1
|
Li T, Wang R, Hua B, Cao L, Zhang Q, Zhai Y, Ling S, Wang M, Li E. Improving the Thermal Stability of GH11 Xylanase XynASP through Cord Region Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39743673 DOI: 10.1021/acs.jafc.4c10256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The thermostability and catalytic activity of GH11 xylanase XynASP from Aspergillus saccharolyticus JOP 1030-1 were improved by systematically engineering the cord region. Ultimately, mutant DSM4 was developed through iterative combinations of mutations. Compared to the wild-type XynASP, DSM4 showed a 130.9- and 9.3-fold increase in t1/250 °C and catalytic efficiency, respectively. Reducing the flexibility of the cord region boosted the overall rigidity, resulting in improved thermal stability. The extensive catalytic cleft and prolonged contact between catalytic residues and the substrate were likely key factors in enhancing catalytic activity. Maintaining the thumb highly flexible can offset the negative impact on catalytic activity during the thermal stability modification of the cord region. This study indicates that the cord region is an effective target for enhancing the thermostability and catalytic activity of GH11 xylanase through engineered modifications.
Collapse
Affiliation(s)
- Tongbiao Li
- College of Biological and Food Engineering, Huanghuai University, Zhumadian 463000, China
| | - Ruilin Wang
- College of Biological and Food Engineering, Huanghuai University, Zhumadian 463000, China
| | - Beibei Hua
- College of Biological and Food Engineering, Huanghuai University, Zhumadian 463000, China
| | - Lianbin Cao
- College of Biological and Food Engineering, Huanghuai University, Zhumadian 463000, China
| | - Qing Zhang
- College of Biological and Food Engineering, Huanghuai University, Zhumadian 463000, China
| | - Yuanyuan Zhai
- College of Biological and Food Engineering, Huanghuai University, Zhumadian 463000, China
| | - Shaohua Ling
- College of Life Sciences, Anhui Medical University, Hefei 230000, Anhui, China
| | - Mingcheng Wang
- College of Biological and Food Engineering, Huanghuai University, Zhumadian 463000, China
| | - Enzhong Li
- College of Biological and Food Engineering, Huanghuai University, Zhumadian 463000, China
| |
Collapse
|
2
|
Wu M, Cao L, Tang W, Liu Z, Feng S. Improving the anti-autolytic ability of alkaline protease from Bacillus alcalophilus by a rationally combined strategy. Enzyme Microb Technol 2024; 184:110561. [PMID: 39667080 DOI: 10.1016/j.enzmictec.2024.110561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
Detergent enzymes have been extensively developed as eco-friendly alternatives to harmful chemicals, with alkaline protease representing a significant portion of detergent enzyme sales. However, the self-cleavage function of alkaline protease impacts its activity and overall application. Therefore, a new rational combinatorial strategy is proposed based on self-molecular docking (Self-ZDOCK) and molecular dynamics (MD) simulations. Self-ZDOCK is a computational method for predicting the binding mode of proteins to themselves, which is crucial for understanding the self-cleavage mechanism of proteases. On the other hand, MD simulation is a powerful tool to gain insight into the dynamic behaviour of proteins over time, and thus to analyse the structural stability and flexibility of BpAP under various conditions. Experiments verified this strategy is an effective way to improve the anti-autolytic ability of BpAP. Among the 28 mutants of BpAP, 5 mutants showed increases in thermal stability, pH stability, and storage stability in detergent, indicating a significant enhancement in their anti-autolytic capacity. Structural analysis and MD simulations confirmed that the enhanced stability characteristic of BpAP is attributed to improved anti-autolytic ability rather than increased structural stability. The three points combined mutant (MT5) showed the best increases in autolytic ability, as well as advanced catalytic efficiency. The low rate of inactive mutants and the high rate of positive mutants indicated that newly introduced screening factors (distance from catalytic residues, Gibbs free energy term, molecular simulation, and visual inspections) greatly enhance the design of anti-autolytic alkaline protease. Additionally, these findings enhance the industrial use of alkaline protease in detergents and similar applications.
Collapse
Affiliation(s)
- Mian Wu
- Nanjing Vazyme Biotechnology Company Limited, C1-C2, Hong Feng Science and Technology Park, Nanjing 210046, PR China
| | - Lin Cao
- Nanjing Vazyme Biotechnology Company Limited, C1-C2, Hong Feng Science and Technology Park, Nanjing 210046, PR China
| | - Wei Tang
- Nanjing Vazyme Biotechnology Company Limited, C1-C2, Hong Feng Science and Technology Park, Nanjing 210046, PR China
| | - Zhemin Liu
- Nanjing Vazyme Biotechnology Company Limited, C1-C2, Hong Feng Science and Technology Park, Nanjing 210046, PR China.
| | - Su Feng
- Nanjing Vazyme Biotechnology Company Limited, C1-C2, Hong Feng Science and Technology Park, Nanjing 210046, PR China.
| |
Collapse
|
3
|
Duan S, Wu Y, Chao T, Zhang N, Wei Z, Ji R. Improving the catalytic activity and thermostability of Aspergillus niger xylanase through computational design. Protein Expr Purif 2024; 223:106561. [PMID: 39094812 DOI: 10.1016/j.pep.2024.106561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
Xylanase plays the most important role in catalyzing xylan to xylose moieties. GH11 xylanases have been widely used in many fields, but most GH11 xylanases are mesophilic enzymes. To improve the catalytic activity and thermostability of Aspergillus niger xylanase (Xyn-WT), we predicted potential key mutation sites of Xyn-WT through multiple computer-aided enzyme engineering strategies. We introduce a simple and economical Ni affinity chromatography purification method to obtain high-purity xylanase and its mutants. Ten mutants (Xyn-A, Xyn-B, Xyn-C, E45T, Q93R, E45T/Q93R, A161P, Xyn-D, Xyn-E, Xyn-F) were identified. Among the ten mutants, four (Xyn-A, Xyn-C, A161P, Xyn-F) presented improved thermal stability and activity, with Xyn-F(A161P/E45T/Q93R) being the most thermally stable and active. Compared with Xyn-WT, after heat treatment at 55 °C and 60 °C for 10 min, the remaining enzyme activity of Xyn-F was 12 and 6 times greater than that of Xyn-WT, respectively, and Xyn-F was approximately 1.5 times greater than Xyn-WT when not heat treated. The pH adaptation of Xyn-F was also significantly enhanced. In summary, an improved catalytic activity and thermostability of the design variant Xyn-F has been reported.
Collapse
Affiliation(s)
- Shuyan Duan
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong, 277160, China.
| | - Yaoyao Wu
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong, 277160, China
| | - Tianzhu Chao
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong, 277160, China
| | - Nan Zhang
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong, 277160, China
| | - Zhaoyi Wei
- College of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong, 277160, China
| | - Rui Ji
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Jinan, 250101, China.
| |
Collapse
|
4
|
Dou Z, He J, Han C, Wu X, Wan L, Yang J, Zheng Y, Gong B, Wang L. qProtein: Exploring Physical Features of Protein Thermostability Based on Structural Proteomics. J Chem Inf Model 2024; 64:7885-7894. [PMID: 39375829 DOI: 10.1021/acs.jcim.4c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Thermostability, which is essential for the functional performance of enzymes, is largely determined by intramolecular physical interactions. Although many tools have been developed, existing computational methods have struggled to find the universal principles of protein thermostability. Recent advancements in structural proteomics have been driven by the introduction of deep neural networks such as AlphaFold2 and ESMFold. These innovations have enabled the characterization of protein structures with unprecedented speed and accuracy. Here, we introduce qProtein, a Python-implemented workflow designed for the quantitative analysis of physical interactions on the scale of structural proteomics. This platform accepts protein sequences as input and produces four structural features, including hydrophobic clusters, hydrogen bonds, electrostatic interactions, and disulfide bonds. To demonstrate the use of qProtein, we investigate the structural features related to protein thermostability in six glycoside hydrolase (GH) families, comprising a total of 3,811 protein structures. Our results indicate that in five enzyme families (GH11, GH12, GH5_2, GH10, and GH48), the thermophilic enzymes have a larger average area of hydrophobic clusters compared to the nonthermophilic enzymes within each family. Furthermore, our analysis of the local-structure regions reveals that the hydrophobic clusters are predominantly distributed in the distal regions of the GH11 enzymes. In addition, the average hydrophobic cluster area of the thermophilic enzymes is significantly higher than that of the nonthermophilic enzymes in the distal regions of the GH11 enzymes. Therefore, qProtein is a well-suited platform for analyzing the structural features of thermal stability at the level of structural proteomics. We provide the source code for qProtein at https://github.com/bj600800/qProtein, and the web server is available at http://qProtein.sdu.edu.cn:8888.
Collapse
Affiliation(s)
- Zhixin Dou
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P.R. China
| | - Jiaxin He
- School of Computer Science and Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P.R. China
| | - Chao Han
- Shandong Key Laboratory of Agricultural Microbiology, Shandong Agricultural University, Tai'an 271018, China
| | - Xiuyun Wu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P.R. China
| | - Lin Wan
- School of Software, Shandong University, Shunhua Road, Jinan 250101, P.R. China
| | - Jian Yang
- School of Computer Science and Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P.R. China
| | - Yanwei Zheng
- School of Computer Science and Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P.R. China
| | - Bin Gong
- School of Software, Shandong University, Shunhua Road, Jinan 250101, P.R. China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P.R. China
| |
Collapse
|
5
|
Liu L, Liu S, Hu X, Zhou S, Deng Y. Enhancing the activity and succinyl-CoA specificity of 3-ketoacyl-CoA thiolase Tfu_0875 through rational binding pocket engineering. Synth Syst Biotechnol 2024; 9:558-568. [PMID: 38694995 PMCID: PMC11061225 DOI: 10.1016/j.synbio.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 05/04/2024] Open
Abstract
The 3-ketoacyl-CoA thiolase is the rate-limiting enzyme for linear dicarboxylic acids production. However, the promiscuous substrate specificity and suboptimal catalytic performance have restricted its application. Here we present both biochemical and structural analyses of a high-efficiency 3-ketoacyl-CoA thiolase Tfu_0875. Notably, Tfu_0875 displayed heightened activity and substrate specificity for succinyl-CoA, a key precursor in adipic acid production. To enhance its performance, a deep learning approach (DLKcat) was employed to identify effective mutants, and a computational strategy, known as the greedy accumulated strategy for protein engineering (GRAPE), was used to accumulate these effective mutants. Among the mutants, Tfu_0875N249W/L163H/E217L exhibited the highest specific activity (320% of wild-type Tfu_0875), the greatest catalytic efficiency (kcat/KM = 1.00 min-1mM-1), the highest succinyl-CoA specificity (KM = 0.59 mM, 28.1% of Tfu_0875) and dramatically reduced substrate binding energy (-30.25 kcal mol-1v.s. -15.94 kcal mol-1). A structural comparison between Tfu_0875N249W/L163H/E217L and the wild type Tfu_0875 revealed that the increased interaction between the enzyme and succinyl-CoA was the primary reason for the enhanced enzyme activity. This interaction facilitated rapid substrate anchoring and stabilization. Furthermore, a reduced binding pocket volume improved substrate specificity by enhancing the complementarity between the binding pocket and the substrate in stereo conformation. Finally, our rationally designed mutant, Tfu_0875N249W/L163H/E217L, increased the adipic acid titer by 1.35-fold compared to the wild type Tfu_0875 in shake flask. The demonstrated enzymatic methods provide a promising enzyme variant for the adipic acid production. The above effective substrate binding pocket engineering strategy can be beneficial for the production of other industrially competitive biobased chemicals when be applied to other thiolases.
Collapse
Affiliation(s)
- Lixia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Shuang Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Xiangyang Hu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Shenghu Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Yu Deng
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
6
|
Zhou L, Tao C, Shen X, Sun X, Wang J, Yuan Q. Unlocking the potential of enzyme engineering via rational computational design strategies. Biotechnol Adv 2024; 73:108376. [PMID: 38740355 DOI: 10.1016/j.biotechadv.2024.108376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Enzymes play a pivotal role in various industries by enabling efficient, eco-friendly, and sustainable chemical processes. However, the low turnover rates and poor substrate selectivity of enzymes limit their large-scale applications. Rational computational enzyme design, facilitated by computational algorithms, offers a more targeted and less labor-intensive approach. There has been notable advancement in employing rational computational protein engineering strategies to overcome these issues, it has not been comprehensively reviewed so far. This article reviews recent developments in rational computational enzyme design, categorizing them into three types: structure-based, sequence-based, and data-driven machine learning computational design. Case studies are presented to demonstrate successful enhancements in catalytic activity, stability, and substrate selectivity. Lastly, the article provides a thorough analysis of these approaches, highlights existing challenges and potential solutions, and offers insights into future development directions.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chunmeng Tao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
7
|
Cai X, Shi X, Wang JY, Hu CH, Shen JD, Zhang B, Liu ZQ, Zheng YG. Enhancing the Thermal Stability and Enzyme Activity of Ketopantoate Hydroxymethyltransferase through Interface Modification Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:13186-13195. [PMID: 38814711 DOI: 10.1021/acs.jafc.3c09589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Ketopantoate hydroxymethyltransferase (KPHMT) plays a pivotal role in d-pantothenic acid biosynthesis. Most KPHMTs are homodecamers with low thermal stability, posing challenges for protein engineering and limiting output enhancement. Previously, a high-enzyme activity KPHMT mutant (K25A/E189S) from Corynebacterium glutamicum was screened as mother strain (M0). Building upon this strain, our study focused on interface engineering modifications, employing a multifaceted approach including integrating folding-free energy calculation, B-factor analysis, and conserved site analysis. Preliminary screening led to the selection of five mutants in the interface─E106S, E98T, E98N, S247I, and S247D─showing improved thermal stability, culminating in the double-site mutant M8 (M0-E98N/S247D). M8 exhibited a T1/2 value of 288.79 min at 50 °C, showing a 3.29-fold increase compared to M0. Meanwhile, the Tm value of M8 was elevated from 53.2 to 59.6 °C. Investigations of structural and molecular dynamics simulations revealed alterations in surface electrostatic charge distribution and the formation of increased hydrogen bonds between subunits, contributing to enhanced thermal stability. This investigation corroborates the efficacy of interface engineering modifications in bolstering KPHMT stability while showing its potential for positively impacting industrial d-pantothenic acid synthesis.
Collapse
Affiliation(s)
- Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xue Shi
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jia-Ying Wang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Cheng-Hao Hu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ji-Dong Shen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
8
|
Liu Y, Xu J, Ma M, You T, Ye S, Liu S. Computational design towards a boiling-resistant single-chain sweet protein monellin. Food Chem 2024; 440:138279. [PMID: 38159314 DOI: 10.1016/j.foodchem.2023.138279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/18/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Sweet proteins offer a promising solution as sugar substitutes by providing a sugar-like sweetness without the negative health impacts linked to sugar or artificial sweeteners. However, the low thermal stability of sweet proteins has hindered their applications. In this study, we took a computational approach utilizing ΔΔG calculations in PyRosetta to enhance the thermostability of single-chain monellin (MNEI). By generating and characterizing 21 variants with single mutation, we identified 11 variants with higher melting temperature (Tm) than that of MNEI. To further enhance the thermal stability, we conducted structural analysis and designed an additional set of 14 variants with multiple mutations. Among these variants, four exhibited a significant improvement in thermal stability, with an increase of at least 20 °C (Tm > 96 °C) compared to MNEI, while maintaining their sweetness. Remarkably, these variants remained soluble even after being heated in boiling water for one hour. Moreover, they displayed exceptional stability across alkaline, acidic and neutral environments. These findings highlight the tremendous potential of these variants for applications in the food and beverage industry. Additionally, this study provides valuable strategies for protein engineering to enhance the thermal stability of sweet proteins.
Collapse
Affiliation(s)
- Yanmei Liu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Jiayu Xu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Mingxue Ma
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Tianjie You
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Sheng Ye
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China.
| | - Si Liu
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China.
| |
Collapse
|
9
|
Zhu T, Sun J, Pang H, Wu B. Computational Enzyme Redesign Enhances Tolerance to Denaturants for Peptide C-Terminal Amidation. JACS AU 2024; 4:788-797. [PMID: 38425901 PMCID: PMC10900485 DOI: 10.1021/jacsau.3c00792] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 03/02/2024]
Abstract
The escalating demand for biocatalysts in pharmaceutical and biochemical applications underscores the critical imperative to enhance enzyme activity and durability under high denaturant concentrations. Nevertheless, the development of a practical computational redesign protocol for improving enzyme tolerance to denaturants is challenging due to the limitations of relying solely on model-driven approaches to adequately capture denaturant-enzyme interactions. In this study, we introduce an enzyme redesign strategy termed GRAPE_DA, which integrates multiple data-driven and model-driven computational methods to mitigate the sampling biases inherent in a single approach and comprehensively predict beneficial mutations on both the protein surface and backbone. To illustrate the methodology's effectiveness, we applied it to engineer a peptidylamidoglycolate lyase, resulting in a variant exhibiting up to a 24-fold increase in peptide C-terminal amidation activity under 2.5 M guanidine hydrochloride. We anticipate that this integrated engineering strategy will facilitate the development of enzymatic peptide synthesis and functionalization under denaturing conditions and highlight the role of engineering surface residues in governing protein stability.
Collapse
Affiliation(s)
- Tong Zhu
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinyuan Sun
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Pang
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bian Wu
- AIM Center, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
10
|
Wu Q, Zhang C, Dong W, Lu H, Yang Y, Li W, Xu Y, Li X. Simultaneously Enhanced Thermostability and Catalytic Activity of Xylanase from Streptomyces rameus L2001 by Rigidifying Flexible Regions in Loop Regions of the N-Terminus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12785-12796. [PMID: 37590476 DOI: 10.1021/acs.jafc.3c03871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The GH11 xylanase XynA from Streptomyces rameus L2001 has favorable hydrolytic properties. However, its poor thermal stability hinders its widespread application in industry. In this study, mutants Mut1 and Mut2 were constructed by rationally combining the mutations 11YHDGYF16, 23AP24/23SP24, and 32GP33. The residual enzyme activity of these combinational mutants was more than 85% when incubated at 80 and 90 °C for 12 h, and thus are the most thermotolerant xylanases known to date. The reduced flexibility of the N-terminus, increased overall rigidity, as well as the surface net charge of Mut1 and Mut2 may be partially responsible for the improved thermal stability. In addition, the specific activity and catalytic efficiency of Mut1 and Mut2 were improved compared with those of wild-type XynA. The broader catalytic cleft and enhanced flexibility of the "thumb" of Mut1 and Mut2 may be partially responsible for the improved specific activity and catalytic efficiency.
Collapse
Affiliation(s)
- Qiuhua Wu
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China
- China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Chengnan Zhang
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Wenqi Dong
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China
- China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Hongyun Lu
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yue Yang
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China
- China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Weiwei Li
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Youqiang Xu
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China
- China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China
- Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Xiuting Li
- Ministry of Education, Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Beijing 100048, China
- China General Chamber of Commerce, Key Laboratory of Brewing Microbiome and Enzymatic Molecular Engineering, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
- Beijing Association for Science and Technology-Food Nutrition and Safety Professional Think Tank Base, Beijing 100048, China
- School of Food and Health, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
11
|
Yang P, Wang X, Ye J, Rao S, Zhou J, Du G, Liu S. Enhanced Thermostability and Catalytic Activity of Streptomyces mobaraenesis Transglutaminase by Rationally Engineering Its Flexible Regions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6366-6375. [PMID: 37039372 DOI: 10.1021/acs.jafc.3c00260] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Streptomyces mobaraenesis transglutaminase can catalyze the cross-linking of proteins, which has been widely used in food processing. In this study, we rationally modified flexible regions to further improve the thermostability of FRAPD-TGm2 (S2P-S23V-Y24N-E28T-S199A-A265P-A287P-K294L), a stable mutant of the transglutaminase constructed in our previous study. First, five flexible regions of FRAPD-TGm2 were identified by molecular dynamics simulations at 330 and 360 K. Second, a script based on Rosetta Cartesian_ddg was developed for virtual saturation mutagenesis within the flexible regions far from the substrate binding pocket, generating the top 18 mutants with remarkable decreases in folding free energy. Third, from the top 18 mutants, we identified two mutants (S116A and S179L) with increased thermostability and activity. Finally, the above favorable mutations were combined to obtain FRAPD-TGm2-S116A-S179L (FRAPD-TGm2A), exhibiting a half-life of 132.38 min at 60 °C (t1/2(60 °C)) and a specific activity of 79.15 U/mg, 84 and 21% higher than those of FRAPD-TGm2, respectively. Therefore, the current result may benefit the application of S. mobaraenesis transglutaminase at high temperatures.
Collapse
Affiliation(s)
- Penghui Yang
- Engineering Research Center of Ministry of Education on Food Synthetic Biorheology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biorheology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jiacai Ye
- Engineering Research Center of Ministry of Education on Food Synthetic Biorheology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shengqi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biorheology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Engineering Research Center of Ministry of Education on Food Synthetic Biorheology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Song Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biorheology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
12
|
Alteration of Chain-Length Selectivity and Thermostability of Rhizopus oryzae Lipase via Virtual Saturation Mutagenesis Coupled with Disulfide Bond Design. Appl Environ Microbiol 2023; 89:e0187822. [PMID: 36602359 PMCID: PMC9888275 DOI: 10.1128/aem.01878-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Rhizopus oryzae lipase (ROL) is one of the most important enzymes used in the food, biofuel, and pharmaceutical industries. However, the highly demanding conditions of industrial processes can reduce its stability and activity. To seek a feasible method to improve both the catalytic activity and the thermostability of this lipase, first, the structure of ROL was divided into catalytic and noncatalytic regions by identifying critical amino acids in the crevice-like binding pocket. Second, a mutant screening library aimed at improvement of ROL catalytic performance by virtual saturation mutagenesis of residues in the catalytic region was constructed based on Rosetta's Cartesian_ddg protocol. A double mutant, E265V/S267W (with an E-to-V change at residue 265 and an S-to-W change at residue 267), with markedly improved catalytic activity toward diverse chain-length fatty acid esters was identified. Then, computational design of disulfide bonds was conducted for the noncatalytic amino acids of E265V/S267W, and two potential disulfide bonds, S61C-S115C and E190C-E238C, were identified as candidates. Experimental data validated that the variant E265V/S267W/S61C-S115C/E190C-E238C had superior stability, with an increase of 8.5°C in the melting temperature and a half-life of 31.7 min at 60°C, 4.2-fold longer than that of the wild-type enzyme. Moreover, the variant improved the lipase activity toward five 4-nitrophenyl esters by 1.5 to 3.8 times, exhibiting a potential to modify the catalytic efficiency. IMPORTANCE Rhizopus oryzae lipase (ROL) is very attractive in biotechnology and industry as a safe and environmentally friendly biocatalyst. Functional expression of ROL in Escherichia coli facilitates effective high-throughput screening for positive variants. This work highlights a method to improve both selectivity and thermostability based on a combination of virtual saturation mutagenesis in the substrate pocket and disulfide bond prediction in the noncatalytic region. Using the method, ROL thermostability and activity to diverse 4-nitrophenyl esters could be substantially improved. The strategy of rational introduction of multiple mutations in different functional domains of the enzyme is a great prospect in the modification of biocatalysts.
Collapse
|
13
|
Tian Y, Xu J, Shi J, Kong M, Guo C, Cui C, Wang Y, Wang Y, Zhou C. Cloning, Expression, and Characterization of a GHF 11 Xylanase from Alteromonas macleodii HY35 in Escherichia coli. J GEN APPL MICROBIOL 2022; 68:134-142. [PMID: 35965062 DOI: 10.2323/jgam.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A xylanase gene xynZT-1 from Alteromonas macleodii HY35 was cloned and expressed in Escherichia coli (E. coli). The sequencing results showed that the ORF of xynZT-1 was 831 bp. The xylanase DNA sequence encoded a 29 amino acids (aa) signal peptide and a 247-aa mature peptide. The XynZT-1 has been a calculated molecular weight (MW) of 27.93 kDa, isoelectric point (pI) of 5.11 and the formula C1266H1829N327O384S5. The amino acid sequence of the xynZT-1 had a high similarity with that of glycosyl hydrolase family 11 (GHF11) reported from other microorganisms. The DNA sequence encoding mature peptide was subcloned into pET-28a(+) expression vector. The resulted plasmid pET-28a-xynZT-1 was transformed into E. coli BL21(DE3), and the recombinant strain BL21(DE3)/xynZT-1 was obtained. The optimum temperature and pH of the recombinant XynZT-1 were 45 ℃ and 5.0, respectively.
Collapse
Affiliation(s)
- Yanjie Tian
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| | - Jia Xu
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| | - Jianing Shi
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| | - Mengyuan Kong
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| | - Changjiang Guo
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| | - Caixia Cui
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| | - Yongtao Wang
- The First Affiliated Hospital, Xinxiang Medical University
| | - Yan Wang
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| | - Chenyan Zhou
- Synthetic Biology Engineering Laboratory of Henan Province, School of Life Science and Technology, Xinxiang Medical University
| |
Collapse
|
14
|
Zhu E, Xiang X, Wan S, Miao H, Han N, Huang Z. Discovery of the Key Mutation Site Influencing the Thermostability of Thermomyces lanuginosus Lipase by Rosetta Design Programs. Int J Mol Sci 2022; 23:ijms23168963. [PMID: 36012226 PMCID: PMC9408933 DOI: 10.3390/ijms23168963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Lipases are remarkable biocatalysts and are broadly applied in many industry fields because of their versatile catalytic capabilities. Considering the harsh biotechnological treatment of industrial processes, the activities of lipase products are required to be maintained under extreme conditions. In our current study, Gibbs free energy calculations were performed to predict potent thermostable Thermomyces lanuginosus lipase (TLL) variants by Rosetta design programs. The calculating results suggest that engineering on R209 may greatly influence TLL thermostability. Accordingly, ten TLL mutants substituted R209 were generated and verified. We demonstrate that three out of ten mutants (R209H, R209M, and R209I) exhibit increased optimum reaction temperatures, melting temperatures, and thermal tolerances. Based on molecular dynamics simulation analysis, we show that the stable hydrogen bonding interaction between H198 and N247 stabilizes the local configuration of the 250-loop in the three R209 mutants, which may further contribute to higher rigidity and improved enzymatic thermostability. Our study provides novel insights into a single residue, R209, and the 250-loop, which were reported for the first time in modulating the thermostability of TLL. Additionally, the resultant R209 variants generated in this study might be promising candidates for future-industrial applications.
Collapse
Affiliation(s)
- Enheng Zhu
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Xia Xiang
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Sidi Wan
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Huabiao Miao
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
| | - Nanyu Han
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
- Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650500, China
- Correspondence: (N.H.); (Z.H.)
| | - Zunxi Huang
- School of Life Sciences, Yunnan Normal University, Kunming 650500, China
- Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming 650500, China
- Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming 650500, China
- Correspondence: (N.H.); (Z.H.)
| |
Collapse
|
15
|
Chen H, Ma L, Dai H, Fu Y, Wang H, Zhang Y. Advances in Rational Protein Engineering toward Functional Architectures and Their Applications in Food Science. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4522-4533. [PMID: 35353517 DOI: 10.1021/acs.jafc.2c00232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Protein biomolecules including enzymes, cagelike proteins, and specific peptides have been continuously exploited as functional biomaterials applied in catalysis, nutrient delivery, and food preservation in food-related areas. However, natural proteins usually function well in physiological conditions, not industrial conditions, or may possess undesirable physical and chemical properties. Currently, rational protein design as a valuable technology has attracted extensive attention for the rational engineering or fabrication of ideal protein biomaterials with novel properties and functionality. This article starts with the underlying knowledge of protein folding and assembly and is followed by the introduction of the principles and strategies for rational protein design. Basic strategies for rational protein engineering involving experienced protein tailoring, computational prediction, computation redesign, and de novo protein design are summarized. Then, we focus on the recent progress of rational protein engineering or design in the application of food science, and a comprehensive summary ranging from enzyme manufacturing to cagelike protein nanocarriers engineering and antimicrobial peptides preparation is given. Overall, this review highlights the importance of rational protein engineering in food biomaterial preparation which could be beneficial for food science.
Collapse
Affiliation(s)
- Hai Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongxia Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
16
|
Min K, Kim H, Park HJ, Lee S, Jung YJ, Yoon JH, Lee JS, Park K, Yoo YJ, Joo JC. Improving the catalytic performance of xylanase from Bacillus circulans through structure-based rational design. BIORESOURCE TECHNOLOGY 2021; 340:125737. [PMID: 34426235 DOI: 10.1016/j.biortech.2021.125737] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Endo-1,4-β-xylanase is one of the most important enzymes employed in biorefineries for obtaining fermentable sugars from hemicellulosic components. Herein, we aimed to improve the catalytic performance of Bacillus circulans xylanase (Bcx) using a structure-guided rational design. A systematic analysis of flexible motions revealed that the R49 component of Bcx (i) constrains the global conformational changes essential for substrate binding and (ii) is involved in modulating flexible motion. Site-saturated mutagenesis of the R49 residue led to the engineering of the active mutants with the trade-off between flexibility and rigidity. The most active mutant R49N improved the catalytic performance, including its catalytic efficiency (7.51-fold), conformational stability (0.7 °C improvement), and production of xylose oligomers (2.18-fold higher xylobiose and 1.72-fold higher xylotriose). The results discussed herein can be applied to enhance the catalytic performance of industrially important enzymes by controlling flexibility.
Collapse
Affiliation(s)
- Kyoungseon Min
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Hoyong Kim
- Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology, Ulsan 44429, Republic of Korea
| | - Hyun June Park
- Department of Biotechnology, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Siseon Lee
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Ye Jean Jung
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea; Department of Biological and Chemical Engineering, Hongik University, Sejong Ro 2639, Jochiwon, Sejong City, Republic of Korea
| | - Ji Hyun Yoon
- Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Jin-Suk Lee
- Gwangju Bio/Energy R&D Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Kyoungmoon Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong Ro 2639, Jochiwon, Sejong City, Republic of Korea
| | - Young Je Yoo
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Chan Joo
- Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology, Ulsan 44429, Republic of Korea; Department of Biotechnology, The Catholic University of Korea, Bucheon-si, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
17
|
Liu Z, Cao L, Fu X, Liang Q, Sun H, Mou H. A multi-functional genetic manipulation system and its use in high-level expression of a β-mannanase mutant with high specific activity in Pichia pastoris. Microb Biotechnol 2021; 14:1525-1538. [PMID: 33942496 PMCID: PMC8313266 DOI: 10.1111/1751-7915.13812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 11/29/2022] Open
Abstract
To further extend the practical application of a thermostable and acidic resistance β-mannanase (ManAK) in animal feed additives, an effective strategy that combined directed evolution and metabolic engineering was developed. Four positive mutants (P191M, P194E, S199G and S268Q) with enhanced specific activity (25.5%-60.9%) were obtained. The S199G mutant exhibited 56.7% enhancement of specific activity at 37°C and good thermostability, and this was selected for high-level expression in P. pastoris X33. A multi-functional and scarless genetic manipulation system was proposed and functionally verified (gene deletion, substitution/insertion and point mutation). This was then subjected to Rox1p (an oxygen related transcription regulator) deletion and Vitreoscilla haemoglobin (VHb) co-expression for high enzyme productivity in P. pastoris X33VIIManAKS199G . An excellent strain, named X33VIIManAKS199G ∆rox1::VHb, was achieved by combining these two factors, and then the maximum enzymatic activity was further increased to 3753 U ml-1 , which was nearly twice as much as the maximum production of ManAK in P. pastoris. This work provides a systematic and effective method to improve the enzymatic yield of β-mannanase, promotes the application of ManAK in feed additives, and also demonstrated that a scarless genetic manipulation tool is useful in P. pastoris.
Collapse
Affiliation(s)
- Zhemin Liu
- College of Food Science and EngineeringOcean University of ChinaQingdao266003China
| | - Linyuan Cao
- College of Food Science and EngineeringOcean University of ChinaQingdao266003China
| | - Xiaodan Fu
- College of Food Science and EngineeringOcean University of ChinaQingdao266003China
| | - Qingping Liang
- College of Food Science and EngineeringOcean University of ChinaQingdao266003China
| | - Han Sun
- College of Food Science and EngineeringOcean University of ChinaQingdao266003China
| | - Haijin Mou
- College of Food Science and EngineeringOcean University of ChinaQingdao266003China
| |
Collapse
|
18
|
Han N, Tang M, Wan S, Jiang Z, Yue Y, Zhao X, Yang J, Huang Z. Surface charge engineering of Thermomyces lanuginosus lipase improves enzymatic activity and biodiesel synthesis. Biotechnol Lett 2021; 43:1403-1411. [PMID: 33834350 DOI: 10.1007/s10529-021-03126-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 03/30/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES This study was aimed at engineering charged residues on the surface of Thermomyces lanuginosus lipase (TLL) to obtain TLL variant with elevated performance for industrial applications. RESULTS Site-directed mutagenesis of eight charged amino acids on the TLL surface were conducted and substitutions on the negatively charged residues D111, D158, D165, and E239 were identified with elevated specific activities and biodiesel yields. Synergistic effect was not discovered in the double mutants, D111E/D165E and D165E/E239R, when compared with the corresponding single mutants. One TLL mutant, D165E, was identified with increased specific activity (456.60 U/mg), catalytic efficiency (kcat/Km: 44.14 s-1 mM-1), the highest biodiesel conversion yield (93.56%), and comparable thermostability with that of the TLL. CONCLUSIONS Our study highlighted the importance of surface charge engineering in improving TLL activity and biodiesel production, and the resulting TLL mutant, D165E, is a promising candidate for biodiesel industry.
Collapse
Affiliation(s)
- Nanyu Han
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Minyuan Tang
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Sidi Wan
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Zhanbao Jiang
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Yong Yue
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Xiangui Zhao
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Jinrun Yang
- School of Life Sciences, Yunnan Normal University, Kunming, China.,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China.,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China.,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China
| | - Zunxi Huang
- School of Life Sciences, Yunnan Normal University, Kunming, China. .,Engineering Research Center of Sustainable and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, China. .,Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Yunnan Normal University, Kunming, China. .,Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, China.
| |
Collapse
|
19
|
Liu Z, Fu X, Yuan M, Liang Q, Zhu C, Mou H. Surface charged amino acid-based strategy for rational engineering of kinetic stability and specific activity of enzymes: Linking experiments with computational modeling. Int J Biol Macromol 2021; 182:228-236. [PMID: 33831449 DOI: 10.1016/j.ijbiomac.2021.03.198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 12/21/2022]
Abstract
A rational workflow for engineering kinetically stable enzymes with good specific activity by surface charged amino acids engineering was proposed based on systematically analyzing the results of mutating 44 negatively charged surface amino acids of a thermophilic β-mannanase (ManAK). Computational data, combined with experimental results indicated that percentage side-chain solvent accessibility (PSSA), changes in Gibbs free energy of unfolding (∆∆Gmut) and root-mean-square fluctuations (RMSF) could be suitable for screening kinetically stable mutants. A combinational standard (∆∆Gmut < -0.5 kJ/mol and RMSF >0.68 Å) resulted a decrease in the proportion of destabilizing mutants to 12.5%. The perturbations of substrate affinity and specific activity caused by mutation were weakened as the shortest distance from Cα of mutated site to Cα of catalytic sites (DsCα-Cα) increased. Results indicated that hotspot zones contributing to the local stability and integrity of catalytic motif at elevated temperatures might be widely distributed across spatial structure of the protein, while the mutation perturbation on enzyme specific activity demonstrated a gradually weakening trend from the catalytic core to the protein surface. These findings further our understanding of the structural-functional relationships of protein and highlight a deduced workflow to engineering industrially useful enzymes.
Collapse
Affiliation(s)
- Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaodan Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Mingxue Yuan
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
20
|
Cui Y, Chen Y, Liu X, Dong S, Tian Y, Qiao Y, Mitra R, Han J, Li C, Han X, Liu W, Chen Q, Wei W, Wang X, Du W, Tang S, Xiang H, Liu H, Liang Y, Houk KN, Wu B. Computational Redesign of a PETase for Plastic Biodegradation under Ambient Condition by the GRAPE Strategy. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05126] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yinglu Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
| | - Yanchun Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
- University of Chinese Academy of Sciences, Beijing 100049,China
| | - Xinyue Liu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
- School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230052,China
| | - Saijun Dong
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
| | - Yu’e Tian
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
| | - Yuxin Qiao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
| | - Ruchira Mitra
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
- University of Chinese Academy of Sciences, Beijing 100049,China
| | - Jing Han
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
| | - Chunli Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
| | - Xu Han
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308,China
| | - Weidong Liu
- Industrial Enzymes National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308,China
| | - Quan Chen
- School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230052,China
| | - Wangqing Wei
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023,China
| | - Xin Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023,China
| | - Wenbin Du
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
| | - Shuangyan Tang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
| | - Hua Xiang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
| | - Haiyan Liu
- School of Life Sciences, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230052,China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023,China
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles 90095, California, United States
| | - Bian Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
| |
Collapse
|
21
|
Effects of the outer-cleft aromatic ring deletion on the resistivity of a GH11 xylanase to the lignin-like monolignol aggregates. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Liu Z, Liang Q, Wang P, Kong Q, Fu X, Mou H. Improving the kinetic stability of a hyperthermostable β-mannanase by a rationally combined strategy. Int J Biol Macromol 2020; 167:405-414. [PMID: 33278432 DOI: 10.1016/j.ijbiomac.2020.11.202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 01/09/2023]
Abstract
Feasible and easily accessible methods for the rational design of enzyme engineering strategies remain to be established. Thus, a new rationally combined strategy based on disulfide bond engineering and HotSpot Wizard 3.0 was proposed and experimentally demonstrated to be effective using a hyperthermostable β-mannanase. Ten of 42 mutants showed prominent enhancement of kinetic stability with 26.4%-39.9% increases in t1/2 (75 °C) compared with the parent enzyme ManAKH. The best mutant, D273-V308, showed apparent increases in both optimal temperature (5 °C) and T50 (6.8 °C), as well as advanced catalytic efficiency. The low rate of inactive mutants and the high rate of positive mutants indicated that newly introduced screening factors (distance from catalytic residues, Gibbs free energy term, molecular simulation, and visual inspections) greatly enhance the design of thermostable β-mannanase. Moreover, these findings further advance the industrial application of β-mannanase (ManAK) in food and food-related applications.
Collapse
Affiliation(s)
- Zhemin Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Peng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiaodan Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
23
|
Hou Q, Li N, Chao Y, Li S, Zhang L. Design and regulation of the surface and interfacial behavior of protein molecules. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Xue J, Wang P, Kuang J, Zhu Y. Computational design of new enzymes for hydrolysis and synthesis of third-generation cephalosporin antibiotics. Enzyme Microb Technol 2020; 140:109649. [PMID: 32912699 DOI: 10.1016/j.enzmictec.2020.109649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
Abstract
Engineering active sites in inert scaffolds to catalyze chemical transformations with unnatural substrates is still a great challenge for enzyme catalysis. In this research, a p-nitrobenzyl esterase from Bacillus subtilis was identified from the structural database, and a double mutant E115A/E188A was designed to afford catalytic activities toward the hydrolysis of ceftizoxime. A quadruple mutant E115A/E188A/L362S/I270A with enhanced catalytic efficiency was created to catalyze the condensation reaction of ethyl-2-methoxy-amino-2-(2-aminothiazole-4-yl) acetate with 7-amino-3-nor-cephalosporanic acid to produce ceftizoxime in a fully aqueous medium. The catalytic efficiencies of the computationally designed mutants E115A/E188A/L362S/I270A and E115A/Y118 K/E188 V/I270A/L362S can be taken as starting points to further improve their properties towards the practical application in designing more ecology-friendly production of third-generation cephalosporins.
Collapse
Affiliation(s)
- Jing Xue
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Pengyu Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jianyong Kuang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yushan Zhu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China; MOE Key Lab of Industrial Biocatalysis, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
25
|
Meng Q, Capra N, Palacio CM, Lanfranchi E, Otzen M, van Schie LZ, Rozeboom HJ, Thunnissen AMWH, Wijma HJ, Janssen DB. Robust ω-Transaminases by Computational Stabilization of the Subunit Interface. ACS Catal 2020; 10:2915-2928. [PMID: 32953233 PMCID: PMC7493286 DOI: 10.1021/acscatal.9b05223] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/31/2020] [Indexed: 12/25/2022]
Abstract
Transaminases are attractive catalysts for the production of enantiopure amines. However, the poor stability of these enzymes often limits their application in biocatalysis. Here, we used a framework for enzyme stability engineering by computational library design (FRESCO) to stabilize the homodimeric PLP fold type I ω-transaminase from Pseudomonas jessenii. A large number of surface-located point mutations and mutations predicted to stabilize the subunit interface were examined. Experimental screening revealed that 10 surface mutations out of 172 tested were indeed stabilizing (6% success), whereas testing 34 interface mutations gave 19 hits (56% success). Both the extent of stabilization and the spatial distribution of stabilizing mutations showed that the subunit interface was critical for stability. After mutations were combined, 2 very stable variants with 4 and 6 mutations were obtained, which in comparison to wild type (T m app = 62 °C) displayed T m app values of 80 and 85 °C, respectively. These two variants were also 5-fold more active at their optimum temperatures and tolerated high concentrations of isopropylamine and cosolvents. This allowed conversion of 100 mM acetophenone to (S)-1-phenylethylamine (>99% enantiomeric excess) with high yield (92%, in comparison to 24% with the wild-type transaminase). Crystal structures mostly confirmed the expected structural changes and revealed that the most stabilizing mutation, I154V, featured a rarely described stabilization mechanism: namely, removal of steric strain. The results show that computational interface redesign can be a rapid and powerful strategy for transaminase stabilization.
Collapse
Affiliation(s)
- Qinglong Meng
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nikolas Capra
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Cyntia M. Palacio
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Elisa Lanfranchi
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marleen Otzen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Luc Z. van Schie
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Henriëtte J. Rozeboom
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Andy-Mark W. H. Thunnissen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Hein J. Wijma
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Dick B. Janssen
- Biotransformation and Biocatalysis, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
26
|
Xylanases from marine microorganisms: A brief overview on scope, sources, features and potential applications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140312. [DOI: 10.1016/j.bbapap.2019.140312] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/10/2023]
|
27
|
Li Q, Yan Y, Liu X, Zhang Z, Tian J, Wu N. Enhancing thermostability of a psychrophilic alpha-amylase by the structural energy optimization in the trajectories of molecular dynamics simulations. Int J Biol Macromol 2020; 142:624-633. [DOI: 10.1016/j.ijbiomac.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/18/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022]
|
28
|
Cai L, Zhang M, Shao T, He Y, Li J, Ren B, Zhou C. Effect of introducing disulfide bridges in C-terminal structure on the thermostability of xylanase XynZF-2 from Aspergillus niger. J GEN APPL MICROBIOL 2019; 65:240-245. [PMID: 30905899 DOI: 10.2323/jgam.2018.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this study, a mutant xylanase of high thermostability was obtained by site-directed mutagenesis. The homologous 3D structure of xylanase was successfully modeled and the mutation sites were predicted using bioinformatics software. Two amino acids of XynZF-2 were respectively substituted by cysteines (T205C and A52C) and a disulfide bridge was introduced into the C-terminal of XynZF-2. The mutant gene xynZFTA was cloned into pPIC9K and expressed in P. pastoris. The optimum temperature of the variant XynZFTA was improved from 45°C to 60°C, and XynZFTA retained greater than 90.0% activity (XynZF-2 retained only 50.0% activity) after treatment at 50°C for 5 min. The optimum pH of mutant xylanase was similar to XynZF-2 (pH = 5.0). The pH stability span (5.0~7.0) of the mutant xylanase was increased to 3.0~9.0. Overall, the results implied that the introduction of a disulfide bridge in the C-terminal structure improved the thermostability and pH stability of XynZF-2.
Collapse
Affiliation(s)
- Liutengzi Cai
- School of Life Science and Technology, Xinxiang Medical University.,Synthetic Biology Engineering Lab of Henan Province
| | - Mishuai Zhang
- School of Life Science and Technology, Xinxiang Medical University.,Synthetic Biology Engineering Lab of Henan Province
| | - Tianci Shao
- School of Life Science and Technology, Xinxiang Medical University.,Synthetic Biology Engineering Lab of Henan Province
| | - You He
- School of Life Science and Technology, Xinxiang Medical University.,Synthetic Biology Engineering Lab of Henan Province
| | - Jingyi Li
- School of Life Science and Technology, Xinxiang Medical University.,Synthetic Biology Engineering Lab of Henan Province
| | - Bingjie Ren
- School of Life Science and Technology, Xinxiang Medical University.,Synthetic Biology Engineering Lab of Henan Province
| | - Chenyan Zhou
- School of Life Science and Technology, Xinxiang Medical University.,Synthetic Biology Engineering Lab of Henan Province
| |
Collapse
|
29
|
Han N, Ma Y, Mu Y, Tang X, Li J, Huang Z. Enhancing thermal tolerance of a fungal GH11 xylanase guided by B-factor analysis and multiple sequence alignment. Enzyme Microb Technol 2019; 131:109422. [DOI: 10.1016/j.enzmictec.2019.109422] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/24/2019] [Accepted: 09/03/2019] [Indexed: 11/24/2022]
|
30
|
Chen Q, Xiao Y, Zhang W, Mu W. Current methods and applications in computational protein design for food industry. Crit Rev Food Sci Nutr 2019; 60:3259-3270. [DOI: 10.1080/10408398.2019.1682513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Qiuming Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yaqin Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
31
|
Takita T, Nakatani K, Katano Y, Suzuki M, Kojima K, Saka N, Mikami B, Yatsunami R, Nakamura S, Yasukawa K. Increase in the thermostability of GH11 xylanase XynJ from Bacillus sp. strain 41M-1 using site saturation mutagenesis. Enzyme Microb Technol 2019; 130:109363. [DOI: 10.1016/j.enzmictec.2019.109363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
|
32
|
Yu H, Zhao S, Fan Y, Hu C, Lu W, Guo L. Cloning and heterologous expression of a novel halo/alkali-stable multi-domain xylanase (XylM18) from a marine bacterium Marinimicrobium sp. strain LS-A18. Appl Microbiol Biotechnol 2019; 103:8899-8909. [DOI: 10.1007/s00253-019-10140-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/06/2019] [Accepted: 09/12/2019] [Indexed: 10/25/2022]
|
33
|
Zheng X, Cui Y, Li T, Li R, Guo L, Li D, Wu B. Biochemical and structural characterization of a highly active branched-chain amino acid aminotransferase from Pseudomonas sp. for efficient biosynthesis of chiral amino acids. Appl Microbiol Biotechnol 2019; 103:8051-8062. [PMID: 31485690 DOI: 10.1007/s00253-019-10105-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/24/2019] [Accepted: 08/26/2019] [Indexed: 01/11/2023]
Abstract
Aminotransferases (ATs) are important biocatalysts for the synthesis of chiral amines because of their capability of introducing amino group into ketones or keto acids as well as their high enantioselectivity, high regioselectivity. Among all ATs, branched-chain amino acid aminotransferase (BCAT) can use branched-chain amino acids (BCAAs) as substrate, including L-valine, L-leucine, and L-isoleucine, with α-ketoglutarate to form the corresponding α-keto acids and L-glutamate. Alternatively, BCATs have been used for the biosynthesis of unnatural amino acids, such as L-tert-leucine and L-norvaline. In the present study, the BCAT from Pseudomonas sp. (PsBCAT) was cloned and expressed in Escherichia coli for biochemical and structural analyses. The optimal reaction temperature and pH of PsBCAT were 40 °C and 8.5, respectively. PsBCAT exhibited a comparatively broader substrate spectrum and showed remarkably high activity with bulked aliphatic L-amino acids (kcat up to 220 s-1). Additionally, PsBCAT had activities with aromatic L-amino acids, L-histidine, L-lysine, and L-threonine. This substrate promiscuity is unique for the BCAT family and could prove useful in industrial applications. To analyze the catalytic mechanism of PsBCAT with the broad substrate spectrum, the crystal structure of PsBCAT was also determined. Based on the determined crystal structure, we found some differences in the organization of the substrate binding cavity, which may influence the substrate specificity of the enzyme. Finally, conjugated with the ornithine aminotransferase (OrnAT) to shift the reaction equilibrium towards the product formation, the coupled system was applied to the asymmetric synthesis of L-tert-leucine and L-norvaline. In summary, the structural and functional characteristics of PsBCAT were analyzed in detail, and this information will be conducive to industrial production of enantiopure chiral amino acids by aminotransferase.
Collapse
Affiliation(s)
- Xinxin Zheng
- College of Life Sciences and Technology, Xinjiang University, Urumqi, Xinjiang, 830046, People's Republic of China.,CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Yinglu Cui
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Tao Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Ruifeng Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Lu Guo
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Defeng Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Bian Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| |
Collapse
|
34
|
Gao DY, Sun XB, Liu MQ, Liu YN, Zhang HE, Shi XL, Li YN, Wang JK, Yin SJ, Wang Q. Characterization of Thermostable and Chimeric Enzymes via Isopeptide Bond-Mediated Molecular Cyclization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6837-6846. [PMID: 31180217 DOI: 10.1021/acs.jafc.9b01459] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mannooligosaccharides are released by mannan-degrading endo-β-1,4-mannanase and are known as functional additives in human and animal diets. To satisfy demands for biocatalysis and bioprocessing in crowed environments, in this study, we employed a recently developed enzyme-engineering system, isopeptide bond-mediated molecular cyclization, to modify a mesophilic mannanase from Bacillus subtilis. The results revealed that the cyclized enzymes showed enhanced thermostability and ion stability and resilience to aggregation and freeze-thaw treatment by maintaining their conformational structures. Additionally, by using the SpyTag/SpyCatcher system, we generated a mannanase-xylanase bifunctional enzyme that exhibited a synergistic activity in substrate deconstruction without compromising substrate affinity. Interestingly, the dual-enzyme ring conformation was observed to be more robust than the linear enzyme but inferior to the single-enzyme ring conformation. Taken together, these findings provided new insights into the mechanisms of molecular cyclization on stability improvement and will be useful in the production of new functional oligosaccharides and feed additives.
Collapse
Affiliation(s)
- De-Ying Gao
- College of Biological and Environmental Sciences , Zhejiang Wanli University , Ningbo 315100 , Zhejiang , China
| | - Xiao-Bao Sun
- College of Biological and Environmental Sciences , Zhejiang Wanli University , Ningbo 315100 , Zhejiang , China
| | - Ming-Qi Liu
- National and Local United Engineering Lab of Quality Controlling Technology and Instrumentation for Marine Food, College of Life Science , China Jiliang University , Hangzhou 310018 , Zhejiang , China
| | - Yan-Ni Liu
- College of Biological and Environmental Sciences , Zhejiang Wanli University , Ningbo 315100 , Zhejiang , China
| | - Hui-En Zhang
- College of Biological and Environmental Sciences , Zhejiang Wanli University , Ningbo 315100 , Zhejiang , China
| | - Xin-Lei Shi
- College of Biological and Environmental Sciences , Zhejiang Wanli University , Ningbo 315100 , Zhejiang , China
| | - Yang-Nan Li
- College of Biological and Environmental Sciences , Zhejiang Wanli University , Ningbo 315100 , Zhejiang , China
| | - Jia-Kun Wang
- College of Animal Science , Zhejiang University , Hangzhou 310058 , Zhejiang , China
| | - Shang-Jun Yin
- College of Biological and Environmental Sciences , Zhejiang Wanli University , Ningbo 315100 , Zhejiang , China
| | - Qian Wang
- College of Biological and Environmental Sciences , Zhejiang Wanli University , Ningbo 315100 , Zhejiang , China
| |
Collapse
|
35
|
Synergistic effect of acetyl xylan esterase from Talaromyces leycettanus JCM12802 and xylanase from Neocallimastix patriciarum achieved by introducing carbohydrate-binding module-1. AMB Express 2019; 9:13. [PMID: 30694400 PMCID: PMC6351639 DOI: 10.1186/s13568-019-0740-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/23/2019] [Indexed: 12/17/2022] Open
Abstract
Wheat bran is an effective raw material for preparation xylooligosaccharides; however, current research mainly focuses on alkali extraction and enzymatic hydrolysis methods. Since ester bonds are destroyed during the alkali extraction process, xylanase and arabinofuranosidase are mainly used to hydrolyze xylooligosaccharides. However, alkali extraction costs are very high, and the method also causes pollution. Therefore, this study focuses on elucidating a method to efficiently and directly degrade destarched wheat bran. First, an acidic acetyl xylan esterase (AXE) containing a carbohydrate-binding module-1 (CBM1) domain was cloned from Talaromyces leycettanus JCM12802 and successfully expressed in Pichia pastoris. Characterization showed that the full-length acetyl xylan esterase AXE + CBM1 was similar toe uncovered AXE with an optimum temperature and pH of 55 °C and 6.5, respectively. Testing the acetyl xylan esterase and xylanase derived from Neocallimastix patriciarum in a starch-free wheat bran cooperative experiment revealed that AXE + CBM1 and AXE produced 29% and 16% reducing sugars respectively, compared to when only NPXYN11 was used. In addition, introduced the CBM1 domain into NPXYN11, and the results indicated that the CBM1 domain showed little effect on NPXYN11 properties. Finally, the systematically synergistic effects between acetyl xylan esterase and xylanase with/without the CBM1 domain demonstrated that the combined ratio of AXE + CBM1 coming in first and NPXYN11 + CBM1 s increased reducing sugars by almost 35% with AXE and NPXYN11. Furthermore, each component's proportion remained the same with respect to xylooligosaccharides, with the largest proportion (86%) containing of 49% xylobiose and 37% xylotriose.
Collapse
|
36
|
Wang XC, You SP, Zhang JX, Dai YM, Zhang CY, Qi W, Dou TY, Su RX, He ZM. Rational design of a thermophilic β-mannanase fromBacillus subtilis TJ-102 to improve its thermostability. Enzyme Microb Technol 2018; 118:50-56. [DOI: 10.1016/j.enzmictec.2018.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/13/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022]
|