1
|
Roszczenko-Jasińska P, Giełdoń A, Mazur D, Spodzieja M, Plichta M, Czaplewski C, Bal W, Jagusztyn-Krynicka EK, Bartosik D. Exploring the inhibitory potential of in silico-designed small peptides on Helicobacter pylori Hp0231 (DsbK), a periplasmic oxidoreductase involved in disulfide bond formation. Front Mol Biosci 2024; 10:1335704. [PMID: 38274095 PMCID: PMC10810133 DOI: 10.3389/fmolb.2023.1335704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Helicobacter pylori is a bacterium that colonizes the gastric epithelium, which affects millions of people worldwide. H. pylori infection can lead to various gastrointestinal diseases, including gastric adenocarcinoma and mucosa-associated lymphoid tissue lymphoma. Conventional antibiotic therapies face challenges due to increasing antibiotic resistance and patient non-compliance, necessitating the exploration of alternative treatment approaches. In this study, we focused on Hp0231 (DsbK), an essential component of the H. pylori Dsb (disulfide bond) oxidative pathway, and investigated peptide-based inhibition as a potential therapeutic strategy. Methods: Three inhibitory peptides designed by computational modeling were evaluated for their effectiveness using a time-resolved fluorescence assay. We also examined the binding affinity between Hp0231 and the peptides using microscale thermophoresis. Results and discussion: Our findings demonstrate that in silico-designed synthetic peptides can effectively inhibit Hp0231-mediated peptide oxidation. Targeting Hp0231 oxidase activity could attenuate H. pylori virulence without compromising bacterial viability. Therefore, peptide-based inhibitors of Hp0231 could be candidates for the development of new targeted strategy, which does not influence the composition of the natural human microbiome, but deprive the bacterium of its pathogenic properties.
Collapse
Affiliation(s)
- Paula Roszczenko-Jasińska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Artur Giełdoń
- Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Dominika Mazur
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Maciej Plichta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Miller J, Murray PJ. Space and time on the membrane: modelling Type VI secretion system dynamics as a state-dependent random walk. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230284. [PMID: 37920566 PMCID: PMC10618060 DOI: 10.1098/rsos.230284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023]
Abstract
The type six secretion system (T6SS) is a transmembrane protein complex that mediates bacterial cell killing. The T6SS comprises three main components (transmembrane, baseplate and sheath/tube complexes) that are sequentially assembled in order to enable an attacking cell to transport payloads into neighbouring cells. A T6SS attack disrupts the function of essential cellular components of target cells, typically resulting in their death. While the assembled T6SS adopts a fixed position in the cell membrane of the attacking cell, the location of the firing site varies between firing events. In Serratia marcescens, a post-translational regulatory network regulates the assembly and firing kinetics of the T6SS in a manner that affects the attacking cell's ability to kill target cells. Moreover, when the ability of membrane complexes to reorient is reduced, an attacking cell's competitiveness is also reduced. In this study, we will develop a mathematical model that describes both the spatial motion and assembly/disassembly of a firing T6SS. The model represents the motion of a T6SS on the cell membrane as a state-dependent random walk. Using the model, we will explore how both spatial and temporal effects can combine to give rise to different firing phenotypes. Using parameters inferred from the available literature, we show that variation in estimated diffusion coefficients is sufficient to give rise to either spatially local or global firers.
Collapse
|
3
|
Biełło KA, Olaya-Abril A, Cabello P, Rodríguez-Caballero G, Sáez LP, Moreno-Vivián C, Luque-Almagro VM, Roldán MD. Quantitative Proteomic Analysis of Cyanide and Mercury Detoxification by Pseudomonas pseudoalcaligenes CECT 5344. Microbiol Spectr 2023; 11:e0055323. [PMID: 37432117 PMCID: PMC10433974 DOI: 10.1128/spectrum.00553-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/21/2023] [Indexed: 07/12/2023] Open
Abstract
The cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT 5344 uses cyanide and different metal-cyanide complexes as the sole nitrogen source. Under cyanotrophic conditions, this strain was able to grow with up to 100 μM mercury, which was accumulated intracellularly. A quantitative proteomic analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been applied to unravel the molecular basis of the detoxification of both cyanide and mercury by the strain CECT 5344, highlighting the relevance of the cyanide-insensitive alternative oxidase CioAB and the nitrilase NitC in the tolerance and assimilation of cyanide, independently of the presence or absence of mercury. Proteins overrepresented in the presence of cyanide and mercury included mercury transporters, mercuric reductase MerA, transcriptional regulator MerD, arsenate reductase and arsenical resistance proteins, thioredoxin reductase, glutathione S-transferase, proteins related to aliphatic sulfonates metabolism and sulfate transport, hemin import transporter, and phosphate starvation induced protein PhoH, among others. A transcriptional study revealed that from the six putative merR genes present in the genome of the strain CECT 5344 that could be involved in the regulation of mercury resistance/detoxification, only the merR2 gene was significantly induced by mercury under cyanotrophic conditions. A bioinformatic analysis allowed the identification of putative MerR2 binding sites in the promoter regions of the regulatory genes merR5, merR6, arsR, and phoR, and also upstream from the structural genes encoding glutathione S-transferase (fosA and yghU), dithiol oxidoreductase (dsbA), metal resistance chaperone (cpxP), and amino acid/peptide extruder involved in quorum sensing (virD), among others. IMPORTANCE Cyanide, mercury, and arsenic are considered very toxic chemicals that are present in nature as cocontaminants in the liquid residues generated by different industrial activities like mining. Considering the huge amounts of toxic cyanide- and mercury-containing wastes generated at a large scale and the high biotechnological potential of P. pseudoalcaligenes CECT 5344 in the detoxification of cyanide present in these industrial wastes, in this work, proteomic, transcriptional, and bioinformatic approaches were used to characterize the molecular response of this bacterium to cyanide and mercury, highlighting the mechanisms involved in the simultaneous detoxification of both compounds. The results generated could be applied for developing bioremediation strategies to detoxify wastes cocontaminated with cyanide, mercury, and arsenic, such as those generated at a large scale in the mining industry.
Collapse
Affiliation(s)
- Karolina A Biełło
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Gema Rodríguez-Caballero
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Lara P Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Víctor Manuel Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
4
|
Yates NDJ, Hatton NE, Fascione MA, Parkin A. Site-Selective Aryl Diazonium Installation onto Protein Surfaces at Neutral pH using a Maleimide-Functionalized Triazabutadiene. Chembiochem 2023; 24:e202300313. [PMID: 37311168 DOI: 10.1002/cbic.202300313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
Aryl diazonium cations are versatile bioconjugation reagents due to their reactivity towards electron-rich aryl residues and secondary amines, but historically their usage has been hampered by both their short lifespan in aqueous solution and the harsh conditions required to generate them in situ. Triazabutadienes address many of these issues as they are stable enough to endure multiple-step chemical syntheses and can persist for several hours in aqueous solution, yet upon UV-exposure rapidly release aryl diazonium cations under biologically-relevant conditions. This paper describes the synthesis of a novel maleimide-functionalized triazabutadiene suitable for site-selectively installing aryl diazonium cations into proteins at neutral pH; we show reaction with this molecule and a surface-cysteine of a thiol disulfide oxidoreductase. Through photoactivation of the site-selectively installed triazabutadiene motifs, we generate aryl diazonium functionality, which we further derivatize via azo-bond formation to electron-rich aryl species, showcasing the potential utility of this strategy for the generation of photoswitches or protein-drug conjugates.
Collapse
Affiliation(s)
- Nicholas D J Yates
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Natasha E Hatton
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Martin A Fascione
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| | - Alison Parkin
- Department of Chemistry, University of York Heslington, York, YO10 5DD, UK
| |
Collapse
|
5
|
Petit GA, Hong Y, Djoko KY, Whitten AE, Furlong EJ, McCoy AJ, Gulbis JM, Totsika M, Martin JL, Halili MA. The suppressor of copper sensitivity protein C from Caulobacter crescentus is a trimeric disulfide isomerase that binds copper(I) with subpicomolar affinity. ACTA CRYSTALLOGRAPHICA SECTION D STRUCTURAL BIOLOGY 2022; 78:337-352. [PMID: 35234148 PMCID: PMC8900818 DOI: 10.1107/s2059798322000729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/21/2022] [Indexed: 11/10/2022]
Abstract
The characterization of the suppressor of copper sensitivity protein C from C. crescentus is reported. The introduction of disulfide bonds into periplasmic proteins is a critical process in many Gram-negative bacteria. The formation and regulation of protein disulfide bonds have been linked to the production of virulence factors. Understanding the different pathways involved in this process is important in the development of strategies to disarm pathogenic bacteria. The well characterized disulfide bond-forming (DSB) proteins play a key role by introducing or isomerizing disulfide bonds between cysteines in substrate proteins. Curiously, the suppressor of copper sensitivity C proteins (ScsCs), which are part of the bacterial copper-resistance response, share structural and functional similarities with DSB oxidase and isomerase proteins, including the presence of a catalytic thioredoxin domain. However, the oxidoreductase activity of ScsC varies with its oligomerization state, which depends on a poorly conserved N-terminal domain. Here, the structure and function of Caulobacter crescentus ScsC (CcScsC) have been characterized. It is shown that CcScsC binds copper in the copper(I) form with subpicomolar affinity and that its isomerase activity is comparable to that of Escherichia coli DsbC, the prototypical dimeric bacterial isomerase. It is also reported that CcScsC functionally complements trimeric Proteus mirabilis ScsC (PmScsC) in vivo, enabling the swarming of P. mirabilis in the presence of copper. Using mass photometry and small-angle X-ray scattering (SAXS) the protein is demonstrated to be trimeric in solution, like PmScsC, and not dimeric like EcDsbC. The crystal structure of CcScsC was also determined at a resolution of 2.6 Å, confirming the trimeric state and indicating that the trimerization results from interactions between the N-terminal α-helical domains of three CcScsC protomers. The SAXS data analysis suggested that the protomers are dynamic, like those of PmScsC, and are able to sample different conformations in solution.
Collapse
|
6
|
Guo K, Feng X, Sun W, Han S, Wu S, Gao H. NapB Restores cytochrome c biosynthesis in bacterial dsbD-deficient mutants. Commun Biol 2022; 5:87. [PMID: 35064202 PMCID: PMC8782879 DOI: 10.1038/s42003-022-03034-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022] Open
Abstract
Cytochromes c (cyts c), essential for respiration and photosynthesis in eukaryotes, confer bacteria respiratory versatility for survival and growth in natural environments. In bacteria having a cyt c maturation (CCM) system, DsbD is required to mediate electron transport from the cytoplasm to CcmG of the Ccm apparatus. Here with cyt c-rich Shewanella oneidensis as the research model, we identify NapB, a cyt c per se, that suppresses the CCM defect of a dsbD mutant during anaerobiosis, when NapB is produced at elevated levels, a result of activation by cAMP-Crp. Data are then presented to suggest that NapB reduces CcmG, leading to the suppression. We further show that NapB proteins capable of rescuing CCM in the dsbD mutant form a small distinct clade. The study sheds light on multifunctionality of cyts c, and more importantly, unravels a self-salvation strategy through which bacteria have evolved to better adjust to the natural world. The DsbD protein is normally required for cytochrome c maturation (Ccm) in bacteria. With cytochrome c-rich Shewanella oneidensis as the research model, NapB, the small subunit of the nitrate reductase which is a cytochrome c per se, was found to suppress the Ccm defect resulting from DsbD loss under anaerobic conditions.
Collapse
|
7
|
Shahrear S, Afroj Zinnia M, Sany MRU, Islam ABMMK. Functional Analysis of Hypothetical Proteins of Vibrio parahaemolyticus Reveals the Presence of Virulence Factors and Growth-Related Enzymes With Therapeutic Potential. Bioinform Biol Insights 2022; 16:11779322221136002. [PMID: 36386863 PMCID: PMC9661560 DOI: 10.1177/11779322221136002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022] Open
Abstract
Vibrio parahaemolyticus, an aquatic pathogen, is a major concern in the shrimp aquaculture industry. Several strains of this pathogen are responsible for causing acute hepatopancreatic necrosis disease as well as other serious illness, both of which result in severe economic losses. The genome sequence of two pathogenic strains of V. parahaemolyticus, MSR16 and MSR17, isolated from Bangladesh, have been reported to gain a better understanding of their diversity and virulence. However, the prevalence of hypothetical proteins (HPs) makes it challenging to obtain a comprehensive understanding of the pathogenesis of V. parahaemolyticus. The aim of the present study is to provide a functional annotation of the HPs to elucidate their role in pathogenesis employing several in silico tools. The exploration of protein domains and families, similarity searches against proteins with known function, gene ontology enrichment, along with protein-protein interaction analysis of the HPs led to the functional assignment with a high level of confidence for 656 proteins out of a pool of 2631 proteins. The in silico approach used in this study was important for accurately assigning function to HPs and inferring interactions with proteins with previously described functions. The HPs with function predicted were categorized into various groups such as enzymes involved in small-compound biosynthesis pathway, iron binding proteins, antibiotics resistance proteins, and other proteins. Several proteins with potential druggability were identified among them. In addition, the HPs were investigated in search of virulent factors, which led to the identification of proteins that have the potential to be exploited as vaccine candidate. The findings of the study will be effective in gaining a better understanding of the molecular mechanisms of bacterial pathogenesis. They may also provide an insight into the process of evaluating promising targets for the development of drugs and vaccines against V. parahaemolyticus.
Collapse
Affiliation(s)
- Sazzad Shahrear
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | | - Md. Rabi Us Sany
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | |
Collapse
|
8
|
Petit GA, Mohanty B, McMahon RM, Nebl S, Hilko DH, Wilde KL, Scanlon MJ, Martin JL, Halili MA. Identification and characterization of two drug-like fragments that bind to the same cryptic binding pocket of Burkholderia pseudomallei DsbA. Acta Crystallogr D Struct Biol 2022; 78:75-90. [PMID: 34981764 PMCID: PMC8725163 DOI: 10.1107/s2059798321011475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/29/2021] [Indexed: 01/10/2023] Open
Abstract
Disulfide-bond-forming proteins (Dsbs) play a crucial role in the pathogenicity of many Gram-negative bacteria. Disulfide-bond-forming protein A (DsbA) catalyzes the formation of the disulfide bonds necessary for the activity and stability of multiple substrate proteins, including many virulence factors. Hence, DsbA is an attractive target for the development of new drugs to combat bacterial infections. Here, two fragments, bromophenoxy propanamide (1) and 4-methoxy-N-phenylbenzenesulfonamide (2), were identified that bind to DsbA from the pathogenic bacterium Burkholderia pseudomallei, the causative agent of melioidosis. The crystal structures of oxidized B. pseudomallei DsbA (termed BpsDsbA) co-crystallized with 1 or 2 show that both fragments bind to a hydrophobic pocket that is formed by a change in the side-chain orientation of Tyr110. This conformational change opens a `cryptic' pocket that is not evident in the apoprotein structure. This binding location was supported by 2D-NMR studies, which identified a chemical shift perturbation of the Tyr110 backbone amide resonance of more than 0.05 p.p.m. upon the addition of 2 mM fragment 1 and of more than 0.04 p.p.m. upon the addition of 1 mM fragment 2. Although binding was detected by both X-ray crystallography and NMR, the binding affinity (Kd) for both fragments was low (above 2 mM), suggesting weak interactions with BpsDsbA. This conclusion is also supported by the crystal structure models, which ascribe partial occupancy to the ligands in the cryptic binding pocket. Small fragments such as 1 and 2 are not expected to have a high energetic binding affinity due to their relatively small surface area and the few functional groups that are available for intermolecular interactions. However, their simplicity makes them ideal for functionalization and optimization. The identification of the binding sites of 1 and 2 to BpsDsbA could provide a starting point for the development of more potent novel antimicrobial compounds that target DsbA and bacterial virulence.
Collapse
Affiliation(s)
- Guillaume A. Petit
- Griffith Institute for Drug Discovery, Griffith University, Building N75, 46 Don Young Road, Nathan, QLD 4111, Australia
| | - Biswaranjan Mohanty
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Sydney Analytical Core Research Facility, The University of Sydney, Sydney, NSW 2006, Australia
| | - Róisín M. McMahon
- Griffith Institute for Drug Discovery, Griffith University, Building N75, 46 Don Young Road, Nathan, QLD 4111, Australia
| | - Stefan Nebl
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - David H. Hilko
- Griffith Institute for Drug Discovery, Griffith University, Building N75, 46 Don Young Road, Nathan, QLD 4111, Australia
| | - Karyn L. Wilde
- National Deuteration Facility, Australian Nuclear Science and Technology Organization (ANSTO), New Illawarra Road, Lucas Heights, NSW 2234, Australia
| | - Martin J. Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- ARC Centre for Fragment-Based Design, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jennifer L. Martin
- Griffith Institute for Drug Discovery, Griffith University, Building N75, 46 Don Young Road, Nathan, QLD 4111, Australia
- Vice-Chancellor’s Unit, University of Wollongong, Building 36, Wollongong, NSW 2522, Australia
| | - Maria A. Halili
- Griffith Institute for Drug Discovery, Griffith University, Building N75, 46 Don Young Road, Nathan, QLD 4111, Australia
| |
Collapse
|
9
|
White K, Nicoletti G, Cornell H. Antibacterial Profile of a Microbicidal Agent Targeting Tyrosine Phosphatases and Redox Thiols, Novel Drug Targets. Antibiotics (Basel) 2021; 10:1310. [PMID: 34827248 PMCID: PMC8615086 DOI: 10.3390/antibiotics10111310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 11/16/2022] Open
Abstract
The activity profile of a protein tyrosine phosphatase (PTP) inhibitor and redox thiol oxidant, nitropropenyl benzodioxole (NPBD), was investigated across a broad range of bacterial species. In vitro assays assessed inhibitory and lethal activity patterns, the induction of drug variants on long term exposure, the inhibitory interactions of NPBD with antibiotics, and the effect of plasma proteins and redox thiols on activity. A literature review indicates the complexity of PTP and redox signaling and suggests likely metabolic targets. NPBD was broadly bactericidal to pathogens of the skin, respiratory, urogenital and intestinal tracts. It was effective against antibiotic resistant strains and slowly replicating and dormant cells. NPBD did not induce resistant or drug-tolerant phenotypes and showed low cross reactivity with antibiotics in synergy assays. Binding to plasma proteins indicated lowered in-vitro bioavailability and reduction of bactericidal activity in the presence of thiols confirmed the contribution of thiol oxidation and oxidative stress to lethality. This report presents a broad evaluation of the antibacterial effect of PTP inhibition and redox thiol oxidation, illustrates the functional diversity of bacterial PTPs and redox thiols, and supports their consideration as novel targets for antimicrobial drug development. NPBD is a dual mechanism agent with an activity profile which supports consideration of tyrosine phosphatases and bacterial antioxidant systems as promising targets for drug development.
Collapse
Affiliation(s)
- Kylie White
- STEM College, RMIT University, Melbourne, VIC 3001, Australia; (G.N.); (H.C.)
| | | | | |
Collapse
|
10
|
Zlatkov N, Nadeem A, Uhlin BE, Wai SN. Eco-evolutionary feedbacks mediated by bacterial membrane vesicles. FEMS Microbiol Rev 2021; 45:fuaa047. [PMID: 32926132 PMCID: PMC7968517 DOI: 10.1093/femsre/fuaa047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 09/11/2020] [Indexed: 12/27/2022] Open
Abstract
Bacterial membrane vesicles (BMVs) are spherical extracellular organelles whose cargo is enclosed by a biological membrane. The cargo can be delivered to distant parts of a given habitat in a protected and concentrated manner. This review presents current knowledge about BMVs in the context of bacterial eco-evolutionary dynamics among different environments and hosts. BMVs may play an important role in establishing and stabilizing bacterial communities in such environments; for example, bacterial populations may benefit from BMVs to delay the negative effect of certain evolutionary trade-offs that can result in deleterious phenotypes. BMVs can also perform ecosystem engineering by serving as detergents, mediators in biochemical cycles, components of different biofilms, substrates for cross-feeding, defense systems against different dangers and enzyme-delivery mechanisms that can change substrate availability. BMVs further contribute to bacteria as mediators in different interactions, with either other bacterial species or their hosts. In short, BMVs extend and deliver phenotypic traits that can have ecological and evolutionary value to both their producers and the ecosystem as a whole.
Collapse
Affiliation(s)
- Nikola Zlatkov
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden
| | - Aftab Nadeem
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden
| | - Bernt Eric Uhlin
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden
| | - Sun Nyunt Wai
- Department of Molecular Biology and The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
11
|
Shirlaw O, Billah Z, Attar B, Hughes L, Qasaymeh RM, Seidel V, Efthimiou G. Antibiofilm Activity of Heather and Manuka Honeys and Antivirulence Potential of Some of Their Constituents on the DsbA1 Enzyme of Pseudomonas aeruginosa. Antibiotics (Basel) 2020; 9:antibiotics9120911. [PMID: 33334017 PMCID: PMC7765399 DOI: 10.3390/antibiotics9120911] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 12/15/2022] Open
Abstract
Heather honey was tested for its effect on the formation of biofilms by Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, Enterococcus faecalis, Salmonella Enteriditis and Acinetobacter baumanii in comparison with Manuka honey. At 0.25 mg/mL, Heather honey inhibited biofilm formation in S. aureus, A. baumanii, E. coli, S. Enteriditis and P. aeruginosa, but promoted the growth of E. faecalis and K. pneumoniae biofilms. Manuka honey inhibited biofilm formation in K. pneumoniae, E. faecalis, and S. Enteriditis, A. baumanii, E. coli and P. aeruginosa, but promoted S. aureus biofilm formation. Molecular docking with Autodock Vina was performed to calculate the predictive binding affinities and ligand efficiencies of Manuka and Heather honey constituents for PaDsbA1, the main enzyme controlling the correct folding of virulence proteins in Pseudomonas aeruginosa. A number of constituents, including benzoic acid and methylglyoxal, present in Heather and/or Manuka honey, revealed high ligand efficiencies for the target enzyme. This helps support, to some extent, the decrease in P. aeruginosa biofilm formation observed for such honeys.
Collapse
Affiliation(s)
- Oscar Shirlaw
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (O.S.); (Z.B.); (B.A.); (L.H.); (R.M.Q.)
| | - Zara Billah
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (O.S.); (Z.B.); (B.A.); (L.H.); (R.M.Q.)
| | - Baraa Attar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (O.S.); (Z.B.); (B.A.); (L.H.); (R.M.Q.)
| | - Lisa Hughes
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (O.S.); (Z.B.); (B.A.); (L.H.); (R.M.Q.)
| | - Rana M. Qasaymeh
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (O.S.); (Z.B.); (B.A.); (L.H.); (R.M.Q.)
| | - Veronique Seidel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (O.S.); (Z.B.); (B.A.); (L.H.); (R.M.Q.)
- Correspondence: (V.S.); (G.E.)
| | - Georgios Efthimiou
- Department of Biomedical and Forensic Sciences, Hardy Building, University of Hull, Hull HU6 7RX, UK
- Correspondence: (V.S.); (G.E.)
| |
Collapse
|
12
|
Vezina B, Petit GA, Martin JL, Halili MA. Prediction of Burkholderia pseudomallei DsbA substrates identifies potential virulence factors and vaccine targets. PLoS One 2020; 15:e0241306. [PMID: 33216758 PMCID: PMC7678975 DOI: 10.1371/journal.pone.0241306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/12/2020] [Indexed: 11/19/2022] Open
Abstract
Identification of bacterial virulence factors is critical for understanding disease pathogenesis, drug discovery and vaccine development. In this study we used two approaches to predict virulence factors of Burkholderia pseudomallei, the Gram-negative bacterium that causes melioidosis. B. pseudomallei is naturally antibiotic resistant and there are no clinically available melioidosis vaccines. To identify B. pseudomallei protein targets for drug discovery and vaccine development, we chose to search for substrates of the B. pseudomallei periplasmic disulfide bond forming protein A (DsbA). DsbA introduces disulfide bonds into extra-cytoplasmic proteins and is essential for virulence in many Gram-negative organism, including B. pseudomallei. The first approach to identify B. pseudomallei DsbA virulence factor substrates was a large-scale genomic analysis of 511 unique B. pseudomallei disease-associated strains. This yielded 4,496 core gene products, of which we hypothesise 263 are DsbA substrates. Manual curation and database screening of the 263 mature proteins yielded 81 associated with disease pathogenesis or virulence. These were screened for structural homologues to predict potential B-cell epitopes. In the second approach, we searched the B. pseudomallei genome for homologues of the more than 90 known DsbA substrates in other bacteria. Using this approach, we identified 15 putative B. pseudomallei DsbA virulence factor substrates, with two of these previously identified in the genomic approach, bringing the total number of putative DsbA virulence factor substrates to 94. The two putative B. pseudomallei virulence factors identified by both methods are homologues of PenI family β-lactamase and a molecular chaperone. These two proteins could serve as high priority targets for future B. pseudomallei virulence factor characterization.
Collapse
Affiliation(s)
- Ben Vezina
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Guillaume A. Petit
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Jennifer L. Martin
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
- Vice-Chancellor’s Unit, University of Wollongong, Wollongong, New South Wales, Australia
| | - Maria A. Halili
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
13
|
Roszczenko-Jasińska P, Wojtyś MI, Jagusztyn-Krynicka EK. Helicobacter pylori treatment in the post-antibiotics era-searching for new drug targets. Appl Microbiol Biotechnol 2020; 104:9891-9905. [PMID: 33052519 PMCID: PMC7666284 DOI: 10.1007/s00253-020-10945-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/28/2020] [Accepted: 10/04/2020] [Indexed: 12/14/2022]
Abstract
Abstract Helicobacter pylori, a member of Epsilonproteobacteria, is a Gram-negative microaerophilic bacterium that colonizes gastric mucosa of about 50% of the human population. Although most infections caused by H. pylori are asymptomatic, the microorganism is strongly associated with serious diseases of the upper gastrointestinal tract such as chronic gastritis, peptic ulcer, duodenal ulcer, and gastric cancer, and it is classified as a group I carcinogen. The prevalence of H. pylori infections varies worldwide. The H. pylori genotype, host gene polymorphisms, and environmental factors determine the type of induced disease. Currently, the most common therapy to treat H. pylori is the first line clarithromycin–based triple therapy or a quadruple therapy replacing clarithromycin with new antibiotics. Despite the enormous recent effort to introduce new therapeutic regimens to combat this pathogen, treatment for H. pylori still fails in more than 20% of patients, mainly due to the increased prevalence of antibiotic resistant strains. In this review we present recent progress aimed at designing new anti-H. pylori strategies to combat this pathogen. Some novel therapeutic regimens will potentially be used as an extra constituent of antibiotic therapy, and others may replace current antibiotic treatments. Key points • Attempts to improve eradication rate of H. pylori infection. • Searching for new drug targets in anti-Helicobacter therapies.
Collapse
Affiliation(s)
- Paula Roszczenko-Jasińska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, Univeristy of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland
| | - Marta Ilona Wojtyś
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, Univeristy of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland.,Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, Univeristy of Warsaw, Pasteura 5, 02-093, Warszawa, Poland
| | - Elżbieta K Jagusztyn-Krynicka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, Univeristy of Warsaw, Miecznikowa 1, 02-096, Warszawa, Poland.
| |
Collapse
|
14
|
Complex Oxidation of Apocytochromes c during Bacterial Cytochrome c Maturation. Appl Environ Microbiol 2019; 85:AEM.01989-19. [PMID: 31585997 DOI: 10.1128/aem.01989-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
c-Type cytochromes (cyts c) are proteins that contain covalently bound heme and that thus require posttranslational modification for activity, a process carried out by the cytochrome c (cyt c) maturation system (referred to as the Ccm system) in many Gram-negative bacteria. It has been established that during cyt c maturation (CCM), two cysteine thiols of the heme binding motif (CXXCH) within apocytochromes c (apocyts c) are first oxidized largely by DsbA to form a disulfide bond, which is later reduced through a thio-reductive pathway involving DsbD. However, the physiological impacts of DsbA proteins on CCM in fact vary significantly among bacteria. In this work, we used the cyt c-rich Gram-negative bacterium Shewanella oneidensis as the research model to clarify the roles of DsbA proteins in CCM. We show that in terms of the oxidation of apocyts c, DsbA proteins are an important but not critical factor, and, strikingly, oxygen is not either. By exploiting the DsbD-independent pathway, we identify DsbA1, DsbA2, and DsbA3 as oxidants contributing to the oxidation of apocyts c and reductants, such as cysteine, to be an effective antagonist against DsbA-independent oxidation. We further show that DsbB proteins are partially responsible for the reoxidization of reduced DsbA proteins. Overall, our results indicate that the DsbA-DsbB redox pair has a limited role in CCM, challenging the established notion that it is the main oxidant for apocyts c IMPORTANCE DsbA is a powerful oxidase that functions in the bacterial periplasm to introduce disulfide bonds in many proteins, including apocytochromes c It has been well established that although DsbA is not essential, it plays a primary role in cytochrome c maturation, based on studies in bacteria hosting several cyts c Here, with cyt c-rich S. oneidensis as a research model, we show that this is not always the case. Moreover, we demonstrate that DsbB is also not essential for cytochrome c maturation. These results underscore the need to identify oxidants other than DsbA/DsbB that are crucial in the oxidation of apocyts c in bacteria.
Collapse
|
15
|
Banaś AM, Bocian-Ostrzycka KM, Jagusztyn-Krynicka EK. Engineering of the Dsb (disulfide bond) proteins - contribution towards understanding their mechanism of action and their applications in biotechnology and medicine. Crit Rev Microbiol 2019; 45:433-450. [PMID: 31190593 DOI: 10.1080/1040841x.2019.1622509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Dsb protein family in prokaryotes catalyzes the generation of disulfide bonds between thiol groups of cysteine residues in nascent proteins, ensuring their proper three-dimensional structure; these bonds are crucial for protein stability and function. The first Dsb protein, Escherichia coli DsbA, was described in 1991. Since then, many details of the bond-formation process have been described through microbiological, biochemical, biophysical and bioinformatics strategies. Research with the model microorganism E. coli and many other bacterial species revealed an enormous diversity of bond-formation mechanisms. Research using Dsb protein engineering has significantly helped to reveal details of the disulfide bond formation. The first part of this review presents the research that led to understanding the mechanism of action of DsbA proteins, which directly transfer their own disulfide into target proteins. The second part concentrates on the mechanism of electron transport through the cell cytoplasmic membrane. Third and lastly, the review discusses the contribution of this research towards new antibacterial agents.
Collapse
Affiliation(s)
- Anna Marta Banaś
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw , Miecznikowa 1 , Warsaw , Poland
| | - Katarzyna Marta Bocian-Ostrzycka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw , Miecznikowa 1 , Warsaw , Poland
| | | |
Collapse
|
16
|
Christensen S, McMahon RM, Martin JL, Huston WM. Life inside and out: making and breaking protein disulfide bonds in Chlamydia. Crit Rev Microbiol 2019; 45:33-50. [PMID: 30663449 DOI: 10.1080/1040841x.2018.1538933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Disulphide bonds are widely used among all domains of life to provide structural stability to proteins and to regulate enzyme activity. Chlamydia spp. are obligate intracellular bacteria that are especially dependent on the formation and degradation of protein disulphide bonds. Members of the genus Chlamydia have a unique biphasic developmental cycle alternating between two distinct cell types; the extracellular infectious elementary body (EB) and the intracellular replicating reticulate body. The proteins in the envelope of the EB are heavily cross-linked with disulphides and this is known to be critical for this infectious phase. In this review, we provide a comprehensive summary of what is known about the redox state of chlamydial envelope proteins throughout the developmental cycle. We focus especially on the factors responsible for degradation and formation of disulphide bonds in Chlamydia and how this system compares with redox regulation in other organisms. Focussing on the unique biology of Chlamydia enables us to provide important insights into how specialized suites of disulphide bond (Dsb) proteins cater for specific bacterial environments and lifecycles.
Collapse
Affiliation(s)
- Signe Christensen
- a Division of Chemistry and Structural Biology , Institute for Molecular Bioscience, University of Queensland , St. Lucia , QLD , Australia.,b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Róisín M McMahon
- b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Jennifer L Martin
- b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Wilhelmina M Huston
- c School of Life Sciences , University of Technology Sydney , Ultimo , NSW , Australia
| |
Collapse
|
17
|
Gurung JM, Amer AAA, Francis MK, Costa TRD, Chen S, Zavialov AV, Francis MS. Heterologous Complementation Studies With the YscX and YscY Protein Families Reveals a Specificity for Yersinia pseudotuberculosis Type III Secretion. Front Cell Infect Microbiol 2018; 8:80. [PMID: 29616194 PMCID: PMC5864894 DOI: 10.3389/fcimb.2018.00080] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/28/2018] [Indexed: 12/29/2022] Open
Abstract
Type III secretion systems harbored by several Gram-negative bacteria are often used to deliver host-modulating effectors into infected eukaryotic cells. About 20 core proteins are needed for assembly of a secretion apparatus. Several of these proteins are genetically and functionally conserved in type III secretion systems of bacteria associated with invertebrate or vertebrate hosts. In the Ysc family of type III secretion systems are two poorly characterized protein families, the YscX family and the YscY family. In the plasmid-encoded Ysc-Yop type III secretion system of human pathogenic Yersinia species, YscX is a secreted substrate while YscY is its non-secreted cognate chaperone. Critically, neither an yscX nor yscY null mutant of Yersinia is capable of type III secretion. In this study, we show that the genetic equivalents of these proteins produced as components of other type III secretion systems of Pseudomonas aeruginosa (PscX and PscY), Aeromonas species (AscX and AscY), Vibrio species (VscX and VscY), and Photorhabdus luminescens (SctX and SctY) all possess an ability to interact with its native cognate partner and also establish cross-reciprocal binding to non-cognate partners as judged by a yeast two-hybrid assay. Moreover, a yeast three-hybrid assay also revealed that these heterodimeric complexes could maintain an interaction with YscV family members, a core membrane component of all type III secretion systems. Despite maintaining these molecular interactions, only expression of the native yscX in the near full-length yscX deletion and native yscY in the near full-length yscY deletion were able to complement for their general substrate secretion defects. Hence, YscX and YscY must have co-evolved to confer an important function specifically critical for Yersinia type III secretion.
Collapse
Affiliation(s)
- Jyoti M Gurung
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Ayad A A Amer
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Monika K Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Tiago R D Costa
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences Wuhan, Wuhan, China
| | | | - Matthew S Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
18
|
Abstract
Antibiotics have saved millions of lives over the past decades. However, the accumulation of so many antibiotic resistance genes by some clinically relevant pathogens has begun to lead to untreatable infections worldwide. The current antibiotic resistance crisis will require greater efforts by governments and the scientific community to increase the research and development of new antibacterial drugs with new mechanisms of action. A major challenge is the identification of novel microbial targets, essential for in vivo growth or pathogenicity, whose inhibitors can overcome the currently circulating resistome of human pathogens. In this article, we focus on the potential high value of bacterial transcriptional regulators as targets for the development of new antibiotics, discussing in depth the molecular role of these regulatory proteins in bacterial physiology and pathogenesis. Recent advances in the search for novel compounds that inhibit the biological activity of relevant transcriptional regulators in pathogenic bacteria are reviewed.
Collapse
|