1
|
Hunter CD, Cairo CW. Detection Strategies for Sialic Acid and Sialoglycoconjugates. Chembiochem 2024; 25:e202400402. [PMID: 39444251 DOI: 10.1002/cbic.202400402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/01/2024] [Indexed: 10/25/2024]
Abstract
Glycoconjugates are a vast class of biomolecules implicated in biological processes important for human health and disease. The structural complexity of glycoconjugates remains a challenge to deciphering their precise biological roles and for their development as biomarkers and therapeutics. Human glycoconjugates on the outside of the cell are modified with sialic (neuraminic) acid residues at their termini. The enzymes that install sialic acids are sialyltransferases (SiaTs), a family of 20 different isoenzymes. The removal and degradation of sialic acids is mediated by neuraminidase (NEU; sialidase) enzymes, of which there are four isoenzymes. In this review, we discuss chemical and biochemical approaches for the detection and analysis of sialoglycoconjugate (SGC) structures and their enzymatic products. The most common methods include affinity probes and synthetic substrates. Fluorogenic and radiolabelled substrates are also important tools for many applications, including screening for enzyme inhibitors. Strategies that give insight into the native substrate-specificity of enzymes that regulate SGCs (SiaT & NEU) are necessary to improve our understanding of the role of sialic acid metabolism in health and disease.
Collapse
Affiliation(s)
- Carmanah D Hunter
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Christopher W Cairo
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| |
Collapse
|
2
|
Zhang T, Wu J, Wang Y, Zhang H, Zhan X. Alleviating neuronal inflammation induced by Aβ 42 in SH-SY5Y through interaction with polysialic acid-oligomannuronate conjugate. Int J Biol Macromol 2024; 276:133862. [PMID: 39013512 DOI: 10.1016/j.ijbiomac.2024.133862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
Amyloid beta (Aβ) aggregation is one of the distinctive pathological hallmarks of Alzheimer's disease (AD). Therefore, the development of effective inhibitors against Aβ aggregate formation offers great promise for the treatment of AD. In this study, we designed a novel negatively charged functionalized conjugate aimed at inhibiting Aβ42 aggregation and attenuating neurotoxicity by grafting polysialic acid with mannuronate oligosaccharide, a biocompatible glycan extracted from seaweeds, designated as polysialic acid-mannan conjugate (PSA-MOS). ThT, biological microscopy, TEM and CD confirmed the inhibition of Aβ42 aggregation by PSA-MOS, as well as its ability to inhibit the conformational transition of Aβ42 to β-sheet. CCK-8 assay demonstrated that PSA-MOS was not cytotoxic to SH-SY5Y (p < 0.05) and promoted cell proliferation. In the Aβ42-induced SH-SY5Y injury models, PSA-MOS dose-dependently ameliorated cytotoxicity (p < 0.0001) and significantly reduced the levels of inflammatory factors of IL-1β (p < 0.0001), IL-6 (p < 0.0001) and TNF-α (p < 0.05). MD simulations demonstrated that PSA-MOS effectively impeded the α-helix to β-sheet transition of the Aβ42 monomer via electrostatic interactions with its CTR and NTR regions. These findings demonstrate the therapeutic potential of PSA-MOS as promising glycoconjugate for the treatment of AD.
Collapse
Affiliation(s)
- Tiantian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Yuying Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongtao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Mao M, Ahrens L, Luka J, Contreras F, Kurkina T, Bienstein M, Sárria Pereira de Passos M, Schirinzi G, Mehn D, Valsesia A, Desmet C, Serra MÁ, Gilliland D, Schwaneberg U. Material-specific binding peptides empower sustainable innovations in plant health, biocatalysis, medicine and microplastic quantification. Chem Soc Rev 2024; 53:6445-6510. [PMID: 38747901 DOI: 10.1039/d2cs00991a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Material-binding peptides (MBPs) have emerged as a diverse and innovation-enabling class of peptides in applications such as plant-/human health, immobilization of catalysts, bioactive coatings, accelerated polymer degradation and analytics for micro-/nanoplastics quantification. Progress has been fuelled by recent advancements in protein engineering methodologies and advances in computational and analytical methodologies, which allow the design of, for instance, material-specific MBPs with fine-tuned binding strength for numerous demands in material science applications. A genetic or chemical conjugation of second (biological, chemical or physical property-changing) functionality to MBPs empowers the design of advanced (hybrid) materials, bioactive coatings and analytical tools. In this review, we provide a comprehensive overview comprising naturally occurring MBPs and their function in nature, binding properties of short man-made MBPs (<20 amino acids) mainly obtained from phage-display libraries, and medium-sized binding peptides (20-100 amino acids) that have been reported to bind to metals, polymers or other industrially produced materials. The goal of this review is to provide an in-depth understanding of molecular interactions between materials and material-specific binding peptides, and thereby empower the use of MBPs in material science applications. Protein engineering methodologies and selected examples to tailor MBPs toward applications in agriculture with a focus on plant health, biocatalysis, medicine and environmental monitoring serve as examples of the transformative power of MBPs for various industrial applications. An emphasis will be given to MBPs' role in detecting and quantifying microplastics in high throughput, distinguishing microplastics from other environmental particles, and thereby assisting to close an analytical gap in food safety and monitoring of environmental plastic pollution. In essence, this review aims to provide an overview among researchers from diverse disciplines in respect to material-(specific) binding of MBPs, protein engineering methodologies to tailor their properties to application demands, re-engineering for material science applications using MBPs, and thereby inspire researchers to employ MBPs in their research.
Collapse
Affiliation(s)
- Maochao Mao
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Leon Ahrens
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Julian Luka
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Francisca Contreras
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Tetiana Kurkina
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Marian Bienstein
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | | | | | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrea Valsesia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Cloé Desmet
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| |
Collapse
|
4
|
Abstract
Sialic acids (Sias), a group of over 50 structurally distinct acidic saccharides on the surface of all vertebrate cells, are neuraminic acid derivatives. They serve as glycan chain terminators in extracellular glycolipids and glycoproteins. In particular, Sias have significant implications in cell-to-cell as well as host-to-pathogen interactions and participate in various biological processes, including neurodevelopment, neurodegeneration, fertilization, and tumor migration. However, Sia is also present in some of our daily diets, particularly in conjugated form (sialoglycans), such as those in edible bird's nest, red meats, breast milk, bovine milk, and eggs. Among them, breast milk, especially colostrum, contains a high concentration of sialylated oligosaccharides. Numerous reviews have concentrated on the physiological function of Sia as a cellular component of the body and its relationship with the occurrence of diseases. However, the consumption of Sias through dietary sources exerts significant influence on human health, possibly by modulating the gut microbiota's composition and metabolism. In this review, we summarize the distribution, structure, and biological function of particular Sia-rich diets, including human milk, bovine milk, red meat, and egg.
Collapse
Affiliation(s)
- Tiantian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
5
|
Feng C, Deng L, Yong YY, Wu JM, Qin DL, Yu L, Zhou XG, Wu AG. The Application of Biomaterials in Spinal Cord Injury. Int J Mol Sci 2023; 24:816. [PMID: 36614259 PMCID: PMC9821025 DOI: 10.3390/ijms24010816] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023] Open
Abstract
The spinal cord and the brain form the central nervous system (CNS), which is the most important part of the body. However, spinal cord injury (SCI) caused by external forces is one of the most difficult types of neurological injury to treat, resulting in reduced or even absent motor, sensory and autonomic functions. It leads to the reduction or even disappearance of motor, sensory and self-organizing nerve functions. Currently, its incidence is increasing each year worldwide. Therefore, the development of treatments for SCI is urgently needed in the clinic. To date, surgery, drug therapy, stem cell transplantation, regenerative medicine, and rehabilitation therapy have been developed for the treatment of SCI. Among them, regenerative biomaterials that use tissue engineering and bioscaffolds to transport cells or drugs to the injured site are considered the most promising option. In this review, we briefly introduce SCI and its molecular mechanism and summarize the application of biomaterials in the repair and regeneration of tissue in various models of SCI. However, there is still limited evidence about the treatment of SCI with biomaterials in the clinic. Finally, this review will provide inspiration and direction for the future study and application of biomaterials in the treatment of SCI.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
6
|
Polysialylated nanoinducer for precisely enhancing apoptosis and anti-tumor immune response in B-cell lymphoma. Acta Biomater 2022; 149:321-333. [PMID: 35779772 DOI: 10.1016/j.actbio.2022.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/12/2022] [Accepted: 06/19/2022] [Indexed: 11/24/2022]
Abstract
B-cell lymphoma is one of the most common types of lymphoma, and chemotherapy is still the current first-line treatment. However, due to the systemic side effects caused by chemotherapy drugs, traditional regimens have limitations and are difficult to achieve ideal efficacy. Recent studies have found that CD22 (also known as Siglec-2), as a specific marker of B-cells, is significantly up-regulated on B-cell lymphomas. Inspired by the specific recognition and binding of sialic acid residues by CD22, a polysialic acid (PSA)-modified PLGA nanocarrier (SAPC NP) designed to target B-cell lymphoma was fabricated. Mitoxantrone (MTO) was further loaded into SAPC NP through hydrophobic interactions to obtain polysialylated immunogenic cell death (ICD) nanoinducer (MTO@SAPC NP). Cellular experiments confirmed that MTO@SAPC NP could be specifically taken up by two types of CD22+ B lymphoma cells including Raji and Ramos cells, unlike the poor endocytic performance in other lymphocytes or macrophages. MTO@SAPC NP was determined to enhance the ICD and show better apoptotic effect on CD22+ cells. In the mouse model of B-cell lymphoma, MTO@SAPC NP significantly reduced the systemic side effects of MTO through lymphoma targeting, then achieved enhanced anti-tumor immune response, better tumor suppressive effect, and improved survival rate. Therefore, the polysialylated ICD nanoinducer provides a new strategy for precise therapy of B-cell lymphoma. STATEMENT OF SIGNIFICANCE: • Polysialic acid functionalized nanocarrier (SAPC NP) was designed and prepared. • SAPC NP is specifically endocytosed by two CD22+ B lymphoma cells. • Mitoxantrone-loaded nanoinducer (MTO@SAPC NP) promote immunogenic cell death and anti-tumor immune response. • "Polysialylation" is a potential new approach for precision treatment of B-cell lymphoma.
Collapse
|
7
|
Bartling B, Brüchle NC, Rehfeld JS, Boßmann D, Fiebig T, Litschko C, Fohrer J, Gerardy-Schahn R, Scheper T, Beutel S. Accelerated production of α2,8- and α2,9-linked polysialic acid in recombinant Escherichia coli using high cell density cultivation. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 28:e00562. [PMID: 33304838 PMCID: PMC7711218 DOI: 10.1016/j.btre.2020.e00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/05/2020] [Accepted: 11/17/2020] [Indexed: 11/29/2022]
Abstract
Polysialic acid (polySia) are α2,8- and/or α2,9-linked homopolymers with interesting properties for meningococcal vaccine development or the cure of human neurodegenerative disorders. With the goal to avoid large scale production of pathogenic bacteria, we compare in the current study the efficacy of conventional polySia production to recombinant approaches using the engineered laboratory safety strain E. coli BL21. High cell density cultivation (HCDC) experiments were performed in two different bioreactor systems. Increased cell densities of up to 11.3 (±0.4) g/L and polySia concentrations of up to 774 (±18) mg/L were reached in E. coli K1. However, cultivation of engineered E. coli BL21 strains delivered comparable cell densities but a maximum of only 133 mg/L polySia. Using established downstream procedures, host cell DNA and proteins were removed. All recombinant polySia products showed an identical degree of polymerization >90. Polymers with different glycosidic linkages could be successfully differentiated by nuclear magnetic resonance spectroscopy.
Collapse
Affiliation(s)
- Bastian Bartling
- Institute of Technical Chemistry, Leibniz University Hannover, D-30167 Hannover, Germany
| | - Nora C. Brüchle
- Institute of Technical Chemistry, Leibniz University Hannover, D-30167 Hannover, Germany
| | - Johanna S. Rehfeld
- Institute of Technical Chemistry, Leibniz University Hannover, D-30167 Hannover, Germany
| | - Daniel Boßmann
- Institute of Technical Chemistry, Leibniz University Hannover, D-30167 Hannover, Germany
| | - Timm Fiebig
- Institute of Clinical Biochemistry, Hannover Medical School, D-30625 Hannover, Germany
| | - Christa Litschko
- Institute of Clinical Biochemistry, Hannover Medical School, D-30625 Hannover, Germany
| | - Jörg Fohrer
- Institute of Organic Chemistry, Leibniz University Hannover, D-30167 Hannover, Germany
| | - Rita Gerardy-Schahn
- Institute of Clinical Biochemistry, Hannover Medical School, D-30625 Hannover, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University Hannover, D-30167 Hannover, Germany
| | - Sascha Beutel
- Institute of Technical Chemistry, Leibniz University Hannover, D-30167 Hannover, Germany
| |
Collapse
|
8
|
Bartling B, Rehfeld JS, Boßmann D, de Vries I, Fohrer J, Lammers F, Scheper T, Beutel S. Determination of the Structural Integrity and Stability of Polysialic Acid during Alkaline and Thermal Treatment. Molecules 2019; 25:E165. [PMID: 31906121 PMCID: PMC6982714 DOI: 10.3390/molecules25010165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 11/16/2022] Open
Abstract
Polysialic acid (polySia) is a linear homopolymer of varying chain lengths that exists mostly on the outer cell membrane surface of certain bacteria, such as Escherichia coli (E. coli) K1. PolySia, with an average degree of polymerization of 20 (polySia avDP20), possesses material properties that can be used for therapeutic applications to treat inflammatory neurodegenerative diseases. The fermentation of E. coli K1 enables the large-scale production of endogenous long-chain polySia (DP ≈ 130) (LC polySia), from which polySia avDP20 can be manufactured using thermal hydrolysis. To ensure adequate biopharmaceutical quality of the product, the removal of byproducts and contaminants, such as endotoxins, is essential. Recent studies have revealed that the long-term incubation in alkaline sodium hydroxide (NaOH) solutions reduces the endotoxin content down to 3 EU (endotoxin units) per mg, which is in the range of pharmaceutical applications. In this study, we analyzed interferences in the intramolecular structure of polySia caused by harsh NaOH treatment or thermal hydrolysis. Nuclear magnetic resonance (NMR) spectroscopy revealed that neither the incubation in an alkaline solution nor the thermal hydrolysis induced any chemical modification. In addition, HPLC analysis with a preceding 1,2-diamino-4,5-methylenedioxybenzene (DMB) derivatization demonstrated that the alkaline treatment did not induce any hydrolytic effects to reduce the maximum polymer length and that the controlled thermal hydrolysis reduced the maximum chain length effectively, while cost-effective incubation in alkaline solutions had no adverse effects on LC polySia. Therefore, both methods guarantee the production of high-purity, low-molecular-weight polySia without alterations in the structure, which is a prerequisite for the submission of a marketing authorization application as a medicinal product. However, a specific synthesis of low-molecular-weight polySia with defined chain lengths is only possible to a limited extent.
Collapse
Affiliation(s)
- Bastian Bartling
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (B.B.); (J.S.R.); (D.B.); (I.d.V.); (T.S.)
| | - Johanna S. Rehfeld
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (B.B.); (J.S.R.); (D.B.); (I.d.V.); (T.S.)
| | - Daniel Boßmann
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (B.B.); (J.S.R.); (D.B.); (I.d.V.); (T.S.)
| | - Ingo de Vries
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (B.B.); (J.S.R.); (D.B.); (I.d.V.); (T.S.)
| | - Jörg Fohrer
- Institute of Organic Chemistry, Leibniz University Hannover, 30167 Hannover, Germany;
| | - Frank Lammers
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65929 Frankfurt am Main, Germany;
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (B.B.); (J.S.R.); (D.B.); (I.d.V.); (T.S.)
| | - Sascha Beutel
- Institute of Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (B.B.); (J.S.R.); (D.B.); (I.d.V.); (T.S.)
| |
Collapse
|
9
|
Lei Y, Wu M, Wang J, Zhang H, Zhan X, Sun Z, Wu J. Preparation and property of a biantenna macromolecule based on polysialic acid. Int J Biol Macromol 2019; 155:1342-1349. [PMID: 31730980 DOI: 10.1016/j.ijbiomac.2019.11.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/25/2019] [Accepted: 11/11/2019] [Indexed: 11/16/2022]
Abstract
Polysialic acid (PSA), an acidic polysaccharide usually exists as a double-chain structure on cell adhesion molecules in vertebrates. The available PSA produced from Escherichia coli fermentation, however, is monochain PSA. In this work, a biomimetic biantenna type PSA (biPSA) was synthesized in vitro under mild conditions, and the terminal nonreducing ends of sialic acid residue were retained. The structure of biPSA was characterized through infrared spectroscopy, and NMR, and the double-chain structure of biPSA was confirmed by the doubled molecular weight and particle size of biPSA. Analysis through circular dichroism, isothermal titration calorimetry, and thermostability experiments revealed that the obtained biPSA was more stable in aqueous solution than PSA, especially after complexation with Ca2+, which increased the variation in enthalpy and entropy. However, the addition of Cu2+ had a negligible effect on configuration of PSA and biPSA. The addition of Ca2+ promoted cell proliferation in a culture of microglia BV-2 cells with biPSA in medium. By contrast, the addition of Cu2+ had toxic effects. Supplementation with biPSA can maintain cell viability for a longer period than supplementation with monochain PSA. This work indicates that biPSA is a potential substitute for monochain PSA in practical applications.
Collapse
Affiliation(s)
- Yanli Lei
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Miaosen Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Junyi Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongtao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenglong Sun
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|