1
|
Luo H, Ieong HC, Li R, Huang D, Chen D, Chen X, Guo Y, Qing Y, Guo B, Li R, Teng Y, Li W, Cao Y, Zhou C, Wang W. Lhx6 deficiency causes human embryonic palatal mesenchymal cell mitophagy dysfunction in cleft palate. Mol Med 2024; 30:183. [PMID: 39438838 PMCID: PMC11494960 DOI: 10.1186/s10020-024-00960-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Overconsumption of retinoic acid (RA) or its analogues/derivatives has been linked to severe craniomaxillofacial malformations, such as cleft palate and midface hypoplasia. It has been noted that RA disturbed the proliferation and migration of embryonic palatal mesenchymal (EPM) cells in these malformations, yet the exact mechanisms underlying these disruptions remained unclear. METHODS A model of retinoic acid (RA)-induced cleft palate in fetal mice was successfully established. Histological alterations in the palate were evaluated using Hematoxylin and Eosin (H&E) staining and RNA in situ hybridization (RNAscope). Cellular proliferation levels were quantified via the Cell Counting Kit-8 (CCK-8) assay and EdU incorporation assay, while cell migration capabilities were investigated using wound healing and Transwell assays. Mitochondrial functions were assessed through Mito-Tracker fluorescence, mitochondrial reactive oxygen species (ROS) measurement, ATP level quantification, and mitochondrial DNA (mtDNA) copy number analysis. Differential gene expression and associated signaling pathways were identified through bioinformatics analysis. Alterations in the transcriptional and translational levels of Lhx6 and genes associated with mitophagy were quantified using quantitative PCR (qPCR) and Western blot analysis, respectively. Mitochondrial morphology and the mitochondrial autophagosomes within cells were examined through transmission electron microscopy (TEM). RESULTS Abnormal palatal development in mice, along with impaired proliferation and migration of human embryonic palatal mesenchymal (HEPM) cells, was associated with RA affecting mitochondrial function and concomitant downregulation of Lhx6. Knockdown of Lhx6 in HEPM cells resulted in altered cell proliferation, migration, and mitochondrial function. Conversely, the aberrant mitochondrial function, proliferation, and migration observed in RA-induced HEPM cells were ameliorated by overexpression of Lhx6. Subsequent research demonstrated that Lhx6 ameliorated RA-induced dysfunction in HEPM cells by modulating PINK1/Parkin-mediated mitophagy, thereby activating the MAPK signaling pathways. CONCLUSION Lhx6 is essential for mitochondrial homeostasis via tuning PINK1/Parkin-mediated mitophagy and MAPK signaling pathways. Downregulation of Lhx6 by RA transcriptionally disturbs the mitochondrial homeostasis, which in turn leads to the proliferation and migration defect in HEPM cells, ultimately causing the cleft palate.
Collapse
Affiliation(s)
- Haotian Luo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Hio Cheng Ieong
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Runze Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Delan Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Danying Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Xin Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Yuqing Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Yangqiao Qing
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Bingyan Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Ruoyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Yungshan Teng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Wenfeng Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Yang Cao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China.
| | - Chen Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China.
| | - Weicai Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China.
| |
Collapse
|
2
|
Pogoda HM, Riedl-Quinkertz I, Hammerschmidt M. Direct BMP signaling to chordoblasts is required for the initiation of segmented notochord sheath mineralization in zebrafish vertebral column development. Front Endocrinol (Lausanne) 2023; 14:1107339. [PMID: 37223044 PMCID: PMC10200950 DOI: 10.3389/fendo.2023.1107339] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/15/2023] [Indexed: 05/25/2023] Open
Abstract
The vertebral column, with the centra as its iteratively arranged building blocks, represents the anatomical key feature of the vertebrate phylum. In contrast to amniotes, where vertebrae are formed from chondrocytes and osteoblasts deriving from the segmentally organized neural crest or paraxial sclerotome, teleost vertebral column development is initiated by chordoblasts of the primarily unsegmented axial notochord, while sclerotomal cells only contribute to later steps of vertebrae formation. Yet, for both mammalian and teleostean model systems, unrestricted signaling by Bone Morphogenetic Proteins (BMPs) or retinoic acid (RA) has been reported to cause fusions of vertebral elements, while the interplay of the two signaling processes and their exact cellular targets remain largely unknown. Here, we address this interplay in zebrafish, identifying BMPs as potent and indispensable factors that, as formerly shown for RA, directly signal to notochord epithelial cells/chordoblasts to promote entpd5a expression and thereby metameric notochord sheath mineralization. In contrast to RA, however, which promotes sheath mineralization at the expense of further collagen secretion and sheath formation, BMP defines an earlier transitory stage of chordoblasts, characterized by sustained matrix production/col2a1 expression and concomitant matrix mineralization/entpd5a expression. BMP-RA epistasis analyses further indicate that RA can only affect chordoblasts and their further progression to merely mineralizing cells after they have received BMP signals to enter the transitory col2a1/entpd5a double-positive stage. This way, both signals ensure consecutively for proper mineralization of the notochord sheath within segmented sections along its anteroposterior axis. Our work sheds further light onto the molecular mechanisms that orchestrate early steps of vertebral column segmentation in teleosts. Similarities and differences to BMP's working mechanisms during mammalian vertebral column formation and the pathomechanisms underlying human bone diseases such as Fibrodysplasia Ossificans Progressiva (FOP) caused by constitutively active BMP signaling are discussed.
Collapse
Affiliation(s)
- Hans-Martin Pogoda
- Institute of Zoology – Developmental Biology, University of Cologne, Cologne, Germany
| | - Iris Riedl-Quinkertz
- Institute of Zoology – Developmental Biology, University of Cologne, Cologne, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology – Developmental Biology, University of Cologne, Cologne, Germany
- Cluster of Excellence, Cellular Stress Responses in Aging-Associated Diseases (CECAD) Cluster of Excellence, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Li N, Liu J, Liu H, Wang S, Hu P, Zhou H, Xiao J, Liu C. Altered BMP-Smad4 signaling causes complete cleft palate by disturbing osteogenesis in palatal mesenchyme. J Mol Histol 2020; 52:45-61. [PMID: 33159638 DOI: 10.1007/s10735-020-09922-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 10/23/2020] [Indexed: 01/24/2023]
Abstract
As the major receptor mediated BMP signaling in craniofacial development, Bmpr1a expression was detected in the anterior palatal shelves from E13.5 and the posterior palatal shelves from E14.5. However, inactivating BMP receptor in the mesenchyme only leads to anterior cleft palate or submucous cleft palate. The role of BMP signaling in posterior palatal mesenchyme and palatal osteogenesis is still unknown. In this study, a secreted BMP antagonist, Noggin was over-expressed by Osr2-creKI to suppress BMP signaling intensively in mouse palatal mesenchyme, which made the newborn mouse displaying complete cleft palate, a phenotype much severer than the anterior or submucous cleft palate. Immunohistochemical analysis indicated that in the anterior and posterior palatal mesenchyme, the canonical BMP-Smad4 signaling was dramatically down-regulated, while the non-canonical BMP signaling pathways were altered little. Although cell proliferation was reduced only in the anterior palatal mesenchyme, the osteogenic condensation and Osterix distribution were remarkably repressed in the posterior palatal mesenchyme by Noggin over-expression. These findings suggested that BMP-Smad4 signaling was essential for the cell proliferation in the anterior palatal mesenchyme, and for the osteogenesis in the posterior palatal mesenchyme. Interestingly, the constitutive activation of Bmpr1a in palatal mesenchyme also caused the complete cleft palate, in which the enhanced BMP-Smad4 signaling resulted in the premature osteogenic differentiation in palatal mesenchyme. Moreover, neither the Noggin over-expression nor Bmpr1a activation disrupted the elevation of palatal shelves. Our study not only suggested that BMP signaling played the differential roles in the anterior and posterior palatal mesenchyme, but also indicated that BMP-Smad4 signaling was required to be finely tuned for the osteogenesis of palatal mesenchyme.
Collapse
Affiliation(s)
- Nan Li
- Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, 116044, China
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Jing Liu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
- Medical Department of Dandong Stomatological Hospital, Dandong, 118002, China
| | - Han Liu
- Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, 116044, China
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Shangqi Wang
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Ping Hu
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Hailing Zhou
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Jing Xiao
- Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, 116044, China
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China
| | - Chao Liu
- Dalian Key Laboratory of Basic Research in Oral Medicine, School of Stomatology, Dalian Medical University, Dalian, 116044, China.
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|