1
|
Zhang W, Cui L, Ma J, Cui S, Quan G, Yan J, Sui F, Wang H, Hina K, Hussain Q. Evaluation of Fenton-like reaction for sorption and degradation of kasugamycin in the presence of biochar. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:50. [PMID: 39812884 DOI: 10.1007/s10653-025-02357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
Although the use of biochar as an adsorbent for the removal of various pollutants from wastewater is well established, the use of biochar/modified biochar for the scavenging of antibiotics from aqueous media in the Fenton-like system receives less attention. The highest kasugamycin (KSM) adsorption capacity (5.0 mg g-1) was obtained from the pristine biochar at the lowest initial pH of 3 in Fenton-like system. The Fenton-like system improved the KSM adsorption capacity of pristine biochar by 222.2%, 169.9%, and 159.9% at 25 °C, 35 °C, and 45 °C comparing to control, respectively, and it also increased adsorption capacity by 97.4%, 63.8%, and 56.8% comparing to modified biochar. The amounts of biochar applied and the Fenton-like system affected KSM mineralization and degradation. The KSM degradation products had a significant amount of small molecular organic matter (m/z 384) and a tetrahydropyran structure that was difficult to degrade. The highly efficient degradation of KSM in Fenton-like system can be attributed to the generation of large amounts of hydroxyl radical (·OH) and functional groups (C=C, C=O, etc.).
Collapse
Affiliation(s)
- Wei Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng, 224051, China
- Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization and Application, Yancheng, 224051, China
| | - Liqiang Cui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng, 224051, China
- Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization and Application, Yancheng, 224051, China
| | - Jingwen Ma
- School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng, 224051, China
- Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization and Application, Yancheng, 224051, China
| | - Shuyan Cui
- College of Life Science, Shenyang Normal University, Shenyang, 110016, China
| | - Guixiang Quan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng, 224051, China
- Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization and Application, Yancheng, 224051, China
| | - Jinlong Yan
- School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng, 224051, China.
- Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization and Application, Yancheng, 224051, China.
| | - Fengfeng Sui
- School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng, 224051, China
- Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization and Application, Yancheng, 224051, China
| | - Hui Wang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, No. 211 Jianjun East Road, Yancheng, 224051, China
- Jiangsu Engineering Research Center of Biomass Waste Pyrolytic Carbonization and Application, Yancheng, 224051, China
| | - Kiran Hina
- Department of Environmental Sciences, Hafiz Hayat Campus, University of Gujrat, Gujrat, 54000, Pakistan
| | - Qaiser Hussain
- Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, 46300, Pakistan
| |
Collapse
|
2
|
Gomaa FAM, Selim HMRM, Alshahrani MY, Aboshanab KM. Central composite design for optimizing istamycin production by Streptomyces tenjimariensis. World J Microbiol Biotechnol 2024; 40:316. [PMID: 39249607 DOI: 10.1007/s11274-024-04118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
Istamycins (ISMs) are 2-deoxyfortamine-containing aminoglycoside antibiotics (AGAs) produced by Streptomyces tenjimariensis ATCC 31603 with broad-spectrum bactericidal activities against most of the clinically relevant pathogens. Therefore, this study aimed to statistically optimize the environmental conditions affecting ISMs production using the central composite design (CCD). Both the effect of culture media composition and incubation time and agitation rate were studied as one factor at the time (OFAT). The results showed that both the aminoglycoside production medium and the protoplast regeneration medium gave the highest specific productivity. Results also showed that 6 days incubation time and 200 rpm agitation were optimum for their production. A CCD quadratic model of 17 runs was employed to test three key variables: initial pH, incubation temperature, and concentration of calcium carbonate. A significant statistical model was obtained including, an initial pH of 6.38, incubation temperature of 30 ˚C, and 5.3% CaCO3 concentration. This model was verified experimentally in the lab and resulted in a 31-fold increase as compared to the unoptimized conditions and a threefold increase to that generated by using the optimized culture media. To our knowledge, this is the first report about studying environmental conditions affecting ISM production as OFAT and through CCD design of the response surface methodology (RSM) employed for statistical optimization. In conclusion, the CCD design is an effective tool for optimizing ISMs at the shake flask level. However, the optimized conditions generated using the CCD model in this study should be scaled up in a fermenter for industrial production of ISMs by S. tenjimariensis ATCC 31603 considering the studied environmental conditions that significantly influence the production proces.
Collapse
Affiliation(s)
- Fatma Alzahraa M Gomaa
- Department of Pharmacognosy and Medicinal Herbs, Faculty of Pharmacy, Al-Baha University, 65779, Al-Bahah, Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, 11651, Egypt
| | - Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, P.O. Box 71666, 11597, Riyadh, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, 9088, 61413, Abha, Saudi Arabia
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University Organization of African Unity St, Abbassia Cairo, 11566, Egypt.
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University Technology MARA (UiTM), Campus Puncak Alam, Bandar Puncak Alam, Shah Alam 42300, Selangor, Malaysia.
| |
Collapse
|
3
|
Khan S, Srivastava S, Karnwal A, Malik T. Streptomyces as a promising biological control agents for plant pathogens. Front Microbiol 2023; 14:1285543. [PMID: 38033592 PMCID: PMC10682734 DOI: 10.3389/fmicb.2023.1285543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Plant diseases caused by pathogenic microorganisms in agriculture present a considerable obstacle, resulting in approximately 30-40% crop damage. The use of conventional techniques to manage these microorganisms, i.e., applying chemical pesticides and antimicrobials, has been discovered to have adverse effects on human health and the environment. Furthermore, these methods have contributed to the emergence of resistance among phytopathogens. Consequently, it has become imperative to investigate natural alternatives to address this issue. The Streptomyces genus of gram-positive bacteria is a potentially viable natural alternative that has been extensively researched due to its capacity to generate diverse antimicrobial compounds, such as metabolites and organic compounds. Scientists globally use diverse approaches and methodologies to extract new bioactive compounds from these bacteria. The efficacy of bioactive compounds in mitigating various phytopathogens that pose a significant threat to crops and plants has been demonstrated. Hence, the Streptomyces genus exhibits potential as a biological control agent for combating plant pathogens. This review article aims to provide further insight into the Streptomyces genus as a source of antimicrobial compounds that can potentially be a biological control against plant pathogens. The investigation of various bioactive compounds synthesized by this genus can enhance our comprehension of their prospective utilization in agriculture.
Collapse
Affiliation(s)
- Shaista Khan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Seweta Srivastava
- School of Agriculture, Lovely Professional University, Phagwara, Punjab, India
| | - Arun Karnwal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Tabarak Malik
- Department of Biomedical sciences, Jimma University, Jimma, Ethiopia
| |
Collapse
|
4
|
Jiang Y, Zhang J, Huang X, Ma Z, Zhang Y, Bechthold A, Yu X. Improvement of rimocidin production in Streptomyces rimosus M527 by reporter-guided mutation selection. J Ind Microbiol Biotechnol 2022; 49:6961051. [PMID: 36572395 PMCID: PMC9923380 DOI: 10.1093/jimb/kuac030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022]
Abstract
In this study, we employed a reporter-guided mutation selection (RGMS) strategy to improve the rimocidin production of Streptomyces rimosus M527, which is based on a single-reporter plasmid pAN and atmospheric and room temperature plasma (ARTP). In plasmid pAN, PrimA, a native promoter of the loading module of rimocidin biosynthesis (RimA) was chosen as a target, and the kanamycin resistance gene (neo) under the control of PrimA was chosen as the reporter gene. The integrative plasmid pAN was introduced into the chromosome of S. rimosus M527 by conjugation to yield the initial strain S. rimosus M527-pAN. Subsequently, mutants of M527-pAN were generated by ARTP. 79 mutants were obtained in total, of which 67 mutants showed a higher level of kanamycin resistance (Kanr) than that of the initial strain M527-pAN. The majority of mutants exhibited a slight increase in rimocidin production compared with M527-pAN. Notably, 3 mutants, M527-pAN-S34, S38, and S52, which exhibited highest kanamycin resistance among all Kanr mutants, showed 34%, 52%, and 45% increase in rimocidin production compared with M527-pAN, respectively. Quantitative RT-PCR analysis revealed that the transcriptional levels of neo and rim genes were increased in mutants M527-pAN-S34, S38, and S52 compared with M527-pAN. These results confirmed that the RGMS approach was successful in improving the rimocidin production in S. rimosus M527.
Collapse
Affiliation(s)
| | | | - Xinyi Huang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Zheng Ma
- Correspondence should be addressed to: Zheng Ma, College of Life Sciences, China Jiliang University, Xueyuan Street, Xiasha Higher Education District, Hangzhou, Zhejiang Province 310018, P.R. China. Phone: +86-571-868-36062. Fax: +86-571-869-14449. E-mail:
| | - Yongyong Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province 310018, China
| | - Andreas Bechthold
- University of Freiburg, Institute for Pharmaceutical Sciences, Pharmaceutical Biology and Biotechnology, 79104 Freiburg, Germany
| | | |
Collapse
|
5
|
Chen J, Lan X, Jia R, Hu L, Wang Y. Response Surface Methodology (RSM) Mediated Optimization of Medium Components for Mycelial Growth and Metabolites Production of Streptomyces alfalfae XN-04. Microorganisms 2022; 10:microorganisms10091854. [PMID: 36144456 PMCID: PMC9501596 DOI: 10.3390/microorganisms10091854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Streptomyces alfalfae XN-04 has been reported for the production of antifungal metabolites effectively to control Fusarium wilt of cotton, caused by Fusarium oxysporum f. sp. vasinfectum (Fov). In this study, we used integrated statistical experimental design methods to investigate the optimized liquid fermentation medium components of XN-04, which can significantly increase the antifungal activity and biomass of XN-04. Seven variables, including soluble starch, KNO3, soybean cake powder, K2HPO4, MgSO4·7H2O, CaCO3 and FeSO4·7H2O, were identified as the best ingredients based on one-factor-at-a-time (OFAT) method. The results of Plackett–Burman Design (PBD) showed that soluble starch, soybean cake powder and K2HPO4 were the most significant variables among the seven variables. The steepest climbing experiment and response surface methodology (RSM) were performed to determine the interactions among these three variables and fine-tune the concentrations. The optimal compositions of medium were as follows: soluble starch (26.26 g/L), KNO3 (1.00 g/L), soybean cake powder (23.54 g/L), K2HPO4 (0.27 g/L), MgSO4·7H2O (0.50 g/L), CaCO3 (1.00 g/L) and FeSO4·7H2O (0.10 g/L). A verification experiment was then carried out under the optimized conditions, and the results revealed the mycelial dry weight of S. alfalfae XN-04 reaching 6.61 g/L. Compared with the initial medium, a 7.47-fold increase in the biomass was achieved using the optimized medium. Moreover, the active ingredient was purified from the methanol extract of S. alfalfae XN-04 mycelium and then identified as roflamycoin (a polyene macrolide antibiotic). The results may provide new insights into the development of S. alfalfae XN-04 fermentation process and the control of the Fusarium wilt of cotton and other plant diseases.
Collapse
Affiliation(s)
| | | | | | | | - Yang Wang
- Correspondence: ; Tel.: +86-187-9280-9011
| |
Collapse
|
6
|
Jiang X, Jiang S, Huang H, Li D, Yang R, Yang Y, Wang D, Song B, Chen Z. Multi-Omics Analysis Reveals that the Antimicrobial Kasugamycin Potential Targets Nitrate Reductase in Didymella segeticola to Achieve Control of Tea Leaf Spot. PHYTOPATHOLOGY 2022; 112:1894-1906. [PMID: 35322715 DOI: 10.1094/phyto-11-21-0457-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Because of the lack of effective disease management measures, tea leaf spot-caused by the fungal phytopathogen Didymella segeticola (syn. Phoma segeticola)-is an important foliar disease. The important and widely used agricultural antimicrobial kasugamycin (Ksg), produced by the Gram-positive bacterium Streptomyces kasugaensis, effects high levels of control against crop diseases. The results of this study indicated that Ksg could inhibit the growth of D. segeticola hyphae in vitro with a half-maximal effective concentration (EC50) of 141.18 μg ml-1. Meanwhile, the curative effect in vivo on the pathogen in detached tea leaves also demonstrated that Ksg induced some morphological changes in organelles, septa, and cell walls as observed by optical microscopy and by scanning and transmission electron microscopy. This may indicate that Ksg disturbs biosynthesis of key metabolites, inhibiting hyphal growth. Integrated transcriptomic, proteomic, and bioinformatic analyses revealed that differentially expressed genes or differentially expressed proteins in D. segeticola hyphae in response to Ksg exposure were involved with metabolic processes and biosynthesis of secondary metabolites. Molecular docking studies indicated that Ksg may target nitrate reductase (NR), and microscale thermophoresis assay showed greater affinity with NR, potentially disturbing nitrogen assimilation and subsequent metabolism. The results indicated that Ksg inhibits the pathogen of tea leaf spot, D. segeticola, possibly by binding to NR, disturbing fungal metabolism, and inducing subsequent changes in hyphal growth and development.
Collapse
Affiliation(s)
- Xinyue Jiang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Shilong Jiang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
- Agricultural College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Hongke Huang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Dongxue Li
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Rui Yang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yuanyou Yang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Delu Wang
- College of Forestry, Guizhou University, Guiyang, Guizhou 550025, China
| | - Baoan Song
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| | - Zhuo Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, Guizhou 550025, China
| |
Collapse
|
7
|
Kudo F, Eguchi T. Biosynthesis of cyclitols. Nat Prod Rep 2022; 39:1622-1642. [PMID: 35726901 DOI: 10.1039/d2np00024e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Review covering up to 2021Cyclitols derived from carbohydrates are naturally stable hydrophilic substances under ordinary physiological conditions, increasing the water solubility of whole molecules in cells. The stability of cyclitols is derived from their carbocyclic structures bearing no acetal groups, in contrast to sugar molecules. Therefore, carbocycle-forming reactions are critical for the biosynthesis of cyclitols. Herein, we review naturally occurring cyclitols that have been identified to date and categorize them according to the type of carbocycle-forming enzymatic reaction. Furthermore, the cyclitol-forming enzymatic reaction mechanisms and modification pathways of the initially generated cyclitols are reviewed.
Collapse
Affiliation(s)
- Fumitaka Kudo
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo, Japan.
| | - Tadashi Eguchi
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-Okayama, Meguro-ku, Tokyo, Japan.
| |
Collapse
|
8
|
Cofactor F420, an emerging redox power in biosynthesis of secondary metabolites. Biochem Soc Trans 2022; 50:253-267. [PMID: 35191491 DOI: 10.1042/bst20211286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/07/2023]
Abstract
Cofactor F420 is a low-potential hydride-transfer deazaflavin that mediates important oxidoreductive reactions in the primary metabolism of archaea and a wide range of bacteria. Over the past decade, biochemical studies have demonstrated another essential role for F420 in the biosynthesis of various classes of natural products. These studies have substantiated reports predating the structural determination of F420 that suggested a potential role for F420 in the biosynthesis of several antibiotics produced by Streptomyces. In this article, we focus on this exciting and emerging role of F420 in catalyzing the oxidoreductive transformation of various imine, ketone and enoate moieties in secondary metabolites. Given the extensive and increasing availability of genomic and metagenomic data, these F420-dependent transformations may lead to the discovery of novel secondary metabolites, providing an invaluable and untapped resource in various biotechnological applications.
Collapse
|
9
|
KasQ an Epimerase Primes the Biosynthesis of Aminoglycoside Antibiotic Kasugamycin and KasF/H Acetyltransferases Inactivate Its Activity. Biomedicines 2022; 10:biomedicines10020212. [PMID: 35203422 PMCID: PMC8869731 DOI: 10.3390/biomedicines10020212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 12/07/2022] Open
Abstract
Kasugamycin (KSM), an aminoglycoside antibiotic, is composed of three chemical moieties: D-chiro-inositol, kasugamine and glycine imine. Despite being discovered more than 50 years ago, the biosynthetic pathway of KSM remains an unresolved puzzle. Here we report a structural and functional analysis for an epimerase, KasQ, that primes KSM biosynthesis rather than the previously proposed KasF/H, which instead acts as an acetyltransferase, inactivating KSM. Our biochemical and biophysical analysis determined that KasQ converts UDP-GlcNAc to UDP-ManNAc as the initial step in the biosynthetic pathway. The isotope-feeding study further confirmed that 13C, 15N-glucosamine/UDP-GlcNH2 rather than glucose/UDP-Glc serves as the direct precursor for the formation of KSM. Both KasF and KasH were proposed, respectively, converting UDP-GlcNH2 and KSM to UDP-GlcNAc and 2-N’-acetyl KSM. Experimentally, KasF is unable to do so; both KasF and KasH are instead KSM-modifying enzymes, while the latter is more specific and reactive than the former in terms of the extent of resistance. The information gained here lays the foundation for mapping out the complete KSM biosynthetic pathway.
Collapse
|
10
|
Recent Advances in the Heterologous Biosynthesis of Natural Products from Streptomyces. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Streptomyces is a significant source of natural products that are used as therapeutic antibiotics, anticancer and antitumor agents, pesticides, and dyes. Recently, with the advances in metabolite analysis, many new secondary metabolites have been characterized. Moreover, genome mining approaches demonstrate that many silent and cryptic biosynthetic gene clusters (BGCs) and many secondary metabolites are produced in very low amounts under laboratory conditions. One strain many compounds (OSMAC), overexpression/deletion of regulatory genes, ribosome engineering, and promoter replacement have been utilized to activate or enhance the production titer of target compounds. Hence, the heterologous expression of BGCs by transferring to a suitable production platform has been successfully employed for the detection, characterization, and yield quantity production of many secondary metabolites. In this review, we introduce the systematic approach for the heterologous production of secondary metabolites from Streptomyces in Streptomyces and other hosts, the genome analysis tools, the host selection, and the development of genetic control elements for heterologous expression and the production of secondary metabolites.
Collapse
|
11
|
Jin ZJ, Zhou L, Sun S, Cui Y, Song K, Zhang X, He YW. Identification of a Strong Quorum Sensing- and Thermo-Regulated Promoter for the Biosynthesis of a New Metabolite Pesticide Phenazine-1-carboxamide in Pseudomonas strain PA1201. ACS Synth Biol 2020; 9:1802-1812. [PMID: 32584550 DOI: 10.1021/acssynbio.0c00161] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Phenazine-1-carboxamide (PCN) produced by multifarious Pseudomonas strains represents a promising candidate as a new metabolite pesticide due to its broad-spectrum antifungal activity and capacity to induce systemic resistance in plants. The rice rhizosphere Pseudomonas strain PA1201 contains two reiterated gene clusters, phz1 and phz2, for phenazine-1-carboxylic acid (PCA) biosynthesis; PCA is further converted into PCN by this strain using a functional phzH-encoding glutamine aminotransferase. However, PCN levels in PA1201 constitute approximately one-fifth of PCA levels and the optimal temperature for PCN synthesis is 28 °C. In this study, the phzH open reading frame (ORF) and promoter region were investigated and reannotated. phzH promoter PphzH was found to be a weak promoter, and PhzH levels were not sufficient to convert all of the native PCA into PCN. Following RNA Seq and promoter-lacZ fusion analyses, a strong quorum sensing (QS)- and thermo-regulated promoter PrhlI was identified and characterized. The activity of PphzH is approximately 1% of PrhlI in PA1201. After three rounds of promoter editing and swapping by PrhlI, a new PCN-overproducing strain UP46 was generated. The optimal fermentation temperature for PCN biosynthesis in UP46 was increased from 28 to 37 °C and the PCN fermentation titer increased 179.5-fold, reaching 14.1 g/L, the highest ever reported.
Collapse
Affiliation(s)
- Zi-Jing Jin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lian Zhou
- Zhiyuan Innovation Research Centre, Student Innovation Institute, Zhiyuan College, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuang Sun
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Ji’nan, 250014, China
| | - Ying Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kai Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
12
|
Genome mining and prospects for antibiotic discovery. Curr Opin Microbiol 2019; 51:1-8. [DOI: 10.1016/j.mib.2019.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 01/06/2019] [Accepted: 01/08/2019] [Indexed: 12/13/2022]
|
13
|
Wang X, Yin S, Bai J, Liu Y, Fan K, Wang H, Yuan F, Zhao B, Li Z, Wang W. Heterologous production of chlortetracycline in an industrial grade Streptomyces rimosus host. Appl Microbiol Biotechnol 2019; 103:6645-6655. [PMID: 31240365 DOI: 10.1007/s00253-019-09970-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 01/06/2023]
Abstract
High-yielding industrial Streptomyces producer is usually obtained by multiple rounds of random mutagenesis and screening. These strains have great potential to be developed as the versatile chassis for the discovery and titer improvement of desired heterologous products. Here, the industrial strain Streptomyces rimosus 461, which is a high producer of oxytetracycline, has been engineered as a robust host for heterologous expression of chlortetracycline (CTC) biosynthetic gene cluster. First, the industrial chassis strain SR0 was constructed by deleting the whole oxytetracycline gene cluster of S. rimosus 461. Then, the biosynthetic gene cluster ctc of Streptomyces aureofaciens ATCC 10762 was integrated into the chromosome of SR0. With an additional constitutively expressed cluster-situated activator gene ctcB, the CTC titer of the engineering strain SRC1 immediately reached 1.51 g/L in shaking flask. Then, the CTC titers were upgraded to 2.15 and 3.27 g/L, respectively, in the engineering strains SRC2 and SRC3 with the enhanced ctcB expression. Further, two cluster-situated resistance genes were co-overexpressed with ctcB. The resultant strain produced CTC up to 3.80 g/L in shaking flask fermentation, which represents 38 times increase in comparison with that of the original producer. Overall, SR0 presented in this study have great potential to be used for heterologous production of tetracyclines and other type II polyketides.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China.,Hebei Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Shouliang Yin
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, People's Republic of China
| | - Jing Bai
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China
| | - Yang Liu
- School of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, People's Republic of China
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China
| | - Huizhuan Wang
- Hebei Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Fang Yuan
- Hebei Shengxue Dacheng Pharmaceutical Co., Ltd., Shijiazhuang, 051430, Hebei, People's Republic of China
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, 050024, Hebei, People's Republic of China.
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing, 100101, People's Republic of China.
| |
Collapse
|
14
|
Saito Y, Kitagawa W, Kumagai T, Tajima N, Nishimiya Y, Tamano K, Yasutake Y, Tamura T, Kameda T. Developing a codon optimization method for improved expression of recombinant proteins in actinobacteria. Sci Rep 2019; 9:8338. [PMID: 31171855 PMCID: PMC6554278 DOI: 10.1038/s41598-019-44500-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/03/2019] [Indexed: 02/05/2023] Open
Abstract
Codon optimization by synonymous substitution is widely used for recombinant protein expression. Recent studies have investigated sequence features for codon optimization based on large-scale expression analyses. However, these studies have been limited to common host organisms such as Escherichia coli. Here, we develop a codon optimization method for Rhodococcus erythropolis, a gram-positive GC-rich actinobacterium attracting attention as an alternative host organism. We evaluate the recombinant protein expression of 204 genes in R. erythropolis with the same plasmid vector. The statistical analysis of these expression data reveals that the mRNA folding energy at 5’ regions as well as the codon frequency are important sequence features for codon optimization. Intriguingly, other sequence features such as the codon repetition rate show a different tendency from the previous study on E. coli. We optimize the coding sequences of 12 genes regarding these sequence features, and confirm that 9 of them (75%) achieve increased expression levels compared with wild-type sequences. Especially, for 5 genes whose expression levels for wild-type sequences are small or not detectable, all of them are improved by optimized sequences. These results demonstrate the effectiveness of our codon optimization method in R. erythropolis, and possibly in other actinobacteria.
Collapse
Affiliation(s)
- Yutaka Saito
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Wataru Kitagawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan.,Graduate School of Agriculture, Hokkaido University, Kita 9-Nishi 9, Kita-ku, Sapporo, 060-8589, Japan
| | | | - Naoyuki Tajima
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Yoshiyuki Nishimiya
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan
| | - Koichi Tamano
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan
| | - Yoshiaki Yasutake
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan
| | - Tomohiro Tamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, 062-8517, Japan. .,Graduate School of Agriculture, Hokkaido University, Kita 9-Nishi 9, Kita-ku, Sapporo, 060-8589, Japan.
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.
| |
Collapse
|
15
|
Zhang H, Chu W, Sun J, Liu Z, Huang WC, Xue C, Mao X. A novel autolysis system for extracellular production and direct immobilization of a phospholipase D fused with cellulose binding domain. BMC Biotechnol 2019; 19:29. [PMID: 31118018 PMCID: PMC6530184 DOI: 10.1186/s12896-019-0519-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background Several types of phospholipases have been described in phospholipids modification. The majority of phospholipase D (PLD) superfamily members can catalyze two separate reactions: the hydrolysis of phospholipids to produce phosphatidic acid (PA) and the transphosphatidylation of phosphatidyl groups into various phosphatidyl alcohols to produce modified phospholipids. Transphosphatidylation is a useful biocatalytic method for the synthesis of functional phospholipids from lecithin or phosphatidylcholine (PC), which are both easily accessible. Different PLD coding genes have been cloned from various sources from viral, prokaryotic, and eukaryotic organisms. Despite the catalytic potential of PLD, their low productivity has hampered their practical applications, probably because PLD, which is highly toxic to the host cells, when transformation of the PLD genes into the host cells, degrade PLs in the cell membrane. In this study, we designed a novel two-step expression system to produce and secrete recombinant PLD in extracellular medium, cellulose-binding domains as an affinity fused with PLD for immobilization and purification proteins. Results The engineered BL21 (DE3) host strain, which harbored the final expression vector pET28a-PLD-CBD-araC-ESN, was induced by IPTG and L-arabinose, the cell density decreased rapidly over a 2 h period and the enzymes released into the extracellular medium accounts owned 81.75% hydrolytic activity. Scanning electron microscopy results showed that there were obvious structural changes on the cell surface. The extracellularly secreted PLD-CBD powder was used to catalyze the transphosphatidylation reaction synthesis of phosphatidylserine, 2.3 U enzymes reacted for 12 h, during which the conversion rate reached 99% with very few by-products being produced. When the fused protein PLD-CBD immobilized on microcrystalline cellulose, the enzymes can be cycle used five times with 26% conversion rate was preserved. Conclusions This study introduced an effective method for use in the expression of recombinant proteins and their extracellular secretion that simplifies the steps of sonication and purification and demonstrates great potential in the industrial application of enzymes. Cellulose as the most abundant renewable biomass resources in nature, and the cost is low, used for PLD immobilization make it more simple, effective and sustainable.
Collapse
Affiliation(s)
- Haiyang Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Wenqin Chu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Wen-Can Huang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
16
|
Hollywood KA, Schmidt K, Takano E, Breitling R. Metabolomics tools for the synthetic biology of natural products. Curr Opin Biotechnol 2018; 54:114-120. [DOI: 10.1016/j.copbio.2018.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 12/15/2022]
|
17
|
Yao T, Liu Z, Li T, Zhang H, Liu J, Li H, Che Q, Zhu T, Li D, Li W. Characterization of the biosynthetic gene cluster of the polyene macrolide antibiotic reedsmycins from a marine-derived Streptomyces strain. Microb Cell Fact 2018; 17:98. [PMID: 29914489 PMCID: PMC6006980 DOI: 10.1186/s12934-018-0943-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
Background Polyene antibiotics are important as antifungal medicines albeit with serious side effects such as nephrotoxicity. Reedsmycin (RDM) A (1), produced by marine-derived Streptomyces youssoufiensis OUC6819, is a non-glycosylated polyene macrolide antibiotic with antifungal activity comparable to that of clinically used nystatin. To elucidate its biosynthetic machinery, herein, the rdm biosynthetic gene cluster was cloned and characterized. Results The rdm cluster is located within a 104 kb DNA region harboring 21 open reading frames (ORFs), among which 15 ORFs were designated as rdm genes. The assembly line for RDM A is proposed on the basis of module and domain analysis of the polyketide synthetases (PKSs) RdmGHIJ, which catalyze 16 rounds of decarboxylative condensation using malonyl-CoA as the starter unit (loading module), two methylmalonyl-CoA (module 1 and 2), and fourteen malonyl-CoA (module 3–16) as extender units successively. However, the predicted substrate specificity of AT0 in the loading module is methylmalonyl-CoA instead of malonyl-CoA. Interestingly, the rdm cluster contains a five-gene regulation system RdmACDEF, which is different from other reported polyene gene clusters. In vivo experiments demonstrated the XRE family regulator RdmA and the PAS/LuxR family regulator RdmF function in negative and positive manner, respectively. Notably, inactivation of rdmA and overexpression of rdmF led to increased production of RDM A by ~ 2.0-fold and ~ 2.5-fold, reaching yields of 155.3 ± 1.89 and 184.8 ± 9.93 mg/L, respectively. Conclusions Biosynthesis of RDM A is accomplished on a linear assembly line catalyzed by Rdm PKSs harboring a unique AT0 under the control of a complex regulatory system. These findings enable generation of new biologically active RDM derivatives at high yield and with improved properties by engineered biosynthesis. Electronic supplementary material The online version of this article (10.1186/s12934-018-0943-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tingting Yao
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Zengzhi Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Tong Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Hui Zhang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Jing Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Huayue Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qian Che
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Wenli Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|