1
|
Duong HL, Paufler S, Harms H, Maskow T, Schlosser D. Applicability and information value of biocalorimetry for the monitoring of fungal solid-state fermentation of lignocellulosic agricultural by-products. N Biotechnol 2021; 66:97-106. [PMID: 34767975 DOI: 10.1016/j.nbt.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 11/30/2022]
Abstract
The applicability of biocalorimetry for monitoring fungal conversion of lignocellulosic agricultural by-products during solid-state fermentation (SSF) was substantiated through linking the non-invasive measurement of metabolic heat fluxes to conventional invasive determination of fungal activity (growth, substrate degradation, enzyme activity) parameters. For this, the fast-growing, cellulose-utilising ascomycete Stachybotrys chlorohalonata and the comparatively slow-growing litter-decay basidiomycete Stropharia rugosoannulata were investigated as model organisms during growth on solid wheat straw. Both biocalorimetric and non-calorimetric data may suggest R (ruderal)- and C (combative)-selected life history strategies in S. chlorohalonata and S. rugosoannulata, respectively. For both species, a strong linear correlation of the released metabolic heat with the corresponding fungal biomass was observed. Species-specific YQ/X values (metabolic heat released per fungal biomass unit) were obtained, which potentially enable use of biocalorimetric signals for the quantification of fungal biomass during single-species SSF processes. Moreover, YQ/X values may also indicate different fungal life history strategies and therefore be considered as useful parameters aiding fungal ecology research.
Collapse
Affiliation(s)
- Hieu Linh Duong
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraβe 15, 04318, Leipzig, Germany; Vietnamese-German University (VGU), Le Lai Street, Hoa Phu Ward, Thu Dau Mot City, Binh Duong Province, Viet Nam.
| | - Sven Paufler
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| | - Hauke Harms
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| | - Thomas Maskow
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| | - Dietmar Schlosser
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstraβe 15, 04318, Leipzig, Germany.
| |
Collapse
|
2
|
Subramanian AM, Nanjan SE, Prakash H, Santharam L, Ramachandran A, Sathyaseelan V, Ravi DP, Mahadevan S. Biokinetics of fed-batch production of poly (3-hydroxybutyrate) using microbial co-culture. Appl Microbiol Biotechnol 2019; 104:1077-1095. [PMID: 31844913 DOI: 10.1007/s00253-019-10274-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/15/2019] [Accepted: 11/23/2019] [Indexed: 11/26/2022]
Abstract
A novel fed-batch strategy based on carbon/nitrogen (C/N) ratio in a microbial co-culture production medium broth was carried out in a biocalorimeter for improved production of poly (3-hydroxybutyrate) (PHB). Shake flask study suggested that the C/N ratio of 10 increased the yield of PHB by 2.8 times. Online parameters monitored during the C/N ratio of 10 in biocalorimeter (BioRC1e) indicated that the heat profile was maintained in the fed-batch mode resulting in a PHB yield of 30.3 ± 1.5 g/L. The oxy-calorific heat yield coefficient during the fed-batch strategy was found to be 394.24 ± 18.71 kJ/O2 due to the oxidative metabolism of glucose. The reported heat-based model adapted for PHB concentration prediction in the present fed-batch mode. The heat-based model has a Nash-Sutcliffe efficiency of 0.9758 for PHB prediction. PHB obtained by fed-batch-mode was characterized using gas chromatography-mass spectrometry (GC-MS) for the monomer-acid analysis, Thermogravimetric analysis (TGA) for thermal stability of PHB, and Fourier transform infrared spectroscopy (FT-IR) for confirmation of functional groups. Here, we establish a favorable C/N ratio for achieving optimal PHB yield and a predictive heat-based model to monitor its production.
Collapse
Affiliation(s)
| | - Sivanesh Easwaran Nanjan
- Chemical Engineering Department, CSIR-Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India
| | - Hariram Prakash
- Department of Chemical Engineering, Birla Institute of Technology & Science (BITS), Pilani - KK Birla Goa campus, Zuari Nagar, Goa, 403726, India
| | - Leelaram Santharam
- Bioseparation and Bioprocessing Laboratory, Department of Chemical Engineering, Indian Institute of Technology, Delhi, 110016, India
| | - Ankitha Ramachandran
- Department of Chemical Engineering, Birla Institute of Technology & Science (BITS), Pilani - KK Birla Goa campus, Zuari Nagar, Goa, 403726, India
| | - Vignesh Sathyaseelan
- Department of Chemical Engineering, Birla Institute of Technology & Science (BITS), Pilani - KK Birla Goa campus, Zuari Nagar, Goa, 403726, India
| | - Deepa Perinkulum Ravi
- Department of Biological Sciences, Birla Institute of Technology & Science (BITS), Pilani - Pilani Campus, Pilani, Rajasthan, 333031, India
| | - Surianarayanan Mahadevan
- Chemical Engineering Department, CSIR-Central Leather Research Institute (CLRI), Adyar, Chennai, Tamil Nadu, 600020, India.
| |
Collapse
|
3
|
Santharam L, Easwaran SN, Subramanian Mohanakrishnan A, Mahadevan S. Effect of aeration and agitation on yeast inulinase production: a biocalorimetric investigation. Bioprocess Biosyst Eng 2019; 42:1009-1021. [PMID: 30854576 DOI: 10.1007/s00449-019-02101-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/03/2019] [Indexed: 12/31/2022]
Abstract
Air flow rate and agitation speed for inulinase production by Kluyveromyces marxianus were optimized based on metabolic heat release profiles. Shear stress and oxygen transfer (kLa) values were compared to assess the effects of aeration and agitation. At agitation rates of ≤ 100 rpm, the oxygen mass transfer rates were small and eventually led to less inulinase production, but at agitation rates > 150 rpm, loss of biomass resulted in less inulinase activity. Bio-reaction calorimeter (BioRc1e) experiment with aeration rates ≤ 0.5 lpm showed low kLa while at 1.5 lpm frothing of reactor contents caused loss of biomass and inulinase activity. The optimum conditions for aeration and agitation rate for K. marxianus in BioRc1e were 1 lpm and 150 rpm. Heat yield values obtained for the substrate, product and biomass reinstated the ongoing metabolic process. The heat release pattern could be a promising tool for optimization of bioprocess and in situ monitoring, with a possibility of interventions during the biotransformation process. At optimized aeration and agitation conditions, a two-fold increase in inulinase activity could be noticed.
Collapse
Affiliation(s)
- Leelaram Santharam
- Thermochemical Lab, Chemical Engineering Department, Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai, Tamilnadu, 600020, India
| | - Sivanesh Nanjan Easwaran
- Thermochemical Lab, Chemical Engineering Department, Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai, Tamilnadu, 600020, India
| | - Anusha Subramanian Mohanakrishnan
- Thermochemical Lab, Chemical Engineering Department, Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai, Tamilnadu, 600020, India
| | - Surianarayanan Mahadevan
- Thermochemical Lab, Chemical Engineering Department, Central Leather Research Institute (CSIR-CLRI), Adyar, Chennai, Tamilnadu, 600020, India.
| |
Collapse
|
4
|
Pentjuss A, Stalidzans E, Liepins J, Kokina A, Martynova J, Zikmanis P, Mozga I, Scherbaka R, Hartman H, Poolman MG, Fell DA, Vigants A. Model-based biotechnological potential analysis of Kluyveromyces marxianus central metabolism. J Ind Microbiol Biotechnol 2017; 44:1177-1190. [PMID: 28444480 DOI: 10.1007/s10295-017-1946-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/16/2017] [Indexed: 12/11/2022]
Abstract
The non-conventional yeast Kluyveromyces marxianus is an emerging industrial producer for many biotechnological processes. Here, we show the application of a biomass-linked stoichiometric model of central metabolism that is experimentally validated, and mass and charge balanced for assessing the carbon conversion efficiency of wild type and modified K. marxianus. Pairs of substrates (lactose, glucose, inulin, xylose) and products (ethanol, acetate, lactate, glycerol, ethyl acetate, succinate, glutamate, phenylethanol and phenylalanine) are examined by various modelling and optimisation methods. Our model reveals the organism's potential for industrial application and metabolic engineering. Modelling results imply that the aeration regime can be used as a tool to optimise product yield and flux distribution in K. marxianus. Also rebalancing NADH and NADPH utilisation can be used to improve the efficiency of substrate conversion. Xylose is identified as a biotechnologically promising substrate for K. marxianus.
Collapse
Affiliation(s)
- A Pentjuss
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| | - E Stalidzans
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia.
| | - J Liepins
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| | - A Kokina
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| | - J Martynova
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| | - P Zikmanis
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| | - I Mozga
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| | - R Scherbaka
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| | - H Hartman
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, OX, OX3 0BP, UK
| | - M G Poolman
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, OX, OX3 0BP, UK
| | - D A Fell
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, OX, OX3 0BP, UK
| | - A Vigants
- Institute of Microbiology and Biotechnology, University of Latvia, Jelgavas str. 1, Riga, 1004, Latvia
| |
Collapse
|