1
|
Zhou Z, Zhu R, Yang H, Xu L, Chen H, Wu Y, Yin Z, Huang Q, Zhang D, Liu C, Que Y, Zhang J, Xia N, Cheng T. Development of a rapid neutralization testing system for Rhinovirus C15 based on the enzyme-linked immunospot assay. Front Microbiol 2022; 13:983656. [PMID: 36212859 PMCID: PMC9539532 DOI: 10.3389/fmicb.2022.983656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Human Rhinoviruses (RVs) are dominant pathogens causing a wide range of respiratory tract diseases, posing a huge threat to public health worldwide. Viruses belonging to the RV-C species are more likely to cause severe illnesses and are strongly associated with asthma onset or exacerbations than RV-A or RV-B. Rapid and sensitive detection of neutralizing antibodies (NAbs) against RV-C can promote the development of vaccines and antiviral drugs and help in the diagnosis of viral infection. In this study, a rapid neutralization testing system for RV-C15, based on an enzyme-linked immunospot assay (Nt-ELISPOT) was developed. A monoclonal antibody (MAb), named 9F9, with high binding efficacy for RV-C15 conjugated to horseradish peroxidase (HRP), was used to detect RV-C15-infected cells at a concentration of 2 μg/ml. The optimal infectious dose of RV-C15 was set at 1 × 104 TCID50/well and the cells were fixed with 0.5% formaldehyde diluted in PBS after incubation for 20 h. Compared with the traditional cytopathic effect (CPE)-based neutralization assay (Nt-CPE), Nt-ELISPOT significantly shortened the detection period and showed good consistency with the detection of neutralizing titers of both sera and NAbs. Using Nt-ELISPOT, three anti-RV-C15 NAbs were obtained with IC50 values of 0.16, 0.27, and 11.8 μg/ml, respectively. Moreover, 64 human serum samples collected from a wide range of age groups were tested for NAb against RV-C15 by Nt-ELISPOT. The total seroprevalence was 48.4% (31/64) and the positive rate was lowest in the group under 6 years old. Thus, the Nt-ELISPOT established in this study can be used as a high-throughput and rapid neutralization assay for the screening of NAbs and for seroepidemiological investigation against RV-C15.
Collapse
|
2
|
Wu Y, Yin Z, Zhu R, Xu L, Huang Q, Zhang D, Yang H, Zhou Z, Zhang J, Cheng T, Xia N. Development of a rapid neutralization assay for the detection of neutralizing antibodies against coxsackievirus B1. Diagn Microbiol Infect Dis 2022; 103:115676. [DOI: 10.1016/j.diagmicrobio.2022.115676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/21/2022] [Accepted: 02/26/2022] [Indexed: 12/13/2022]
|
3
|
Fang CY, Liu CC. Novel strategies for the development of hand, foot, and mouth disease vaccines and antiviral therapies. Expert Opin Drug Discov 2022; 17:27-39. [PMID: 34382876 DOI: 10.1080/17460441.2021.1965987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/05/2021] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Hand, foot, and mouth disease (HFMD) poses a great threat to young children in the Asia-Pacific region. HFMD is usually caused by enterovirus A, and infection with enterovirus A71 (EV-A71) is particularly associated with severe complications. However, coxsackievirus CV-A16, CV-A6, and CV-A10 pandemics have been observed in recent HFMD outbreaks. Inactivated monovalent EV-A71 vaccines are available to prevent EV-A71 infection; however, they cannot prevent infections by non-EV-A71 enteroviruses. Anti-enteroviral drugs are still in the developmental stage. Application of novel strategies will facilitate the development of new therapies against these emerging HFMD-associated enteroviruses. AREAS COVERED The authors highlight the current approaches for anti-enterovirus therapeutic development and discuss the application of these novel strategies for the discovery of vaccines and antiviral drugs for enteroviruses. EXPERT OPINION The maturation of DNA/RNA vaccine technology could be applied for rapid and robust development of multivalent enterovirus vaccines. Structure biology and neutralization antibody studies decipher the immunodominant sites of enteroviruses for vaccine design. Nucleotide aptamer library screening is a novel, fast, and cost-effective strategy for the development of antiviral agents. Animal models carrying viral receptors and attachment factors are required for enterovirus study and vaccine/antiviral development. Currently developed antivirals require effectiveness evaluation in clinical trials.
Collapse
Affiliation(s)
- Chih-Yeu Fang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Chia-Chyi Liu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|
4
|
Wu Q, Lin Z, Wu J, Qian K, Shao H, Ye J, Qin A. Peptide enzyme-linked immunosorbent assay (pELISA) as a possible alternative to the neutralization test for evaluating the immune response to IBV vaccine. BMC Vet Res 2021; 17:51. [PMID: 33494765 PMCID: PMC7830047 DOI: 10.1186/s12917-021-02757-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/12/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Infectious bronchitis virus (IBV), a coronavirus, is one of the most important poultry pathogens worldwide due to its multiple serotypes and poor cross-protection. Vaccination plays a vital role in controlling the disease. The efficacy of vaccination in chicken flocks can be evaluated by detecting neutralizing antibodies with the neutralization test. However there are no simple and rapid methods for detecting the neutralizing antibodies. RESULTS In this study, a peptide enzyme-linked immunosorbent assay (pELISA) as a possible alternative to the neutralization test for evaluating the immune response to IBV vaccine was developed. The pELISA could indirect evaluate neutralizing antibody titers against different types of IBV in all tested sera. The titers measured with the pELISA had a coefficient of 0.83 for neutralizing antibody titers. CONCLUSIONS The pELISA could detect antibodies against different types of IBV in all tested sera. The pELISA has the potential to evaluate samples for IBV-specific neutralizing antibodies and surveillance the infection of IBV.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Avian Preventive Medicine, Ministry of Education, Yangzhou University, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China.,Jiangsu Key Lab of Zoonosis, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China
| | - Zhixian Lin
- Key Laboratory of Avian Preventive Medicine, Ministry of Education, Yangzhou University, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China.,Jiangsu Key Lab of Zoonosis, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China
| | - Jinsen Wu
- Key Laboratory of Avian Preventive Medicine, Ministry of Education, Yangzhou University, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China.,Jiangsu Key Lab of Zoonosis, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China
| | - Kun Qian
- Key Laboratory of Avian Preventive Medicine, Ministry of Education, Yangzhou University, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China.,Jiangsu Key Lab of Zoonosis, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China.,The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China
| | - Hongxia Shao
- Key Laboratory of Avian Preventive Medicine, Ministry of Education, Yangzhou University, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China.,Jiangsu Key Lab of Zoonosis, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China.,The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China
| | - Jianqiang Ye
- Key Laboratory of Avian Preventive Medicine, Ministry of Education, Yangzhou University, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China. .,Jiangsu Key Lab of Zoonosis, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China. .,The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China. .,Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China.
| | - Aijian Qin
- Key Laboratory of Avian Preventive Medicine, Ministry of Education, Yangzhou University, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China. .,Jiangsu Key Lab of Zoonosis, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China. .,The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China. .,Ministry of Education Key Lab for Avian Preventive Medicine, Yangzhou University, No. 12 East Wenhui Road, 225009, Yangzhou, Jiangsu, P.R. China.
| |
Collapse
|
5
|
Li K, Dong F, Cui B, Cui L, Liu P, Ma C, Zheng H, Wu X, Liang Z. Development of a pseudovirus-based assay for measuring neutralizing antibodies against Coxsackievirus A10. Hum Vaccin Immunother 2020; 16:1434-1440. [PMID: 31851566 DOI: 10.1080/21645515.2019.1691404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Coxsackievirus A10 (CV-A10) has recently emerged as a major pathogen of hand, foot, and mouth disease in children worldwide. Currently no effective treatments are available; development of anti-CV-A10 vaccine is a most cost-effective way for CV-A10 prevention. Robust assay to measure neutralizing antibody (NtAb) titres elicited by vaccination would greatly prompt anti-CV-A10 vaccine development. Compare to the traditional neutralization assay based on inhibition of cytopathic effects (herein after referred to as cNT) which is time-consuming and labor-intensive, in this study we developed an efficient high-throughput neutralization antibody assay based on CV-A10 pseudoviruses (herein after referred to as pNT). In the pNT, anti-CV-A10 NtAb titre was negatively corresponded with the relative luminescent unit (RLU) produced by luciferase reporter gene incorporated in pseudovirus genome. As described in this study, the NtAb against CV-A10 could be detected within 10-16 h, anti- CV-A10 NtAb in 67 human serum samples were measured in parallel with pNT and cNT assays, a good correlation (r = 0.83,p < .0001) and good agreement(97%) were shown between cNT and pNT, indicating that the pNT provides a rapid and convenient procedure for measuring NtAb production against anti-CV-A10 NtAb measurement.
Collapse
Affiliation(s)
- Kelei Li
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control , Beijing, China.,Research and Development Center, Minhai Biotechnology Co. Ltd , Beijing, China
| | - Fangyu Dong
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control , Beijing, China.,The Second Department of Research, Lanzhou Institute of Biological Products Co. Ltd , Lanzhou, China
| | - Bopei Cui
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control , Beijing, China
| | - Lisha Cui
- The Second Department of Research, Changchun Institute of Biological Products Co. Ltd , Changchun, China
| | - Pei Liu
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control , Beijing, China
| | - Chao Ma
- The Second Department of Research, Lanzhou Institute of Biological Products Co. Ltd , Lanzhou, China
| | - Haifa Zheng
- Research and Development Center, Minhai Biotechnology Co. Ltd , Beijing, China
| | - Xing Wu
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control , Beijing, China
| | - Zhenglun Liang
- Division of Hepatitis Virus Vaccines, National Institute for Food and Drug Control , Beijing, China
| |
Collapse
|
6
|
Li S, Zhao H, Yang H, Hou W, Cruz-Cosme R, Cao R, Chen C, Wang W, Xu L, Zhang J, Zhong W, Xia N, Tang Q, Cheng T. Rapid Neutralization Testing System for Zika Virus Based on an Enzyme-Linked Immunospot Assay. ACS Infect Dis 2020; 6:811-819. [PMID: 31840495 DOI: 10.1021/acsinfecdis.9b00333] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that has been associated with neuropathology in fetuses and adults, imposing a serious health concern. Therefore, the development of a vaccine is a global health priority. Notably, neutralization tests have a significant value for vaccine development and virus diagnosis. The cytopathic effect (CPE)-based neutralization test (Nt-CPE) is a common neutralization method for ZIKV. However, this method has some drawbacks, such as being time-consuming and labor-intensive and having low-throughput, which precludes its application in the detection of large numbers of specimens. To improve this problem, we developed a neutralization test based on an enzyme-linked immunospot assay (Nt-ELISPOT) for ZIKV and performed the assay in a 96-well format. A monoclonal antibody (mAb), 11C11, with high affinity and reactivity to ZIKV was used to detect ZIKV-infected cells. To optimize this method, the infectious dose of ZIKV was set at a multiplicity of infection (MOI) of 0.0625, and a detection experiment was performed after incubating for 24 h. As a result, under these conditions, the Nt-ELISPOT had good consistency with the traditional Nt-CPE to measure neutralizing titers of sera and neutralizing antibodies. Additionally, three neutralizing antibodies against ZIKV were screened by this method. Overall, we successfully developed an efficient neutralization test for ZIKV that is high-throughput and rapid. This Nt-ELISPOT can potentially be applied to detecting neutralizing titers of large numbers of specimens in vaccine evaluation and neutralizing antibody screening for ZIKV.
Collapse
Affiliation(s)
- Shuxuan Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Huan Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Hongwei Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Wangheng Hou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, D.C. 20059, United States
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Chunye Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Wei Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, PR China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, D.C. 20059, United States
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, Fujian 361102, PR China
| |
Collapse
|