance. On the other hand, perturbances in influent pH had a strong impact, especially when pH went higher than 8.5, inducing shifts in the microbial community composition and, in some cases, affecting negatively the performance of the reactor in terms of COD removal and biogas methane content. For example, the main pH shock led to a drop in the methane content to 15%, COD removals decreased to 0%, while the archaeal population decreased to ~11% both at DNA and cDNA levels. Functional redundancy in the microbial community underpinned stable reactor performance and rapid reactor recovery after perturbations.
Collapse
Affiliation(s)
- Lara M Paulo
- Microbiology, School of Natural Sciences and Ryan Institute, NUI Galway, Galway, Ireland.,Dairy Processing Technology Centre (DPTC), Limerick, Ireland
| | - Juan Castilla-Archilla
- Microbiology, School of Natural Sciences and Ryan Institute, NUI Galway, Galway, Ireland.,Dairy Processing Technology Centre (DPTC), Limerick, Ireland
| | - Javier Ramiro-Garcia
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - José Antonio Escamez-Picón
- Microbiology, School of Natural Sciences and Ryan Institute, NUI Galway, Galway, Ireland.,Dairy Processing Technology Centre (DPTC), Limerick, Ireland
| | - Dermot Hughes
- Microbiology, School of Natural Sciences and Ryan Institute, NUI Galway, Galway, Ireland.,NVP Energy Ltd., Galway Technology & Business Centre, Galway, Ireland
| | - Thérèse Mahony
- Microbiology, School of Natural Sciences and Ryan Institute, NUI Galway, Galway, Ireland.,Dairy Processing Technology Centre (DPTC), Limerick, Ireland
| | - Michael Murray
- NVP Energy Ltd., Galway Technology & Business Centre, Galway, Ireland
| | - Paul Wilmes
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Vincent O'Flaherty
- Microbiology, School of Natural Sciences and Ryan Institute, NUI Galway, Galway, Ireland.,Dairy Processing Technology Centre (DPTC), Limerick, Ireland
| |
Collapse
|
19
|
Wang XT, Xu XJ, Chen C, Xing DF, Zhang RC, Zhou X, Yuan Y, Wang AJ, Ren NQ, Lee DJ. The microbial zonation of SRB and soNRB enhanced the performance of SR-DSR process under the micro-aerobic condition. ENVIRONMENT INTERNATIONAL 2019; 132:105096. [PMID: 31465952 DOI: 10.1016/j.envint.2019.105096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/11/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
The micro-aerobic condition has proven to effectively enhance the COD removal and elemental sulfur (S0) transformation rate in the sulfate reduction-denitrifying sulfide removal (SR-DSR) process. However, the mechanisms of how micro-aerobic condition enhances S0 transformation remain largely unknown. Therefore in this work an integrated investigation was performed to document the mechanisms and the effect of different startup modes (micro-aerobic startup (termed as mSR-DSR) and anaerobic startup (termed as aSR-DSR)) on bioreactor performance and microbial community dynamics. The results showed that micro-aerobic startup achieved a shorter period to reach a stable performance for SR-DSR, which could be one of the factors affecting the choice of the bioreactor startup mode considering engineering application. For all the tested conditions, removal of nitrate, sulfate and lactate were 100%, >80% and 100%, respectively. The maximum transformation rate of elemental sulfur in mSR-DSR was 57%, which was higher than that in aSR-DSR. The mechanism explorations revealed that micro-aerobic condition not only particularly enriched the sulfide-oxidizing, nitrate-reducing bacteria (soNRB) but also promoted the microbial zonation of sulfate-reducing bacteria (SRB) and soNRB, thereby achieving more S0 transformation in the effluent. Under micro-aerobic condition, SRB were mainly distributed in the bottom and middle part of the reactor, while soNRB were assembled in the top. The relative abundance of soNRB in both aSR-DSR and mSR-DSR notably increased to 41.5% and 23.7% at the top when 5 mL air min-1 Lreactor-1 was applied. Furthermore, the degradation of organic carbon was also accelerated under micro-aerobic condition, possibly due to the enrichment of organic compounds degrading bacteria Bacteroidetes_vadin HA17.
Collapse
Affiliation(s)
- Xue-Ting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province 150090, China
| | - Xi-Jun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province 150090, China.
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province 150090, China
| | - Ruo-Chen Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province 150090, China
| | - Xu Zhou
- Engineering Laboratory of Microalgal Bioenergy, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yuan Yuan
- Department of Biotechnology, Beijing Polytechnic, Beijing 100029, China
| | - Ai-Jie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, HeiLongjiang Province 150090, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| |
Collapse
|
20
|
Xiao Y, Yaohari H, Zhou Z, Sze CC, Stuckey DC. Autoinducer-2-mediated quorum sensing partially regulates the toxic shock response of anaerobic digestion. WATER RESEARCH 2019; 158:94-105. [PMID: 31022531 DOI: 10.1016/j.watres.2019.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
This study discovered a strong correlation between the autoinducer-2 (AI-2)-mediated quorum sensing (QS) with the performance of a submerged anaerobic membrane bioreactor during its recovery from a pentachlorophenol (PCP) shock: a decrease in AI-2 levels coincided with a reduction in volatile fatty acid concentrations, and corresponded significantly to a decrease in the relative abundance of Firmicutes, and to an increase in the relative abundance of Bacteroidetes and Synergistetes. Further batch experiments with the addition of an AI-2-regulating Escherichia coli mutant culture showed that a reduction in AI-2 levels resulted in the highest biogas production rate during a PCP shock. In contrast, an increase in AI-2 levels via addition of the E. coli wild type strain or an AI-2 precursor showed no obvious effects on biogas production. These results suggest that the AI-2 level in anaerobic sludge was governed primarily by Firmicutes, and the AI-2-mediated QS partially regulates the toxic shock response of anaerobic sludge via tuning the activities of Firmicutes and Synergistetes. A decrease in the AI-2 level might reduce acetogenesis and favor hydrogenotrophic methanogenesis, thus resulting in less VFA accumulation and higher methane production during the PCP shock. This study is the first of this type that exploits the role of quorum sensing in the toxic shock response of anaerobic sludge; it demonstrates a novel approach to shortening the recovery period of anaerobic processes via manipulating the AI-2-mediated QS.
Collapse
Affiliation(s)
- Yeyuan Xiao
- Department of Civil and Environmental Engineering, Shantou University, 515063, China; Advanced Environmental Biotechnology Centre (AEBC), Nanyang Environment and Water Research Centre (NEWRI), Nanyang Technological University, 637141, Singapore
| | - Hazarki Yaohari
- Advanced Environmental Biotechnology Centre (AEBC), Nanyang Environment and Water Research Centre (NEWRI), Nanyang Technological University, 637141, Singapore
| | - Zhongbo Zhou
- Advanced Environmental Biotechnology Centre (AEBC), Nanyang Environment and Water Research Centre (NEWRI), Nanyang Technological University, 637141, Singapore
| | - Chun Chau Sze
- Advanced Environmental Biotechnology Centre (AEBC), Nanyang Environment and Water Research Centre (NEWRI), Nanyang Technological University, 637141, Singapore; School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - David C Stuckey
- Advanced Environmental Biotechnology Centre (AEBC), Nanyang Environment and Water Research Centre (NEWRI), Nanyang Technological University, 637141, Singapore; Department of Chemical Engineering, Imperial College London, SW7 2AZ, UK.
| |
Collapse
|
21
|
Ziganshin AM, Wintsche B, Seifert J, Carstensen M, Born J, Kleinsteuber S. Spatial separation of metabolic stages in a tube anaerobic baffled reactor: reactor performance and microbial community dynamics. Appl Microbiol Biotechnol 2019; 103:3915-3929. [DOI: 10.1007/s00253-019-09767-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022]
|
22
|
Šafarič L, Shakeri Yekta S, Liu T, Svensson BH, Schnürer A, Bastviken D, Björn A. Dynamics of a Perturbed Microbial Community during Thermophilic Anaerobic Digestion of Chemically Defined Soluble Organic Compounds. Microorganisms 2018; 6:microorganisms6040105. [PMID: 30314333 PMCID: PMC6313639 DOI: 10.3390/microorganisms6040105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/06/2018] [Accepted: 10/10/2018] [Indexed: 11/22/2022] Open
Abstract
Knowledge of microbial community dynamics in relation to process perturbations is fundamental to understand and deal with the instability of anaerobic digestion (AD) processes. This study aims to investigate the microbial community structure and function of a thermophilic AD process, fed with a chemically defined substrate, and its association with process performance stability. Next generation amplicon sequencing of 16S ribosomal RNA (rRNA) genes revealed that variations in relative abundances of the predominant bacterial species, Defluviitoga tunisiensis and Anaerobaculum hydrogeniformans, were not linked to the process performance stability, while dynamics of bacterial genera of low abundance, Coprothermobacter and Defluviitoga (other than D. tunisiensis), were associated with microbial community function and process stability. A decrease in the diversity of the archaeal community was observed in conjunction with process recovery and stable performance, implying that the high abundance of specific archaeal group(s) contributed to the stable AD. Dominance of hydrogenotrophic Methanoculleus particularly corresponded to an enhanced microbial acetate and propionate turnover capacity, whereas the prevalence of hydrogenotrophic Methanothermobacter and acetoclastic Methanosaeta was associated with instable AD. Acetate oxidation via syntrophic interactions between Coprothermobacter and Methanoculleus was potentially the main methane-formation pathway during the stable process. We observed that supplementation of Se and W to the medium improved the propionate turnover by the thermophilic consortium. The outcomes of our study provided insights into the community dynamics and trace element requirements in relation to the process performance stability of thermophilic AD.
Collapse
Affiliation(s)
- Luka Šafarič
- Department of Thematic Studies-Environmental Change, Linköping University, 581 83 Linköping, Sweden.
- Biogas Research Center, Linköping University, 581 83 Linköping, Sweden.
| | - Sepehr Shakeri Yekta
- Department of Thematic Studies-Environmental Change, Linköping University, 581 83 Linköping, Sweden.
- Biogas Research Center, Linköping University, 581 83 Linköping, Sweden.
| | - Tong Liu
- Department of Molecular Science, Swedish University of Agricultural Science, Uppsala BioCenter, 75007 Uppsala, Sweden.
| | - Bo H Svensson
- Department of Thematic Studies-Environmental Change, Linköping University, 581 83 Linköping, Sweden.
- Biogas Research Center, Linköping University, 581 83 Linköping, Sweden.
| | - Anna Schnürer
- Department of Thematic Studies-Environmental Change, Linköping University, 581 83 Linköping, Sweden.
- Biogas Research Center, Linköping University, 581 83 Linköping, Sweden.
- Department of Molecular Science, Swedish University of Agricultural Science, Uppsala BioCenter, 75007 Uppsala, Sweden.
| | - David Bastviken
- Department of Thematic Studies-Environmental Change, Linköping University, 581 83 Linköping, Sweden.
| | - Annika Björn
- Department of Thematic Studies-Environmental Change, Linköping University, 581 83 Linköping, Sweden.
- Biogas Research Center, Linköping University, 581 83 Linköping, Sweden.
| |
Collapse
|
23
|
Key microbial populations involved in anaerobic degradation of phenol and p-cresol using different inocula. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2018.08.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
24
|
Targeting Bacteria and Methanogens To Understand the Role of Residual Slurry as an Inoculant in Stored Liquid Dairy Manure. Appl Environ Microbiol 2018; 84:AEM.02830-17. [PMID: 29374043 DOI: 10.1128/aem.02830-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 01/20/2018] [Indexed: 12/31/2022] Open
Abstract
Microbial communities in residual slurry left after removal of stored liquid dairy manure have been presumed to increase methane emission during new storage, but these microbes have not been studied. While actual manure storage tanks are filled gradually, pilot- and farm-scale studies on methane emissions from such systems often use a batch approach. In this study, six pilot-scale outdoor storage tanks with (10% and 20%) and without residual slurry were filled (gradually or in batch) with fresh dairy manure, and methane and methanogenic and bacterial communities were studied during 120 days of storage. Regardless of filling type, increased residual slurry levels resulted in higher abundance of methanogens and bacteria after 65 days of storage. However, stronger correlation between methanogen abundance and methane flux was observed in gradually filled tanks. Despite some variations in the diversity of methanogens or bacteria with the presence of residual slurry, core phylotypes were not impacted. In all samples, the phylum Firmicutes predominated (∼57 to 70%) bacteria: >90% were members of ClostridiaMethanocorpusculum dominated (∼57 to 88%) archaeal phylotypes, while Methanosarcina gradually increased with storage time. During peak flux of methane, Methanosarcina was the major player in methane production. The results suggest that increased levels of residual slurry have little impact on the dominant methanogenic or bacterial phylotypes, but large population sizes of these organisms may result in increased methane flux during the initial phases of storage.IMPORTANCE Methane is the major greenhouse gas emitted from stored liquid dairy manure. Residual slurry left after removal of stored manure from tanks has been implicated in increasing methane emissions in new storages, and well-adapted microbial communities in it are the drivers of the increase. Linking methane flux to the abundance, diversity, and activity of microbial communities in stored slurries with different levels of residual slurry can help to improve the mitigation strategy. Mesoscale and lab-scale studies conducted so far on methane flux from manure storage systems used batch-filled tanks, while the actual condition in many farms involves gradual filling. Hence, this study provides important information toward determining levels of residual slurry that result in significant reduction of well-adapted microbial communities prior to storage, thereby reducing methane emissions from manure storage tanks filled under farm conditions.
Collapse
|
25
|
Huang Z, Sednek C, Urynowicz MA, Guo H, Wang Q, Fallgren P, Jin S, Jin Y, Igwe U, Li S. Low carbon renewable natural gas production from coalbeds and implications for carbon capture and storage. Nat Commun 2017; 8:568. [PMID: 28924176 PMCID: PMC5603537 DOI: 10.1038/s41467-017-00611-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 07/14/2017] [Indexed: 12/03/2022] Open
Abstract
Isotopic studies have shown that many of the world’s coalbed natural gas plays are secondary biogenic in origin, suggesting a potential for gas regeneration through enhanced microbial activities. The generation of biogas through biostimulation and bioaugmentation is limited to the bioavailability of coal-derived compounds and is considered carbon positive. Here we show that plant-derived carbohydrates can be used as alternative substrates for gas generation by the indigenous coal seam microorganisms. The results suggest that coalbeds can act as natural geobioreactors to produce low carbon renewable natural gas, which can be considered carbon neutral, or perhaps even carbon negative depending on the amount of carbon sequestered within the coal. In addition, coal bioavailability is no longer a limiting factor. This approach has the potential of bridging the gap between fossil fuels and renewable energy by utilizing existing coalbed natural gas infrastructure to produce low carbon renewable natural gas and reducing global warming. Coalbeds produce natural gas, which has been observed to be enhanced by in situ microbes. Here, the authors add plant-derived carbohydrates (monosaccharides) to coal seams to be converted by indigenous microbes into natural gas, thus demonstrating a potential low carbon renewable natural gas resource.
Collapse
Affiliation(s)
- Zaixing Huang
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, Wyoming, 82071, USA. .,Center for Biogenic Natural Gas Research, University of Wyoming, Laramie, Wyoming, 82071, USA.
| | - Christine Sednek
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, Wyoming, 82071, USA
| | - Michael A Urynowicz
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, Wyoming, 82071, USA.,Center for Biogenic Natural Gas Research, University of Wyoming, Laramie, Wyoming, 82071, USA
| | - Hongguang Guo
- College of Mining Technology, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Qiurong Wang
- Department of Animal Science, University of Wyoming, Laramie, Wyoming, 82071, USA.
| | - Paul Fallgren
- Advanced Environmental Technologies LLC, Fort Collins, Colorado, 80525, USA
| | - Song Jin
- Center for Biogenic Natural Gas Research, University of Wyoming, Laramie, Wyoming, 82071, USA.,Advanced Environmental Technologies LLC, Fort Collins, Colorado, 80525, USA
| | - Yan Jin
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, Wyoming, 82071, USA
| | - Uche Igwe
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, Wyoming, 82071, USA
| | - Shengpin Li
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, Wyoming, 82071, USA
| |
Collapse
|
26
|
Wyckoff KN, Chen S, Steinman AJ, He Q. Impact of Roadway Stormwater Runoff on Microbial Contamination in the Receiving Stream. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:1065-1071. [PMID: 28991989 DOI: 10.2134/jeq2017.03.0116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Stormwater runoff from roadways has increasingly become a regulatory concern for water pollution control. Recent work has suggested roadway stormwater runoff as a potential source of microbial pollutants. The objective of this study was to determine the impact of roadway runoff on the microbiological quality of receiving streams. Microbiological quality of roadway stormwater runoff and the receiving stream was monitored during storm events with both cultivation-dependent fecal bacteria enumeration and cultivation-independent high-throughput sequencing techniques. Enumeration of total coliforms as a measure of fecal microbial pollution found consistently lower total coliform counts in roadway runoff than those in the stream water, suggesting that roadway runoff was not a major contributor of microbial pollutants to the receiving stream. Further characterization of the microbial community in the stormwater samples by 16S ribosomal RNA gene-based high-throughput amplicon sequencing revealed significant differences in the microbial composition of stormwater runoff from the roadways and the receiving stream. The differences in microbial composition between the roadway runoff and stream water demonstrate that roadway runoff did not appear to have a major influence on the stream in terms of microbiological quality. Thus, results from both fecal bacteria enumeration and high-throughput amplicon sequencing techniques were consistent that roadway stormwater runoff was not the primary contributor of microbial loading to the stream. Further studies of additional watersheds with distinct characteristics are needed to validate these findings. Understanding gained in this study could support the development of more effective strategies for stormwater management in sensitive watersheds.
Collapse
|