1
|
Sun T, Wang Y, Niu D, Geng Q, Qiu H, Song F, Keller NP, Tian J, Yang K. Peanut Rhizosphere Achromobacter xylosoxidans Inhibits Aspergillus flavus Development and Aflatoxin Synthesis by Inducing Apoptosis through Targeting the Cell Membrane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17572-17587. [PMID: 39069673 DOI: 10.1021/acs.jafc.4c05291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Contamination of crop seeds and feed with Aspergillus flavus and its associated aflatoxins presents a significant threat to human and animal health due to their hepatotoxic and carcinogenic properties. To address this challenge, researchers have screened for potential biological control agents in peanut soil and pods. This study identified a promising candidate, a strain of the nonpigmented bacterium, Achromobacter xylosoxidans ZJS2-1, isolated from the peanut rhizosphere in Zhejiang Province, China, exhibiting notable antifungal and antiaflatoxin activities. Further investigations demonstrated that ZJS2-1 active substances (ZAS) effectively inhibited growth at a MIC of 60 μL/mL and nearly suppressed AFB1 production by 99%. Metabolomic analysis revealed that ZAS significantly affected metabolites involved in cell wall and membrane biosynthesis, leading to compromised cellular integrity and induced apoptosis in A. flavus through the release of cytochrome c. Notably, ZAS targeted SrbA, a key transcription factor involved in ergosterol biosynthesis and cell membrane integrity, highlighting its crucial role in ZJS2-1's biocontrol mechanism. Moreover, infection of crop seeds and plant wilt caused by A. flavus can be efficiently alleviated by ZAS. Additionally, ZJS2-1 and ZAS demonstrated significant inhibitory effects on various Aspergillus species, with inhibition rates ranging from 80 to 99%. These findings highlight the potential of ZJS2-1 as a biocontrol agent against Aspergillus species, offering a promising solution to enhance food safety and protect human health.
Collapse
Affiliation(s)
- Tongzheng Sun
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yuxin Wang
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Dongjing Niu
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Qingru Geng
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Han Qiu
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Fengqin Song
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jun Tian
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Kunlong Yang
- JSNU-UWEC Joint Laboratory of Jiangsu Province Colleges and Universities, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
2
|
Zhang C, Gao L, Ren Y, Gu H, Zhang Y, Lu L. The CCAAT-binding complex mediates azole susceptibility of Aspergillus fumigatus by suppressing SrbA expression and cleavage. Microbiologyopen 2021; 10:e1249. [PMID: 34964293 PMCID: PMC8608569 DOI: 10.1002/mbo3.1249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 11/10/2022] Open
Abstract
In fungal pathogens, the transcription factor SrbA (a sterol regulatory element-binding protein, SREBP) and CBC (CCAAT binding complex) have been reported to regulate azole resistance by competitively binding the TR34 region (34 mer) in the promoter of the drug target gene, erg11A. However, current knowledge about how the SrbA and CBC coordinately mediate erg11A expression remains limited. In this study, we uncovered a novel relationship between HapB (a subunit of CBC) and SrbA in which deletion of hapB significantly prolongs the nuclear retention of SrbA by increasing its expression and cleavage under azole treatment conditions, thereby enhancing Erg11A expression for drug resistance. Furthermore, we verified that loss of HapB significantly induces the expression of the rhomboid protease RbdB, Dsc ubiquitin E3 ligase complex, and signal peptide peptidase SppA, which are required for the cleavage of SrbA, suggesting that HapB acts as a repressor for these genes which contribute to the activation of SrbA by proteolytic cleavage. Together, our study reveals that CBC functions not only to compete with SrbA for binding to erg11A promoter region but also to affect SrbA expression, cleavage, and translocation to nuclei for the function, which ultimately regulate Erg11A expression and azole resistance.
Collapse
Affiliation(s)
- Chi Zhang
- Jiangsu Key Laboratory for Microbes and Functional GenomicsJiangsu Engineering and Technology Research Center for MicrobiologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Lu Gao
- Jiangsu Key Laboratory for Microbes and Functional GenomicsJiangsu Engineering and Technology Research Center for MicrobiologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Yiran Ren
- Jiangsu Key Laboratory for Microbes and Functional GenomicsJiangsu Engineering and Technology Research Center for MicrobiologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Huiyu Gu
- Jiangsu Key Laboratory for Microbes and Functional GenomicsJiangsu Engineering and Technology Research Center for MicrobiologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Yuanwei Zhang
- Jiangsu Key Laboratory for Microbes and Functional GenomicsJiangsu Engineering and Technology Research Center for MicrobiologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional GenomicsJiangsu Engineering and Technology Research Center for MicrobiologyCollege of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
3
|
dos Santos RAC, Mead ME, Steenwyk JL, Rivero-Menéndez O, Alastruey-Izquierdo A, Goldman GH, Rokas A. Examining Signatures of Natural Selection in Antifungal Resistance Genes Across Aspergillus Fungi. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:723051. [PMID: 37744093 PMCID: PMC10512362 DOI: 10.3389/ffunb.2021.723051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 09/26/2023]
Abstract
Certain Aspergillus fungi cause aspergillosis, a set of diseases that typically affect immunocompromised individuals. Most cases of aspergillosis are caused by Aspergillus fumigatus, which infects millions of people annually. Some closely related so-called cryptic species, such as Aspergillus lentulus, can also cause aspergillosis, albeit at lower frequencies, and they are also clinically relevant. Few antifungal drugs are currently available for treating aspergillosis and there is increasing worldwide concern about the presence of antifungal drug resistance in Aspergillus species. Furthermore, isolates from both A. fumigatus and other Aspergillus pathogens exhibit substantial heterogeneity in their antifungal drug resistance profiles. To gain insights into the evolution of antifungal drug resistance genes in Aspergillus, we investigated signatures of positive selection in 41 genes known to be involved in drug resistance across 42 susceptible and resistant isolates from 12 Aspergillus section Fumigati species. Using codon-based site models of sequence evolution, we identified ten genes that contain 43 sites with signatures of ancient positive selection across our set of species. None of the sites that have experienced positive selection overlap with sites previously reported to be involved in drug resistance. These results identify sites that likely experienced ancient positive selection in Aspergillus genes involved in resistance to antifungal drugs and suggest that historical selective pressures on these genes likely differ from any current selective pressures imposed by antifungal drugs.
Collapse
Affiliation(s)
- Renato Augusto Corrêa dos Santos
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Matthew E. Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Olga Rivero-Menéndez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Alastruey-Izquierdo
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Gustavo Henrique Goldman
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
4
|
Arastehfar A, Carvalho A, Houbraken J, Lombardi L, Garcia-Rubio R, Jenks J, Rivero-Menendez O, Aljohani R, Jacobsen I, Berman J, Osherov N, Hedayati M, Ilkit M, Armstrong-James D, Gabaldón T, Meletiadis J, Kostrzewa M, Pan W, Lass-Flörl C, Perlin D, Hoenigl M. Aspergillus fumigatus and aspergillosis: From basics to clinics. Stud Mycol 2021; 100:100115. [PMID: 34035866 PMCID: PMC8131930 DOI: 10.1016/j.simyco.2021.100115] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The airborne fungus Aspergillus fumigatus poses a serious health threat to humans by causing numerous invasive infections and a notable mortality in humans, especially in immunocompromised patients. Mould-active azoles are the frontline therapeutics employed to treat aspergillosis. The global emergence of azole-resistant A. fumigatus isolates in clinic and environment, however, notoriously limits the therapeutic options of mould-active antifungals and potentially can be attributed to a mortality rate reaching up to 100 %. Although specific mutations in CYP 51A are the main cause of azole resistance, there is a new wave of azole-resistant isolates with wild-type CYP 51A genotype challenging the efficacy of the current diagnostic tools. Therefore, applications of whole-genome sequencing are increasingly gaining popularity to overcome such challenges. Prominent echinocandin tolerance, as well as liver and kidney toxicity posed by amphotericin B, necessitate a continuous quest for novel antifungal drugs to combat emerging azole-resistant A. fumigatus isolates. Animal models and the tools used for genetic engineering require further refinement to facilitate a better understanding about the resistance mechanisms, virulence, and immune reactions orchestrated against A. fumigatus. This review paper comprehensively discusses the current clinical challenges caused by A. fumigatus and provides insights on how to address them.
Collapse
Affiliation(s)
- A. Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - A. Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - J. Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands
| | - L. Lombardi
- UCD Conway Institute and School of Medicine, University College Dublin, Dublin 4, Ireland
| | - R. Garcia-Rubio
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - J.D. Jenks
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Clinical and Translational Fungal-Working Group, University of California San Diego, La Jolla, CA, 92093, USA
| | - O. Rivero-Menendez
- Medical Mycology Reference Laboratory, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, 28222, Spain
| | - R. Aljohani
- Department of Infectious Diseases, Imperial College London, London, UK
| | - I.D. Jacobsen
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
- Institute for Microbiology, Friedrich Schiller University, Jena, Germany
| | - J. Berman
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Jena, Germany
| | - N. Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine Ramat-Aviv, Tel-Aviv, 69978, Israel
| | - M.T. Hedayati
- Invasive Fungi Research Center/Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - M. Ilkit
- Division of Mycology, Department of Microbiology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | | | - T. Gabaldón
- Life Sciences Programme, Supercomputing Center (BSC-CNS), Jordi Girona, Barcelona, 08034, Spain
- Mechanisms of Disease Programme, Institute for Research in Biomedicine (IRB), Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - J. Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - W. Pan
- Medical Mycology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - C. Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - D.S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, 07110, USA
| | - M. Hoenigl
- Department of Medicine, University of California San Diego, San Diego, CA, 92103, USA
- Section of Infectious Diseases and Tropical Medicine, Department of Internal Medicine, Medical University of Graz, 8036, Graz, Austria
- Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92093, USA
| |
Collapse
|
5
|
Azole Resistance in Clinical and Environmental Aspergillus Isolates from the French West Indies (Martinique). J Fungi (Basel) 2021; 7:jof7050355. [PMID: 33946598 PMCID: PMC8147181 DOI: 10.3390/jof7050355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/17/2022] Open
Abstract
The emergence of azole resistant Aspergillus spp., especially Aspergillus fumigatus, has been described in several countries around the world with varying prevalence depending on the country. To our knowledge, azole resistance in Aspergillus spp. has not been reported in the West Indies yet. In this study, we investigated the antifungal susceptibility of clinical and environmental isolates of Aspergillus spp. from Martinique, and the potential resistance mechanisms associated with mutations in cyp51A gene. Overall, 208 Aspergillus isolates were recovered from clinical samples (n = 45) and environmental soil samples (n = 163). They were screened for resistance to azole drugs using selective culture media. The Minimum Inhibitory Concentrations (MIC) towards voriconazole, itraconazole, posaconazole and isavuconazole, as shown by the resistant isolates, were determined using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) microdilution broth method. Eight isolates (A. fumigatus, n = 6 and A. terreus, n = 2) had high MIC for at least one azole drug. The sequencing of cyp51A gene revealed the mutations G54R and TR34/L98H in two A. fumigatus clinical isolates. Our study showed for the first time the presence of azole resistance in A. fumigatus and A. terreus isolates in the French West Indies.
Collapse
|
6
|
Chen P, Liu J, Zeng M, Sang H. Exploring the molecular mechanism of azole resistance in Aspergillus fumigatus. J Mycol Med 2020; 30:100915. [DOI: 10.1016/j.mycmed.2019.100915] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/24/2019] [Accepted: 11/24/2019] [Indexed: 12/20/2022]
|
7
|
Azole resistance mechanisms in Aspergillus: update and recent advances. Int J Antimicrob Agents 2020; 55:105807. [DOI: 10.1016/j.ijantimicag.2019.09.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 09/05/2019] [Accepted: 09/15/2019] [Indexed: 12/11/2022]
|
8
|
Zhai P, Song J, Gao L, Lu L. A sphingolipid synthesis-related protein OrmA in Aspergillus fumigatus is responsible for azole susceptibility and virulence. Cell Microbiol 2019; 21:e13092. [PMID: 31376233 DOI: 10.1111/cmi.13092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/17/2019] [Accepted: 07/29/2019] [Indexed: 01/24/2023]
Abstract
Previous studies identified that the budding yeast Saccharomyces cerevisiae have two sphingolipid synthesis-related proteins, Orm1p and Orm2p, that negatively regulate the activities of SPT, which is a key rate-limiting enzyme in sphingolipid synthesis. However, little is known about whether sphingolipids in the cell membrane, which are closely related to ergosterols, could affect the efficacy of azole drugs, which target to the ergosterol biosynthesis. In this study, through genome-wide homologue search analysis, we found that the Aspergillus fumigatus genome only contains one Orm homologue, referred to as OrmA for which the protein expression could be induced by azole antifungals in a dose-dependent manner. Deletion of ormA caused hypersensitivity to azoles, and adding the sphingolipid synthesis inhibitor myriocin rescued the azole susceptibility induced by lack of ormA. In contrast, overexpression of OrmA resulted in azole resistance, indicating that OrmA is a positive azole-response regulator. Further mechanism analysis verified that OrmA is related to drug susceptibility by affecting endoplasmic reticulum stress responses in an unfolded protein response pathway-HacA-dependent manner. Lack of ormA led to an abnormal profile of sphingolipid ceramide components accompanied by hypersensitivity to low temperatures. Furthermore, deletion of OrmA significantly reduced virulence in an immunosuppressed mouse model. The findings in this study collectively suggest that the sphingolipid metabolism pathway in A. fumigatus plays a critical role in azole susceptibility and fungal virulence.
Collapse
Affiliation(s)
- Pengfei Zhai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| | - Jinxing Song
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, PR China
| | - Lu Gao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| |
Collapse
|
9
|
Zhang J, Li L, Lv Q, Yan L, Wang Y, Jiang Y. The Fungal CYP51s: Their Functions, Structures, Related Drug Resistance, and Inhibitors. Front Microbiol 2019; 10:691. [PMID: 31068906 PMCID: PMC6491756 DOI: 10.3389/fmicb.2019.00691] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
Abstract
CYP51 (Erg11) belongs to the cytochrome P450 monooxygenase (CYP) superfamily and mediates a crucial step of the synthesis of ergosterol, which is a fungal-specific sterol. It is also the target of azole drugs in clinical practice. In recent years, researches on fungal CYP51 have stepped into a new stage attributing to the discovery of crystal structures of the homologs in Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. This review summarizes the functions, structures of fungal CYP51 proteins, and the inhibitors targeting these homologs. In particular, several drug-resistant mechanisms associated with the fungal CYP51s are introduced. The sequences and crystal structures of CYP51 proteins in different fungal species are also compared. These will provide new insights for the advancement of research on antifungal agents.
Collapse
Affiliation(s)
- Jingxiang Zhang
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Liping Li
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Quanzhen Lv
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Lan Yan
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- *Correspondence: Lan Yan, Yan Wang, Yuanying Jiang,
| | - Yan Wang
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- *Correspondence: Lan Yan, Yan Wang, Yuanying Jiang,
| | - Yuanying Jiang
- Center for New Drug Research, School of Pharmacy, Second Military Medical University, Shanghai, China
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- *Correspondence: Lan Yan, Yan Wang, Yuanying Jiang,
| |
Collapse
|
10
|
Song J, Zhang S, Lu L. Fungal cytochrome P450 protein Cyp51: What we can learn from its evolution, regulons and Cyp51-based azole resistance. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2018.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
11
|
Streptomyces spp. in the biocatalysis toolbox. Appl Microbiol Biotechnol 2018; 102:3513-3536. [PMID: 29502181 DOI: 10.1007/s00253-018-8884-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 02/07/2023]
Abstract
About 20,100 research publications dated 2000-2017 were recovered searching the PubMed and Web of Science databases for Streptomyces, which are the richest known source of bioactive molecules. However, these bacteria with versatile metabolism are powerful suppliers of biocatalytic tools (enzymes) for advanced biotechnological applications such as green chemical transformations and biopharmaceutical and biofuel production. The recent technological advances, especially in DNA sequencing coupled with computational tools for protein functional and structural prediction, and the improved access to microbial diversity enabled the easier access to enzymes and the ability to engineer them to suit a wider range of biotechnological processes. The major driver behind a dramatic increase in the utilization of biocatalysis is sustainable development and the shift toward bioeconomy that will, in accordance to the UN policy agenda "Bioeconomy to 2030," become a global effort in the near future. Streptomyces spp. already play a significant role among industrial microorganisms. The intention of this minireview is to highlight the presence of Streptomyces in the toolbox of biocatalysis and to give an overview of the most important advances in novel biocatalyst discovery and applications. Judging by the steady increase in a number of recent references (228 for the 2000-2017 period), it is clear that biocatalysts from Streptomyces spp. hold promises in terms of valuable properties and applicative industrial potential.
Collapse
|