1
|
Fathallah W, Puchart V. The Bifidobacterium adolescentis BAD_1527 gene encodes GH43_22 α-L-arabinofuranosidase of AXH-m type. AMB Express 2024; 14:83. [PMID: 39033088 PMCID: PMC11264647 DOI: 10.1186/s13568-024-01738-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024] Open
Abstract
Bifidobacterium adolescentis gene BAD_1527 has previously been suggested to code for a β-xylosidase (Kobayashi et al., Mar Drugs 18:174, 2020). Our detailed investigation of the substrate specificity of the GH43_22 protein using a wide spectrum of natural and artificial substrates showed that the enzyme hydrolyzed neither linear xylooligosaccharides nor glucuronoxylan. Xylose was released only from the artificial 4-nitrophenyl β-D-xylopyranoside (1.58 mU/mg). The corresponding α-L-arabinofuranoside was by three orders of magnitude better substrate (2.17 U/mg). Arabinose was the only monosaccharide liberated from arabinoxylan and α-1,3- or α-1,2-singly arabinosylated xylooligosaccharides. Moreover, the enzyme efficiently debranched sugar beet arabinan and singly arabinosylated α-1,5-L-arabinooligosaccharides, although short linear α-1,5-L-arabinooligosaccharides were also slowly degraded. On the other hand, debranched arabinan, arabinogalactan as well as 2,3-doubly arabinosylated main chain residues of arabinan and arabinoxylan did not serve as substrates. Thus, the enzyme encoded by the BAD_1527 gene is a typical α-L-arabinofuranosidase of AXH-m specificity.
Collapse
Affiliation(s)
- Walid Fathallah
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia
- Faculty of Science, Beni-Suef University, Beni-Suef, 625 11, Egypt
| | - Vladimír Puchart
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovakia.
| |
Collapse
|
2
|
Xiao M, Zhang C, Duan H, Narbad A, Zhao J, Chen W, Zhai Q, Yu L, Tian F. Cross-feeding of bifidobacteria promotes intestinal homeostasis: a lifelong perspective on the host health. NPJ Biofilms Microbiomes 2024; 10:47. [PMID: 38898089 PMCID: PMC11186840 DOI: 10.1038/s41522-024-00524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
Throughout the life span of a host, bifidobacteria have shown superior colonization and glycan abilities. Complex glycans, such as human milk oligosaccharides and plant glycans, that reach the colon are directly internalized by the transport system of bifidobacteria, cleaved into simple structures by extracellular glycosyl hydrolase, and transported to cells for fermentation. The glycan utilization of bifidobacteria introduces cross-feeding activities between bifidobacterial strains and other microbiota, which are influenced by host nutrition and regulate gut homeostasis. This review discusses bifidobacterial glycan utilization strategies, focusing on the cross-feeding involved in bifidobacteria and its potential health benefits. Furthermore, the impact of cross-feeding on the gut trophic niche of bifidobacteria and host health is also highlighted. This review provides novel insights into the interactions between microbe-microbe and host-microbe.
Collapse
Affiliation(s)
- Meifang Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuan Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park Colney, Norwich, Norfolk, NR4 7UA, UK
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
3
|
Liu H, Huang M, Wei S, Wang X, Zhao Y, Han Z, Ye X, Li Z, Ji Y, Cui Z, Huang Y. Characterization of a multi-domain exo-β-1,3-galactanase from Paenibacillus xylanexedens. Int J Biol Macromol 2024; 266:131413. [PMID: 38582482 DOI: 10.1016/j.ijbiomac.2024.131413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
β-1,3-Galactanases selectively degrade β-1,3-galactan, thus it is an attractive enzyme technique to map high-galactan structure and prepare galactooligosaccharides. In this work, a gene encoding exo-β-1,3-galactanase (PxGal43) was screened form Paenibacillus xylanexedens, consisting of a GH43 domain, a CBM32 domain and α-L-arabinofuranosidase B (AbfB) domain. Using β-1,3-galactan (AG-II-P) as substrate, the recombined enzyme expressed in Escherichia coli BL21 (DE3) exhibited an optimal activity at pH 7.0 and 30 °C. The enzyme was thermostable, retaining >70 % activity after incubating at 50 °C for 2 h. In addition, it showed high tolerance to various metal ions, denaturants and detergents. Substrate specificity indicated that PxGal43 hydrolysis only β-1,3-linked galactosyl oligosaccharides and polysaccharides, releasing galactose as an exo-acting manner. The function of the CBM32 and AbfB domain was revealed by their sequential deletion and suggested that their connection to the catalytic domain was crucial for the oligomerization, catalytic activity, substrate binding and thermal stability of PxGal43. The substrate docking and site-directed mutagenesis proposed that Glu191, Gln244, Asp138 and Glu81 served as the catalytic acid, catalytic base, pKa modulator, and substrate identifier in PxGal43, respectively. These results provide a better understanding and optimization of multi-domain bacterial GH43 β-1,3-galactanase for the degradation of arabinogalactan.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Min Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Shuxin Wei
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xiaowen Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yaqin Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhengyang Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yanling Ji
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, People's Republic of China.
| |
Collapse
|
4
|
Fujita K, Tsunomachi H, Lixia P, Maruyama S, Miyake M, Dakeshita A, Kitahara K, Tanaka K, Ito Y, Ishiwata A, Fushinobu S. Bifidobacterial GH146 β-L-arabinofuranosidase for the removal of β1,3-L-arabinofuranosides on plant glycans. Appl Microbiol Biotechnol 2024; 108:199. [PMID: 38324037 PMCID: PMC10850190 DOI: 10.1007/s00253-024-13014-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/29/2023] [Accepted: 01/14/2024] [Indexed: 02/08/2024]
Abstract
L-Arabinofuranosides with β-linkages are present in several plant molecules, such as arabinogalactan proteins (AGPs), extensin, arabinan, and rhamnogalacturonan-II. We previously characterized a β-L-arabinofuranosidase from Bifidobacterium longum subsp. longum JCM 1217, Bll1HypBA1, which was found to belong to the glycoside hydrolase (GH) family 127. This strain encodes two GH127 genes and two GH146 genes. In the present study, we characterized a GH146 β-L-arabinofuranosidase, Bll3HypBA1 (BLLJ_1848), which was found to constitute a gene cluster with AGP-degrading enzymes. This recombinant enzyme degraded AGPs and arabinan, which contain Araf-β1,3-Araf structures. In addition, the recombinant enzyme hydrolyzed oligosaccharides containing Araf-β1,3-Araf structures but not those containing Araf-β1,2-Araf and Araf-β1,5-Araf structures. The crystal structures of Bll3HypBA1 were determined at resolutions up to 1.7 Å. The monomeric structure of Bll3HypBA1 comprised a catalytic (α/α)6 barrel and two β-sandwich domains. A hairpin structure with two β-strands was observed in Bll3HypBA1, to extend from a β-sandwich domain and partially cover the active site. The active site contains a Zn2+ ion coordinated by Cys3-Glu and exhibits structural conservation of the GH127 cysteine glycosidase Bll1HypBA1. This is the first study to report on a β1,3-specific β-L-arabinofuranosidase. KEY POINTS: • β1,3-l-Arabinofuranose residues are present in arabinogalactan proteins and arabinans as a terminal sugar. • β-l-Arabinofuranosidases are widely present in intestinal bacteria. • Bll3HypBA1 is the first enzyme characterized as a β1,3-linkage-specific β-l-arabinofuranosidase.
Collapse
Affiliation(s)
- Kiyotaka Fujita
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan.
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan.
| | - Hanako Tsunomachi
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Pan Lixia
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
- National Key Laboratory of Non-food Biomass Energy Technology, Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Shun Maruyama
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Masayuki Miyake
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan
| | - Aimi Dakeshita
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Kanefumi Kitahara
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Katsunori Tanaka
- RIKEN, Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo, 152-8552, Japan
| | - Yukishige Ito
- RIKEN, Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-Cho, Toyonaka, Osaka, 560-0043, Japan
| | - Akihiro Ishiwata
- RIKEN, Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shinya Fushinobu
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan.
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
5
|
Hibberd MC, Webber DM, Rodionov DA, Henrissat S, Chen RY, Zhou C, Lynn HM, Wang Y, Chang HW, Lee EM, Lelwala-Guruge J, Kazanov MD, Arzamasov AA, Leyn SA, Lombard V, Terrapon N, Henrissat B, Castillo JJ, Couture G, Bacalzo NP, Chen Y, Lebrilla CB, Mostafa I, Das S, Mahfuz M, Barratt MJ, Osterman AL, Ahmed T, Gordon JI. Bioactive glycans in a microbiome-directed food for children with malnutrition. Nature 2024; 625:157-165. [PMID: 38093016 PMCID: PMC10764277 DOI: 10.1038/s41586-023-06838-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/06/2023] [Indexed: 12/26/2023]
Abstract
Evidence is accumulating that perturbed postnatal development of the gut microbiome contributes to childhood malnutrition1-4. Here we analyse biospecimens from a randomized, controlled trial of a microbiome-directed complementary food (MDCF-2) that produced superior rates of weight gain compared with a calorically more dense conventional ready-to-use supplementary food in 12-18-month-old Bangladeshi children with moderate acute malnutrition4. We reconstructed 1,000 bacterial genomes (metagenome-assembled genomes (MAGs)) from the faecal microbiomes of trial participants, identified 75 MAGs of which the abundances were positively associated with ponderal growth (change in weight-for-length Z score (WLZ)), characterized changes in MAG gene expression as a function of treatment type and WLZ response, and quantified carbohydrate structures in MDCF-2 and faeces. The results reveal that two Prevotella copri MAGs that are positively associated with WLZ are the principal contributors to MDCF-2-induced expression of metabolic pathways involved in utilizing the component glycans of MDCF-2. The predicted specificities of carbohydrate-active enzymes expressed by their polysaccharide-utilization loci are correlated with (1) the in vitro growth of Bangladeshi P. copri strains, possessing varying degrees of polysaccharide-utilization loci and genomic conservation with these MAGs, in defined medium containing different purified glycans representative of those in MDCF-2, and (2) the levels of faecal carbohydrate structures in the trial participants. These associations suggest that identifying bioactive glycan structures in MDCFs metabolized by growth-associated bacterial taxa will help to guide recommendations about their use in children with acute malnutrition and enable the development of additional formulations.
Collapse
Affiliation(s)
- Matthew C Hibberd
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Daniel M Webber
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Dmitry A Rodionov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Suzanne Henrissat
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, France
| | - Robert Y Chen
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
| | - Cyrus Zhou
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
| | - Hannah M Lynn
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
| | - Yi Wang
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
| | - Hao-Wei Chang
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
| | - Evan M Lee
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
| | - Janaki Lelwala-Guruge
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
| | - Marat D Kazanov
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Aleksandr A Arzamasov
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Semen A Leyn
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, France
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, France
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Juan J Castillo
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Garret Couture
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Nikita P Bacalzo
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Ye Chen
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Carlito B Lebrilla
- Department of Chemistry, University of California, Davis, Davis, CA, USA
| | - Ishita Mostafa
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Subhasish Das
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mustafa Mahfuz
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Michael J Barratt
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Andrei L Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Jeffrey I Gordon
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA.
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
6
|
Friess L, Bottacini F, McAuliffe FM, O’Neill IJ, Cotter PD, Lee C, Munoz-Munoz J, van Sinderen D. Two extracellular α-arabinofuranosidases are required for cereal-derived arabinoxylan metabolism by Bifidobacterium longum subsp. longum. Gut Microbes 2024; 16:2353229. [PMID: 38752423 PMCID: PMC11318964 DOI: 10.1080/19490976.2024.2353229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/03/2024] [Indexed: 08/11/2024] Open
Abstract
Members of the genus Bifidobacterium are commonly found in the human gut and are known to utilize complex carbohydrates that are indigestible by the human host. Members of the Bifidobacterium longum subsp. longum taxon can metabolize various plant-derived carbohydrates common to the human diet. To metabolize such polysaccharides, which include arabinoxylan, bifidobacteria need to encode appropriate carbohydrate-active enzymes in their genome. In the current study, we describe two GH43 family enzymes, denoted here as AxuA and AxuB, which are encoded by B. longum subsp. longum NCIMB 8809 and are shown to be required for cereal-derived arabinoxylan metabolism by this strain. Based on the observed hydrolytic activity of AxuA and AxuB, assessed by employing various synthetic and natural substrates, and based on in silico analyses, it is proposed that both AxuA and AxuB represent extracellular α-L-arabinofuranosidases with distinct substrate preferences. The variable presence of the axuA and axuB genes and other genes previously described to be involved in the metabolism of arabinose-containing glycans can in the majority cases explain the (in)ability of individual B. longum subsp. longum strains to grow on cereal-derived arabinoxylans and arabinan.
Collapse
Affiliation(s)
- Lisa Friess
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Francesca Bottacini
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Biological Sciences, Munster Technological University, Cork, Ireland
| | - Fionnuala M. McAuliffe
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ian J. O’Neill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Teagasc Food Research Centre, Cork, Ireland
| | - Ciaran Lee
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Jose Munoz-Munoz
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Douwe van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Bhaiyya R, Sharma SC, Singh RP. Biochemical characterization of bifunctional enzymatic activity of a recombinant protein (Bp0469) from Blautia producta ATCC 27340 and its role in the utilization of arabinogalactan oligosaccharides. Int J Biol Macromol 2023; 253:126736. [PMID: 37678698 DOI: 10.1016/j.ijbiomac.2023.126736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Human consumption of larch arabinogalactan has a significant effect on enhancing probiotic microflora in the gut, and it also promotes the production of short-chain fatty acids. Bacterial members of Lachnospiraceae family are important and play significant roles in maintaining our gut health. However, it is less known about biochemistry of members of this family by which they utilize non-cellulosic fiber in the gut. For enhancing this understanding, we studied that B. producta ATCC 27340 grew on arabinogalactan oligosaccharides (AGOs) as compared to polysaccharide form of arabinogalactan. Recombinant protein (Bp0469) was heterologously expressed in Escherichia coli BL21 (DE3) and revealed the optimum pH and temperature at 7.4 in phosphate buffer and 45 °C, respectively. Catalytic efficiency of recombinant Bp0469 for p-nitrophenyl (pNP)-α-L-arabinofuranoside was about half of pNP-β-D-galactopyranoside. It also cleaved natural substrates (lactose, arabinobiose and 3-O-(β-d-galactopyranosyl)-d-galactopyranose) and characterized AGOs in this study. Based on genomic, structural models, and biochemical characteristics, identified Bp0469 is a peculiar enzyme with two distinct domains that cleave α1-5 linked arabinobiose and β-D-Galp-1-3/4 linkages. Overall, the study enhances the knowledge on nutritional perspective of B. producta ATCC 27340 for thriving on non-cellulosic biomass, and identified enzyme can also be used for producing industrial important AGOs.
Collapse
Affiliation(s)
- Raja Bhaiyya
- Department of Industrial Biotechnology, Gujarat Biotechnology University, North-Gate Gujarat International Finance Tec (GIFT)-City, Gandhinagar 382355, Gujarat, India; Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India; Department of Biochemistry, South Campus, Panjab University, Chandigarh 160014, India
| | - Sukesh Chander Sharma
- Department of Biochemistry, South Campus, Panjab University, Chandigarh 160014, India
| | - Ravindra Pal Singh
- Department of Industrial Biotechnology, Gujarat Biotechnology University, North-Gate Gujarat International Finance Tec (GIFT)-City, Gandhinagar 382355, Gujarat, India; Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), SAS Nagar, Punjab 140306, India.
| |
Collapse
|
8
|
Hibberd MC, Webber DM, Rodionov DA, Henrissat S, Chen RY, Zhou C, Lynn HM, Wang Y, Chang HW, Lee EM, Lelwala-Guruge J, Kazanov MD, Arzamasov AA, Leyn SA, Lombard V, Terrapon N, Henrissat B, Castillo JJ, Couture G, Bacalzo NP, Chen Y, Lebrilla CB, Mostafa I, Das S, Mahfuz M, Barratt MJ, Osterman AL, Ahmed T, Gordon JI. Bioactive glycans in a microbiome-directed food for malnourished children. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.14.23293998. [PMID: 37645824 PMCID: PMC10462212 DOI: 10.1101/2023.08.14.23293998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Evidence is accumulating that perturbed postnatal development of the gut microbiome contributes to childhood malnutrition1-4. Designing effective microbiome-directed therapeutic foods to repair these perturbations requires knowledge about how food components interact with the microbiome to alter its expressed functions. Here we use biospecimens from a randomized, controlled trial of a microbiome-directed complementary food prototype (MDCF-2) that produced superior rates of weight gain compared to a conventional ready-to-use supplementary food (RUSF) in 12-18-month-old Bangladeshi children with moderate acute malnutrition (MAM)4. We reconstructed 1000 bacterial genomes (metagenome-assembled genomes, MAGs) present in their fecal microbiomes, identified 75 whose abundances were positively associated with weight gain (change in weight-for-length Z score, WLZ), characterized gene expression changes in these MAGs as a function of treatment type and WLZ response, and used mass spectrometry to quantify carbohydrate structures in MDCF-2 and feces. The results reveal treatment-induced changes in expression of carbohydrate metabolic pathways in WLZ-associated MAGs. Comparing participants consuming MDCF-2 versus RUSF, and MDCF-2-treated children in the upper versus lower quartiles of WLZ responses revealed that two Prevotella copri MAGs positively associated with WLZ were principal contributors to MDCF-2-induced expression of metabolic pathways involved in utilization of its component glycans. Moreover, the predicted specificities of carbohydrate active enzymes expressed by polysaccharide utilization loci (PULs) in these two MAGs correlate with the (i) in vitro growth of Bangladeshi P. copri strains, possessing differing degrees of PUL and overall genomic content similarity to these MAGs, cultured in defined medium containing different purified glycans representative of those in MDCF-2, and (ii) levels of carbohydrate structures identified in feces from clinical trial participants. In the accompanying paper5, we use a gnotobiotic mouse model colonized with age- and WLZ-associated bacterial taxa cultured from this study population, and fed diets resembling those consumed by study participants, to directly test the relationship between P. copri, MDCF-2 glycan metabolism, host ponderal growth responses, and intestinal gene expression and metabolism. The ability to identify bioactive glycan structures in MDCFs that are metabolized by growth-associated bacterial taxa will help guide recommendations about use of this MDCF for children with acute malnutrition representing different geographic locales and ages, as well as enable development of bioequivalent, or more efficacious, formulations composed of culturally acceptable and affordable ingredients.
Collapse
Affiliation(s)
- Matthew C. Hibberd
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University
School of Medicine, St. Louis, MO 63110 USA
| | - Daniel M. Webber
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University
School of Medicine, St. Louis, MO 63110 USA
| | - Dmitry A. Rodionov
- Infectious and Inflammatory Disease Center, Sanford Burnham
Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Suzanne Henrissat
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
- Architecture et Fonction des Macromolécules Biologiques,
CNRS, Aix-Marseille University, F-13288, Marseille, France
| | - Robert Y. Chen
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
| | - Cyrus Zhou
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
| | - Hannah M. Lynn
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
| | - Yi Wang
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
| | - Hao-Wei Chang
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
| | - Evan M. Lee
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
| | - Janaki Lelwala-Guruge
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
| | - Marat D. Kazanov
- Faculty of Engineering and Natural Sciences, Sabanci University,
Istanbul, Turkey, 34956
| | - Aleksandr A. Arzamasov
- Infectious and Inflammatory Disease Center, Sanford Burnham
Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Semen A. Leyn
- Infectious and Inflammatory Disease Center, Sanford Burnham
Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques,
CNRS, Aix-Marseille University, F-13288, Marseille, France
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques,
CNRS, Aix-Marseille University, F-13288, Marseille, France
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine (DTU Bioengineering),
Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University,
Jeddah, Saudi Arabia
| | - Juan J. Castillo
- Department of Chemistry, University of California, Davis, CA
95616, USA
| | - Garret Couture
- Department of Chemistry, University of California, Davis, CA
95616, USA
| | - Nikita P. Bacalzo
- Department of Chemistry, University of California, Davis, CA
95616, USA
| | - Ye Chen
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
- Department of Chemistry, University of California, Davis, CA
95616, USA
| | | | - Ishita Mostafa
- International Centre for Diarrhoeal Disease Research,
Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Subhasish Das
- International Centre for Diarrhoeal Disease Research,
Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Mustafa Mahfuz
- International Centre for Diarrhoeal Disease Research,
Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Michael J. Barratt
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University
School of Medicine, St. Louis, MO 63110 USA
| | - Andrei L. Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham
Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research,
Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Jeffrey I. Gordon
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University
School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
9
|
Ghosh K, Takahashi D, Kotake T. Plant type II arabinogalactan: Structural features and modification to increase functionality. Carbohydr Res 2023; 529:108828. [PMID: 37182471 DOI: 10.1016/j.carres.2023.108828] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/16/2023]
Abstract
Type II arabinogalactans (AGs) are a highly diverse class of plant polysaccharides generally encountered as the carbohydrate moieties of certain extracellular proteoglycans, the so-called arabinogalactan-proteins (AGPs), which are found on plasma membranes and in cell walls. The basic structure of type II AG is a 1,3-β-D-galactan main chain with 1,6-β-D-galactan side chains. The side chains are further decorated with other sugars such as α-l-arabinose and β-d-glucuronic acid. In addition, AGs with 1,6-β-D-galactan as the main chain, which are designated as 'type II related AG' in this review, can also be found in several plants. Due to their diverse and heterogenous features, the determination of carbohydrate structures of type II and type II related AGs is not easy. On the other hand, these complex AGs are scientifically and commercially attractive materials whose structures can be modified by chemical and biochemical approaches for specific purposes. In the current review, what is known about the chemical structures of type II and type II related AGs from different plant sources is outlined. After that, structural analysis techniques are considered and compared. Finally, structural modifications that enhance or alter functionality are highlighted.
Collapse
Affiliation(s)
- Kanika Ghosh
- Department of Chemistry, Bidhan Chandra College, Asansol, 713304, West Bengal, India.
| | - Daisuke Takahashi
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan
| | - Toshihisa Kotake
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan; Green Bioscience Research Center, Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama, 338-8570, Japan.
| |
Collapse
|
10
|
Akkaya A, Ensari Y, Ozseker EE, Batur OO, Buyuran G, Evran S. Recombinant Production and Biochemical Characterization of Thermostable Arabinofuranosidase from Acidothermophilic Alicyclobacillus Acidocaldarius. Protein J 2023:10.1007/s10930-023-10117-5. [PMID: 37119380 DOI: 10.1007/s10930-023-10117-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2023] [Indexed: 05/01/2023]
Abstract
The complete enzymatic degradation of lignocellulosic biomass requires the cooperative action of cellulosic, hemicellulosic, and lignolytic enzymes such as cellulase, xylanase, laccase, galactosidase, and arabinofuranosidase. Arabinofuranosidases (E.C 3.2.1.55), which belong to the glycoside hydrolase family of enzymes, hydrolyze the 1,3- and 1,5-α-arabinosyl bonds in L-arabinose- containing molecules. L-arabinoses are present in hemicellulosic part of lignocellulosic biomass. Arabinofuranosidases also play an important role in the complete hydrolysis of arabinoxylans. Analysis of the genome project and CAZY database revealed two putative arabinofuranosidase genes in the A. acidocaldarius genome. The aim of the study was cloning, heterologous expression, purification and biochemical characterization of the arabinofuranosidase enzyme encoded in A. acidocaldarius genome. For this purpose, the AbfA gene of the arabinofuranosidase protein was cloned into the pQE-40 vector, heterologously expressed in E. coli BL21 GOLD (DE3) and successfully purified using His-Tag. Biochemical characterization of the purified enzyme revealed that A. acidocaldarius arabinofuranosidase exhibited activity over a wide pH and temperature range with optimum activity at 45 ºC and pH 6.5 in phosphate buffer towards 4-nitrophenyl-α-L-arabinofuranoside as the substrate. In addition, the enzyme is highly stable over wide range of temperature and maintaining 60% of its activity after 90 min of incubation at 80 ºC. Through the bioinformatics studies, the homology model of A. acidocaldarius arabinofuranosidase was generated and the substrate binding site and residues located in this site were identified. Further molecular docking analysis revealed that the substrate located in the catalytically active pose and, residues N174, E175, and E294 have direct interaction with 4-nitrophenyl-α-L-arabinofuranoside. Moreover, based on phylogenetic analysis, A. acidocaldarius arabinofuranosidase exists in the sub-group of intracellular arabinofuranosidases, and G. stearothermophilus and B.subtilis arabinofuranosidases are close relatives of A. acidocaldarius arabinofuranosidase. This is the first study to report the gene cloning, recombinant expression and biochemical and bioinformatic characterization of an auxiliary GH51 arabinofuranosidase from an acidothermophilic bacterium A. acidocaldarius.
Collapse
Affiliation(s)
- Alper Akkaya
- Faculty of Science, Biochemistry Department, Ege University, Bornova, Izmir, 35100, Turkey
| | - Yunus Ensari
- Faculty of Engineering and Architecture, Bioengineering Department, Kafkas University, Kars, 36000, Turkey.
| | - Emine Erdogan Ozseker
- Faculty of Science, Biochemistry Department, Ege University, Bornova, Izmir, 35100, Turkey
| | - Ozge Ozsen Batur
- Faculty of Science, Department of Chemistry, Eskişehir Osmangazi University, Eskişehir, 26480, Turkey
| | - Gozde Buyuran
- Vocational School of Health Services, Kırşehir Ahi Evran University, Kırşehir, 40100, Turkey
| | - Serap Evran
- Faculty of Science, Biochemistry Department, Ege University, Bornova, Izmir, 35100, Turkey
| |
Collapse
|
11
|
Sasaki Y, Yanagita M, Hashiguchi M, Horigome A, Xiao JZ, Odamaki T, Kitahara K, Fujita K. Assimilation of arabinogalactan side chains with novel 3- O-β-L-arabinopyranosyl-α-L-arabinofuranosidase in Bifidobacterium pseudocatenulatum. MICROBIOME RESEARCH REPORTS 2023; 2:12. [PMID: 38047276 PMCID: PMC10688797 DOI: 10.20517/mrr.2023.08] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/19/2023] [Accepted: 04/06/2023] [Indexed: 12/05/2023]
Abstract
Aim: Dietary plant fibers affect gut microbiota composition; however, the underlying microbial degradation pathways are not fully understood. We previously discovered 3-O-α-D-galactosyl-α-L-arabinofuranosidase (GAfase), a glycoside hydrolase family 39 enzyme involved in the assimilation of side chains of arabinogalactan protein (AGP), from Bifidobacterium longum subsp. longum (B. longum) JCM7052. Although GAfase homologs are not highly prevalent in the Bifidobacterium genus, several Bifidobacterium strains possess the homologs. To explore the differences in substrate specificity among the homologs, a homolog of B. longum GAfase in Bifidobacterium pseudocatenulatum MCC10289 (MCC10289_0425) was characterized. Methods: Gum arabic, larch, wheat AGP, and sugar beet arabinan were used to determine the substrate specificity of the MCC10289_0425 protein. An amino acid replacement was introduced into GAfase to identify a critical residue that governs the differentiation of substrate specificity. The growth of several Bifidobacterium strains on β-L-arabinopyranosyl disaccharide and larch AGP was examined. Results: MCC10289_0425 was identified to be an unprecedented 3-O-β-L-arabinopyranosyl-α-L-arabinofuranosidase (AAfase) with low GAfase activity. A single amino acid replacement (Asn119 to Tyr) at the catalytic site converted GAfase into AAfase. AAfase releases sugar source from AGP, thereby allowing B. pseudocatenulatum growth. Conclusion: Bifidobacteria have evolved several homologous enzymes with overlapping but distinct substrate specificities depending on the species. They have acquired different fitness abilities to respond to diverse plant polysaccharide structures.
Collapse
Affiliation(s)
- Yuki Sasaki
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Makoto Yanagita
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan
| | - Mimika Hashiguchi
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan
| | - Ayako Horigome
- Next Generation Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Jin-Zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co. Ltd., Zama, Kanagawa 252-8583, Japan
| | - Kanefumi Kitahara
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan
| | - Kiyotaka Fujita
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima 890-0065, Japan
| |
Collapse
|
12
|
Feng Z, Lin Z, Tang H, Geng J, Hu Y, Mayo KH, Tai G, Zhou Y. The model polysaccharide potato galactan is actually a mixture of different polysaccharides. Carbohydr Polym 2023; 313:120889. [PMID: 37182975 DOI: 10.1016/j.carbpol.2023.120889] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Commercially-supplied potato galactan (PG) is widely used as a model polysaccharide in various bioactivity studies. However, results using this galactan are not always consistent with the stated composition. Here, we assessed its composition by fractionating this commercial PG and purified its primary components: PG-A, PG-B and PG-Cp with weight-averaged molecular weights of 430, 93, and 11.3 kDa, respectively. PG-Cp consists of free β-1,4-galactan chains, whereas PG-A and PG-B are type I rhamnogalacturonans with long β-1,4-galactan side chains of up to 80 Gal residues and short β-1,4-galactan side chains of 0 to 3 Gal residues that display a "trees in lawn" pattern. Structures of these polysaccharides correlate well with their activities in terms of galectin-3 binding and gut bacterial growth assays. Our study clarifies the confusion related to commercial PG, with purified fractions serving as better model polysaccharides in bioactivity investigations.
Collapse
|
13
|
Alessandri G, Fontana F, Tarracchini C, Rizzo SM, Bianchi MG, Taurino G, Chiu M, Lugli GA, Mancabelli L, Argentini C, Longhi G, Anzalone R, Viappiani A, Milani C, Turroni F, Bussolati O, van Sinderen D, Ventura M. Identification of a prototype human gut Bifidobacterium longum subsp. longum strain based on comparative and functional genomic approaches. Front Microbiol 2023; 14:1130592. [PMID: 36846784 PMCID: PMC9945282 DOI: 10.3389/fmicb.2023.1130592] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Bifidobacteria are extensively exploited for the formulation of probiotic food supplements due to their claimed ability to exert health-beneficial effects upon their host. However, most commercialized probiotics are tested and selected for their safety features rather than for their effective abilities to interact with the host and/or other intestinal microbial players. In this study, we applied an ecological and phylogenomic-driven selection to identify novel B. longum subsp. longum strains with a presumed high fitness in the human gut. Such analyses allowed the identification of a prototype microorganism to investigate the genetic traits encompassed by the autochthonous bifidobacterial human gut communities. B. longum subsp. longum PRL2022 was selected due to its close genomic relationship with the calculated model representative of the adult human-gut associated B. longum subsp. longum taxon. The interactomic features of PRL2022 with the human host as well as with key representative intestinal microbial members were assayed using in vitro models, revealing how this bifidobacterial gut strain is able to establish extensive cross-talk with both the host and other microbial residents of the human intestine.
Collapse
Affiliation(s)
- Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio srl, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Sonia Mirjam Rizzo
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Massimiliano G. Bianchi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Martina Chiu
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Giulia Longhi
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio srl, Parma, Italy
| | | | | | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
14
|
Cloning, Expression, Purification and Characterization of the β-galactosidase PoβGal35A from Penicillium oxalicum. Mol Biotechnol 2022:10.1007/s12033-022-00620-y. [DOI: 10.1007/s12033-022-00620-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
|
15
|
Long C, Qi XL, Venema K. Chemical and nutritional characteristics, and microbial degradation of rapeseed meal recalcitrant carbohydrates: A review. Front Nutr 2022; 9:948302. [PMID: 36245487 PMCID: PMC9554435 DOI: 10.3389/fnut.2022.948302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
Approximately 35% of rapeseed meal (RSM) dry matter (DM) are carbohydrates, half of which are water-soluble carbohydrates. The cell wall of rapeseed meal contains arabinan, galactomannan, homogalacturonan, rhamnogalacturonan I, type II arabinogalactan, glucuronoxylan, XXGG-type and XXXG-type xyloglucan, and cellulose. Glycoside hydrolases including in the degradation of RSM carbohydrates are α-L-Arabinofuranosidases (EC 3.2.1.55), endo-α-1,5-L-arabinanases (EC 3.2.1.99), Endo-1,4-β-mannanase (EC 3.2.1.78), β-mannosidase (EC 3.2.1.25), α-galactosidase (EC 3.2.1.22), reducing-end-disaccharide-lyase (pectate disaccharide-lyase) (EC 4.2.2.9), (1 → 4)-6-O-methyl-α-D-galacturonan lyase (pectin lyase) (EC 4.2.2.10), (1 → 4)-α-D-galacturonan reducing-end-trisaccharide-lyase (pectate trisaccharide-lyase) (EC 4.2.2.22), α-1,4-D-galacturonan lyase (pectate lyase) (EC 4.2.2.2), (1 → 4)-α-D-galacturonan glycanohydrolase (endo-polygalacturonase) (EC 3.2.1.15), Rhamnogalacturonan hydrolase, Rhamnogalacturonan lyase (EC 4.2.2.23), Exo-β-1,3-galactanase (EC 3.2.1.145), endo-β-1,6-galactanase (EC 3.2.1.164), Endo-β-1,4-glucanase (EC 3.2.1.4), α-xylosidase (EC 3.2.1.177), β-glucosidase (EC 3.2.1.21) endo-β-1,4-glucanase (EC 3.2.1.4), exo-β-1,4-glucanase (EC 3.2.1.91), and β-glucosidase (EC 3.2.1.21). In conclusion, this review summarizes the chemical and nutritional compositions of RSM, and the microbial degradation of RSM cell wall carbohydrates which are important to allow to develop strategies to improve recalcitrant RSM carbohydrate degradation by the gut microbiota, and eventually to improve animal feed digestibility, feed efficiency, and animal performance.
Collapse
Affiliation(s)
- Cheng Long
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
- Faculty of Science and Engineering, Centre for Healthy Eating and Food Innovation, Maastricht University - Campus Venlo, Venlo, Netherlands
| | - Xiao-Long Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Koen Venema
- Faculty of Science and Engineering, Centre for Healthy Eating and Food Innovation, Maastricht University - Campus Venlo, Venlo, Netherlands
- *Correspondence: Koen Venema
| |
Collapse
|
16
|
An approach for evaluating the effects of dietary fiber polysaccharides on the human gut microbiome and plasma proteome. Proc Natl Acad Sci U S A 2022; 119:e2123411119. [PMID: 35533274 PMCID: PMC9171781 DOI: 10.1073/pnas.2123411119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Increases in snack consumption associated with Westernized lifestyles provide an opportunity to introduce nutritious foods into poor diets. We describe two 10-wk-long open label, single group assignment human studies that measured the effects of two snack prototypes containing fiber preparations from two sustainable and scalable sources; the byproducts remaining after isolation of protein from the endosperm of peas and the vesicular pulp remaining after processing oranges for the manufacture of juices. The normal diets of study participants were supplemented with either a pea- or orange fiber-containing snack. We focused our analysis on quantifying the abundances of genes encoding carbohydrate-active enzymes (CAZymes) (glycoside hydrolases and polysaccharide lyases) in the fecal microbiome, mass spectrometric measurements of glycan structures (glycosidic linkages) in feces, plus aptamer-based assessment of levels of 1,300 plasma proteins reflecting a broad range of physiological functions. Computational methods for feature selection identified treatment-discriminatory changes in CAZyme genes that correlated with alterations in levels of fiber-associated glycosidic linkages; these changes in turn correlated with levels of plasma proteins representing diverse biological functions, including transforming growth factor type β/bone morphogenetic protein-mediated fibrosis, vascular endothelial growth factor-related angiogenesis, P38/MAPK-associated immune cell signaling, and obesity-associated hormonal regulators. The approach used represents a way to connect changes in consumer microbiomes produced by specific fiber types with host responses in the context of varying background diets.
Collapse
|
17
|
Komeno M, Yoshihara Y, Kawasaki J, Nabeshima W, Maeda K, Sasaki Y, Fujita K, Ashida H. Two α-L-arabinofuranosidases from Bifidobacterium longum subsp. longum are involved in arabinoxylan utilization. Appl Microbiol Biotechnol 2022; 106:1957-1965. [PMID: 35235007 DOI: 10.1007/s00253-022-11845-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 11/26/2022]
Abstract
Arabinoxylan (AX) and arabinoxylooligosaccharides (AXOs) are carbohydrate sources utilized by Bifidobacterium longum subsp. longum. However, their degradation pathways are poorly understood. In this study, we characterized two genes, BLLJ_1850 and BLLJ_1851, in the hemicellulose-degrading gene cluster (BLLJ_1836-BLLJ_1859) of B. longum subsp. longum JCM 1217. Both recombinant enzymes expressed in Escherichia coli exhibited exo-α-L-arabinofuranosidase activity toward p-nitrophenyl-α-L-arabinofuranoside. BlArafE (encoded by BLLJ_1850) contains the glycoside hydrolase family 43 (GH43), subfamily 22 (GH43_22), and GH43_34 domains. The BlArafE GH43_22 domain was demonstrated to release α1,3-linked Araf from AX, but the function of BlArafE GH43_34 could not be clearly identified in this study. BlArafD (encoded by BLLJ_1851) contains GH43 unclassified subfamily (GH43_UC) and GH43_26 domains. The BlArafD GH43_UC domain showed specificity for α1,2-linked Araf in α1,2- and α1,3-Araf double-substituted structures in AXOs, while BlArafD GH43_26 was shown to hydrolyze α1,5-linked Araf in the arabinan backbone. Co-incubation of BlArafD and BlArafE revealed that these two enzymes sequentially removed α1,2-Araf and α1,3-Araf from double-substituted AXOs in this order. B. longum strain lacking BLLJ_1850-BLLJ_1853 did not grow in the medium containing α1,2/3-Araf double-substituted AXOs, suggesting that BlArafE and BlArafD are important for the assimilation of AX. KEY POINTS: • BlArafD GH43 unclassified subfamily domain is a novel α1,2-L-arabinofuranosidase. • BlArafE GH43 subfamily 22 domain is an α1,3-L-arabinofuranosidase. • BlArafD and BlArafE cooperatively degrade α1,2/3-Araf double-substituted arabinoxylan.
Collapse
Affiliation(s)
- Masahiro Komeno
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Nishimitani 930, Kinokawa, Wakayama, 649-6493, Japan
| | - Yuki Yoshihara
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Nishimitani 930, Kinokawa, Wakayama, 649-6493, Japan
| | - Junya Kawasaki
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Nishimitani 930, Kinokawa, Wakayama, 649-6493, Japan
| | - Wataru Nabeshima
- Faculty of Biology-Oriented Science and Technology, Kindai University, Nishimitani 930, Kinokawa, Wakayama, 649-6493, Japan
| | - Koshi Maeda
- Faculty of Biology-Oriented Science and Technology, Kindai University, Nishimitani 930, Kinokawa, Wakayama, 649-6493, Japan
| | - Yuki Sasaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Kiyotaka Fujita
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Hisashi Ashida
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Nishimitani 930, Kinokawa, Wakayama, 649-6493, Japan.
- Faculty of Biology-Oriented Science and Technology, Kindai University, Nishimitani 930, Kinokawa, Wakayama, 649-6493, Japan.
| |
Collapse
|
18
|
Mechanism of cooperative degradation of gum arabic arabinogalactan protein by Bifidobacterium longum surface enzymes. Appl Environ Microbiol 2022; 88:e0218721. [PMID: 35108084 PMCID: PMC8939339 DOI: 10.1128/aem.02187-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gum arabic is an arabinogalactan protein (AGP) that is effective as a prebiotic for the growth of bifidobacteria in the human intestine. We recently identified a key enzyme in the glycoside hydrolase (GH) family 39, 3-O-α-d-galactosyl-α-l-arabinofuranosidase (GAfase), for the assimilation of gum arabic AGP in Bifidobacterium longum subsp. longum. The enzyme released α-d-Galp-(1→3)-l-Ara and β-l-Arap-(1→3)-l-Ara from gum arabic AGP and facilitated the action of other enzymes for degrading the AGP backbone and modified sugar. In this study, we identified an α-l-arabinofuranosidase (BlArafE; encoded by BLLJ_1850), a multidomain enzyme with both GH43_22 and GH43_34 catalytic domains, as a critical enzyme for the degradation of modified α-l-arabinofuranosides in gum arabic AGP. Site-directed mutagenesis approaches revealed that the α1,3/α1,4-Araf double-substituted gum arabic AGP side chain was initially degraded by the GH43_22 domain and subsequently cleaved by the GH43_34 domain to release α1,3-Araf and α1,4-Araf residues, respectively. Furthermore, we revealed that a tetrasaccharide, α-l-Rhap-(1→4)-β-d-GlcpA-(1→6)-β-d-Galp-(1→6)-d-Gal, was a limited degradative oligosaccharide in the gum arabic AGP fermentation of B. longum subsp. longum JCM7052. The oligosaccharide was produced from gum arabic AGP by the cooperative action of the three cell surface-anchoring enzymes, GAfase, exo-β1,3-galactanase (Bl1,3Gal), and BlArafE, on B. longum subsp. longum JCM7052. Furthermore, the tetrasaccharide was utilized by the commensal bacteria. IMPORTANCE Terminal galactose residues of the side chain of gum arabic arabinogalactan protein (AGP) are mainly substituted by α1,3/α1,4-linked Araf and β1,6-linked α-l-Rhap-(1→4)-β-d-GlcpA residues. This study found a multidomain BlArafE with GH43_22 and GH43_34 catalytic domains showing cooperative action for degrading α1,3/α1,4-linked Araf of the side chain of gum arabic AGP. In particular, the GH43_34 domain of BlArafE was a novel α-l-arabinofuranosidase for cleaving the α1,4-Araf linkage of terminal galactose. α-l-Rhap-(1→4)-β-d-GlcpA-(1→6)-β-d-Galp-(1→6)-d-Gal tetrasaccharide was released from gum arabic AGP by the cooperative action of GAfase, GH43_24 exo-β-1,3-galactanase (Bl1,3Gal), and BlArafE and remained after B. longum subsp. longum JCM7052 culture. Furthermore, in vitro assimilation test of the remaining oligosaccharide using Bacteroides species revealed that cross-feeding may occur from bifidobacteria to other taxonomic groups in the gut.
Collapse
|
19
|
Islam MR, Arthur S, Haynes J, Butts MR, Nepal N, Sundaram U. The Role of Gut Microbiota and Metabolites in Obesity-Associated Chronic Gastrointestinal Disorders. Nutrients 2022; 14:624. [PMID: 35276983 PMCID: PMC8838694 DOI: 10.3390/nu14030624] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/13/2022] [Accepted: 01/28/2022] [Indexed: 11/16/2022] Open
Abstract
The gut microbiota is a complex community of microorganisms that has become a new focus of attention due to its association with numerous human diseases. Research over the last few decades has shown that the gut microbiota plays a considerable role in regulating intestinal homeostasis, and disruption to the microbial community has been linked to chronic disease conditions such as inflammatory bowel disease (IBD), colorectal cancer (CRC), and obesity. Obesity has become a global pandemic, and its prevalence is increasing worldwide mostly in Western countries due to a sedentary lifestyle and consumption of high-fat/high-sugar diets. Obesity-mediated gut microbiota alterations have been associated with the development of IBD and IBD-induced CRC. This review highlights how obesity-associated dysbiosis can lead to the pathogenesis of IBD and CRC with a special focus on mechanisms of altered absorption of short-chain fatty acids (SCFAs).
Collapse
Affiliation(s)
| | | | | | | | | | - Uma Sundaram
- Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25701, USA; (M.R.I.); (S.A.); (J.H.); (M.R.B.); (N.N.)
| |
Collapse
|
20
|
Glycoside Hydrolase family 30 harbors fungal subfamilies with distinct polysaccharide specificities. N Biotechnol 2021; 67:32-41. [PMID: 34952234 DOI: 10.1016/j.nbt.2021.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 12/19/2021] [Accepted: 12/19/2021] [Indexed: 11/21/2022]
Abstract
Efficient bioconversion of agro-industrial side streams requires a wide range of enzyme activities. Glycoside Hydrolase family 30 (GH30) is a diverse family that contains various catalytic functions and has so far been divided into ten subfamilies (GH30_1-10). In this study, a GH30 phylogenetic tree using over 150 amino acid sequences was contructed. The members of GH30 cluster into four subfamilies and eleven candidates from these subfamilies were selected for biochemical characterization. Novel enzyme activities were identified in GH30. GH30_3 enzymes possess β-(1→6)-glucanase activity. GH30_5 targets β-(1→6)-galactan with mainly β-(1→6)-galactobiohydrolase catalytic behavior. β-(1→4)-Xylanolytic enzymes belong to GH30_7 targeting β-(1→4)-xylan with several activities (e.g. xylobiohydrolase, endoxylanase). Additionally, a new fungal subfamily in GH30 was proposed, i.e. GH30_11, which displays β-(1→6)-galactobiohydrolase. This study confirmed that GH30 fungal subfamilies harbor distinct polysaccharide specificity and have high potential for the production of short (non-digestible) di- and oligosaccharides.
Collapse
|
21
|
Wang Y, Liu Y, Ivusic Polic I, Chandran Matheyambath A, LaPointe G. Modulation of human gut microbiota composition and metabolites by arabinogalactan and Bifidobacterium longum subsp. longum BB536 in the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®). J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
22
|
Chung The H, Nguyen Ngoc Minh C, Tran Thi Hong C, Nguyen Thi Nguyen T, Pike LJ, Zellmer C, Pham Duc T, Tran TA, Ha Thanh T, Van MP, Thwaites GE, Rabaa MA, Hall LJ, Baker S. Exploring the Genomic Diversity and Antimicrobial Susceptibility of Bifidobacterium pseudocatenulatum in a Vietnamese Population. Microbiol Spectr 2021; 9:e0052621. [PMID: 34523984 PMCID: PMC8557894 DOI: 10.1128/spectrum.00526-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/13/2021] [Indexed: 01/29/2023] Open
Abstract
Bifidobacterium pseudocatenulatum is a member of the human gut microbiota, and specific variants of B. pseudocatenulatum have been associated with health benefits such as improving gut integrity and reducing inflammatory responses. Here, we aimed to assess the genomic diversity and predicted metabolic profiles of B. pseudocatenulatum cells found colonizing the gut of healthy Vietnamese adults and children. We found that the population of B. pseudocatenulatum from each individual was distinct and highly diverse, with intraclonal variation attributed largely to a gain or loss of carbohydrate-utilizing enzymes. The B. pseudocatenulatum genomes were enriched with glycosyl hydrolases predicted to target plant-based nondigestible carbohydrates (GH13, GH43) but not host-derived glycans. Notably, the exopolysaccharide biosynthesis region from organisms isolated from healthy children showed extensive genetic diversity and was subject to a high degree of genetic modification. Antimicrobial susceptibility profiling revealed that the Vietnamese B. pseudocatenulatum cells were uniformly susceptible to beta-lactams but exhibited variable resistance to azithromycin, tetracycline, ciprofloxacin, and metronidazole. The genomic presence of ermX and tet variants conferred resistance against azithromycin and tetracycline, respectively; ciprofloxacin resistance was associated with a mutation(s) in the quinolone resistance-determining region (GyrA, S115, and/or D119). Our work provides the first detailed genomic and antimicrobial resistance characterization of B. pseudocatenulatum found in the Vietnamese population, which can be exploited for the rational design of probiotics. IMPORTANCE Bifidobacterium pseudocatenulatum is a beneficial member of the human gut microbiota. The organism can modulate inflammation and has probiotic potential, but its characteristics are largely strain dependent and associated with distinct genomic and biochemical features. Population-specific beneficial microbes represent a promising avenue for the development of potential probiotics, as they may exhibit a more suitable profile in the target population. This study investigates the underexplored diversity of B. pseudocatenulatum in Vietnam and provides more understanding of its genomic diversity, metabolic potential, and antimicrobial susceptibility. Such data from indigenous populations are essential for selecting probiotic candidates that can be accelerated into further preclinical and clinical investigations.
Collapse
Affiliation(s)
- Hao Chung The
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | | | - Lindsay J. Pike
- The Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Caroline Zellmer
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Trung Pham Duc
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tuan-Anh Tran
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Tuyen Ha Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Minh Pham Van
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Guy E. Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Maia A. Rabaa
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Lindsay J. Hall
- Quadram Institute Biosciences, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
- Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Stephen Baker
- The Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
23
|
Li S, Hu J, Yao H, Geng F, Nie S. Interaction between four galactans with different structural characteristics and gut microbiota. Crit Rev Food Sci Nutr 2021:1-11. [PMID: 34669541 DOI: 10.1080/10408398.2021.1992605] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human gut microbiota played a key role in maintaining and regulating host health. Gut microbiota composition could be altered by daily diet and related nutrients. Diet polysaccharide, an important dietary nutrient, was one kind of biological macromolecules linked by the glycosidic bonds. Galactans were widely used in foods due to their gelling, thickening and stabilizing properties. Recently, effects of different galactans on gut microbiota have attracted much attention. This review described the structural characteristics of 4 kinds of galactans, including porphyran, agarose, carrageenan, and arabinogalactan, along with the effects of different galactans on gut microbiota and production of short-chain fatty acids. The ability of gut microbiota to utilize galactans with different structural characteristics and related degradation mechanism were also summarized. All these four galactans could be used by gut Bacteroides. Besides, the porphyran could be utilized by Lactobacillus and Bifidobacterium, while the arabinogalactan could be utilized by Lactobacillus, Bifidobacterium and Roseburia. Four galactans with significant difference in molecular weight/degree of polymerization, glycosidic linkage, esterification, branching and monosaccharide composition required gut microbes which could utilize them have corresponding genes encoding the corresponding enzymes for decomposition. This review could help to understand the relationship between galactans with different structural characteristics and gut microbiota, and provide information for potential use of galactans as functional foods.
Collapse
Affiliation(s)
- Song Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| | - Haoyingye Yao
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang China
| |
Collapse
|
24
|
Captive Common Marmosets (Callithrix jacchus) Are Colonized throughout Their Lives by a Community of Bifidobacterium Species with Species-Specific Genomic Content That Can Support Adaptation to Distinct Metabolic Niches. mBio 2021; 12:e0115321. [PMID: 34340536 PMCID: PMC8406136 DOI: 10.1128/mbio.01153-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The common marmoset (Callithrix jacchus) is an omnivorous New World primate whose diet in the wild includes large amounts of fruit, seeds, flowers, and a variety of lizards and invertebrates. Marmosets also feed heavily on tree gums and exudates, and they have evolved unique morphological and anatomical characteristics to facilitate gum feeding (gummivory). In this study, we characterized the fecal microbiomes of adult and infant animals from a captive population of common marmosets at the Callitrichid Research Center at the University of Nebraska at Omaha under their normal dietary and environmental conditions. The microbiomes of adult animals were dominated by species of Bifidobacterium, Bacteroides, Prevotella, Phascolarctobacterium, Megamonas, and Megasphaera. Culturing and genomic analysis of the Bifidobacterium populations from adult animals identified four known marmoset-associated species (B. reuteri, B. aesculapii, B. myosotis, and B. hapali) and three unclassified taxa of Bifidobacterium that are phylogenetically distinct. Species-specific quantitative PCR (qPCR) confirmed that these same species of Bifidobacterium are abundant members of the microbiome throughout the lives of the animals. Genomic loci in each Bifidobacterium species encode enzymes to support growth and major marmoset milk oligosaccharides during breastfeeding; however, metabolic islands that can support growth on complex polysaccharide substrates in the diets of captive adults (pectin, xyloglucan, and xylan), including loci in B. aesculapii that can support its unique ability to grow on arabinogalactan-rich tree gums, were species-specific.
Collapse
|
25
|
Li S, Zhang B, Hu J, Zhong Y, Sun Y, Nie S. Utilization of four galactans by
Bacteroides thetaiotaomicron
A4 based on transcriptome. FOOD FRONTIERS 2021. [DOI: 10.1002/fft2.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Song Li
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University Nanchang China
| | - Baojie Zhang
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University Nanchang China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University Nanchang China
| | - Yadong Zhong
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University Nanchang China
| | - Yonggan Sun
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University Nanchang China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology China‐Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University Nanchang China
| |
Collapse
|
26
|
Sasaki Y, Horigome A, Odamaki T, Xiao JZ, Ishiwata A, Ito Y, Kitahara K, Fujita K. Novel 3- O-α-d-Galactosyl-α-l-Arabinofuranosidase for the Assimilation of Gum Arabic Arabinogalactan Protein in Bifidobacterium longum subsp. longum. Appl Environ Microbiol 2021; 87:e02690-20. [PMID: 33674431 PMCID: PMC8117759 DOI: 10.1128/aem.02690-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
Gum arabic arabinogalactan (AG) protein (AGP) is a unique dietary fiber that is degraded and assimilated by only specific strains of Bifidobacterium longum subsp. longum Here, we identified a novel 3-O-α-d-galactosyl-α-l-arabinofuranosidase (GAfase) from B. longum JCM7052 and classified it into glycoside hydrolase family 39 (GH39). GAfase released α-d-Galp-(1→3)-l-Ara and β-l-Arap-(1→3)-l-Ara from gum arabic AGP and β-l-Arap-(1→3)-l-Ara from larch AGP, and the α-d-Galp-(1→3)-l-Ara release activity was found to be 594-fold higher than that of β-l-Arap-(1→3)-l-Ara. The GAfase gene was part of a gene cluster that included genes encoding a GH36 α-galactosidase candidate and ABC transporters for the assimilation of the released α-d-Galp-(1→3)-l-Ara in B. longum Notably, when α-d-Galp-(1→3)-l-Ara was removed from gum arabic AGP, it was assimilated by both B. longum JCM7052 and the nonassimilative B. longum JCM1217, suggesting that the removal of α-d-Galp-(1→3)-l-Ara from gum arabic AGP by GAfase permitted the cooperative action with type II AG degradative enzymes in B. longum The present study provides new insight into the mechanism of gum arabic AGP degradation in B. longumIMPORTANCE Bifidobacteria harbor numerous carbohydrate-active enzymes that degrade several dietary fibers in the gastrointestinal tract. B. longum JCM7052 is known to exhibit the ability to assimilate gum arabic AGP, but the key enzyme involved in the degradation of gum arabic AGP remains unidentified. Here, we cloned and characterized a GH39 3-O-α-d-galactosyl-α-l-arabinofuranosidase (GAfase) from B. longum JCM7052. The enzyme was responsible for the release of α-d-Galp-(1→3)-l-Ara and β-l-Arap-(1→3)-l-Ara from gum arabic AGP. The presence of a gene cluster including the GAfase gene is specifically observed in gum arabic AGP assimilative strains. However, GAfase carrier strains may affect GAfase noncarrier strains that express other type II AG degradative enzymes. These findings provide insights into the bifidogenic effect of gum arabic AGP.
Collapse
Affiliation(s)
- Yuki Sasaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Ayako Horigome
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Jin-Zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | | | - Yukishige Ito
- RIKEN Cluster for Pioneering Research, Wako, Saitama, Japan
- Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kanefumi Kitahara
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima, Japan
| | - Kiyotaka Fujita
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Kagoshima, Japan
- Faculty of Agriculture, Kagoshima University, Kagoshima, Kagoshima, Japan
| |
Collapse
|
27
|
Kelly SM, Munoz-Munoz J, van Sinderen D. Plant Glycan Metabolism by Bifidobacteria. Front Microbiol 2021; 12:609418. [PMID: 33613480 PMCID: PMC7889515 DOI: 10.3389/fmicb.2021.609418] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
Members of the genus Bifidobacterium, of which the majority have been isolated as gut commensals, are Gram-positive, non-motile, saccharolytic, non-sporulating, anaerobic bacteria. Many bifidobacterial strains are considered probiotic and therefore are thought to bestow health benefits upon their host. Bifidobacteria are highly abundant among the gut microbiota of healthy, full term, breast-fed infants, yet the relative average abundance of bifidobacteria tends to decrease as the human host ages. Because of the inverse correlation between bifidobacterial abundance/prevalence and health, there has been an increasing interest in maintaining, increasing or restoring bifidobacterial populations in the infant, adult and elderly gut. In order to colonize and persist in the gastrointestinal environment, bifidobacteria must be able to metabolise complex dietary and/or host-derived carbohydrates, and be resistant to various environmental challenges of the gut. This is not only important for the autochthonous bifidobacterial species colonising the gut, but also for allochthonous bifidobacteria provided as probiotic supplements in functional foods. For example, Bifidobacterium longum subsp. longum is a taxon associated with the metabolism of plant-derived poly/oligosaccharides in the adult diet, being capable of metabolising hemicellulose and various pectin-associated glycans. Many of these plant glycans are believed to stimulate the metabolism and growth of specific bifidobacterial species and are for this reason classified as prebiotics. In this review, bifidobacterial carbohydrate metabolism, with a focus on plant poly-/oligosaccharide degradation and uptake, as well as its associated regulation, will be discussed.
Collapse
Affiliation(s)
- Sandra M Kelly
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jose Munoz-Munoz
- Microbial Enzymology Group, Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Douwe van Sinderen
- School of Microbiology and APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|
28
|
Munoz J, James K, Bottacini F, Van Sinderen D. Biochemical analysis of cross-feeding behaviour between two common gut commensals when cultivated on plant-derived arabinogalactan. Microb Biotechnol 2020; 13:1733-1747. [PMID: 32385941 PMCID: PMC7533333 DOI: 10.1111/1751-7915.13577] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/30/2020] [Accepted: 03/30/2020] [Indexed: 12/12/2022] Open
Abstract
In this paper, we reveal and characterize cross-feeding behaviour between the common gut commensal Bacteroides cellulosilyticus (Baccell) and certain bifidobacterial strains, including Bifidobacterium breve UCC2003, when grown on a medium containing Larch Wood Arabinogalactan (LW-AG). We furthermore show that cross-feeding is dependent on the release of β-1,3-galacto-di/trisaccharides (β-1,3-GOS), and identified that the bga gene cluster of B. breve UCC2003 allows β-1,3-GOS metabolism. The product of bgaB is presumed to be responsible for the import of β-1,3-GOS, while the bgaA gene product, a glycoside hydrolase family 2 member, was shown to hydrolyse both β-1,3-galactobiose and β-1,3-galactotriose into galactose monomers. This study advances our understanding of strain-specific syntrophic interactions between two glycan degraders in the human gut in the presence of AG-type dietary polysaccharides.
Collapse
Affiliation(s)
- Jose Munoz
- Microbial Enzymology GroupDepartment of Applied SciencesNorthumbria UniversityNewcastle Upon TyneNE1 8STUK
| | - Kieran James
- School of Microbiology & APC Microbiome IrelandUniversity College CorkIreland University College CorkCorkIreland
| | - Francesca Bottacini
- School of Microbiology & APC Microbiome IrelandUniversity College CorkIreland University College CorkCorkIreland
| | - Douwe Van Sinderen
- School of Microbiology & APC Microbiome IrelandUniversity College CorkIreland University College CorkCorkIreland
| |
Collapse
|
29
|
Wong CB, Odamaki T, Xiao JZ. Insights into the reason of Human-Residential Bifidobacteria (HRB) being the natural inhabitants of the human gut and their potential health-promoting benefits. FEMS Microbiol Rev 2020; 44:369-385. [PMID: 32319522 PMCID: PMC7326374 DOI: 10.1093/femsre/fuaa010] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Members of Bifidobacterium are among the first microbes to colonise the human gut, and certain species are recognised as the natural resident of human gut microbiota. Their presence in the human gut has been associated with health-promoting benefits and reduced abundance of this genus is linked with several diseases. Bifidobacterial species are assumed to have coevolved with their hosts and include members that are naturally present in the human gut, thus recognised as Human-Residential Bifidobacteria (HRB). The physiological functions of these bacteria and the reasons why they occur in and how they adapt to the human gut are of immense significance. In this review, we provide an overview of the biology of bifidobacteria as members of the human gut microbiota and address factors that contribute to the preponderance of HRB in the human gut. We highlight some of the important genetic attributes and core physiological traits of these bacteria that may explain their adaptive advantages, ecological fitness, and competitiveness in the human gut. This review will help to widen our understanding of one of the most important human commensal bacteria and shed light on the practical consideration for selecting bifidobacterial strains as human probiotics.
Collapse
Affiliation(s)
- Chyn Boon Wong
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252–8583 Japan
| | - Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252–8583 Japan
| | - Jin-zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., 5-1-83, Higashihara, Zama, Kanagawa, 252–8583 Japan
| |
Collapse
|
30
|
Kobayashi M, Kumagai Y, Yamamoto Y, Yasui H, Kishimura H. Identification of a Key Enzyme for the Hydrolysis of β-(1→3)-Xylosyl Linkage in Red Alga Dulse Xylooligosaccharide from Bifidobacterium Adolescentis. Mar Drugs 2020; 18:E174. [PMID: 32245121 PMCID: PMC7142710 DOI: 10.3390/md18030174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 01/15/2023] Open
Abstract
Red alga dulse possesses a unique xylan, which is composed of a linear β-(1→3)/β-(1→4)-xylosyl linkage. We previously prepared characteristic xylooligosaccharide (DX3, (β-(1→3)-xylosyl-xylobiose)) from dulse. In this study, we evaluated the prebiotic effect of DX3 on enteric bacterium. Although DX3 was utilized by Bacteroides sp. and Bifidobacterium adolescentis, Bacteroides Ksp. grew slowly as compared with β-(1→4)-xylotriose (X3) but B. adolescentis grew similar to X3. Therefore, we aimed to find the key DX3 hydrolysis enzymes in B. adolescentis. From bioinformatics analysis, two enzymes from the glycoside hydrolase family 43 (BAD0423: subfamily 12 and BAD0428: subfamily 11) were selected and expressed in Escherichia coli. BAD0423 hydrolyzed β-(1→3)-xylosyl linkage in DX3 with the specific activity of 2988 mU/mg producing xylose (X1) and xylobiose (X2), and showed low activity on X2 and X3. BAD0428 showed high activity on X2 and X3 producing X1, and the activity of BAD0428 on DX3 was 1298 mU/mg producing X1. Cooperative hydrolysis of DX3 was found in the combination of BAD0423 and BAD0428 producing X1 as the main product. From enzymatic character, hydrolysis of X3 was completed by one enzyme BAD0428, whereas hydrolysis of DX3 needed more than two enzymes.
Collapse
Affiliation(s)
- Manami Kobayashi
- Chair of Marine Chemical Resource Development, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan (Y.Y.)
| | - Yuya Kumagai
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan;
| | - Yohei Yamamoto
- Chair of Marine Chemical Resource Development, Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan (Y.Y.)
| | - Hajime Yasui
- Laboratory of Humans and the Ocean, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan;
| | - Hideki Kishimura
- Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan;
| |
Collapse
|
31
|
Fujita K, Sasaki Y, Kitahara K. Degradation of plant arabinogalactan proteins by intestinal bacteria: characteristics and functions of the enzymes involved. Appl Microbiol Biotechnol 2019; 103:7451-7457. [PMID: 31384991 DOI: 10.1007/s00253-019-10049-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022]
Abstract
Arabinogalactan proteins (AGPs) are complex plant proteoglycans that function as dietary fiber utilized by human intestinal bacteria such as Bifidobacterium and Bacteroides species. However, the degradative mechanism is unknown because of the complexity of sugar chains of AGPs as well as variation among plant species and organs. Recently, AGP degradative enzymes have been characterized in Bifidobacterium and Bacteroides species. In this review, we summarize the characteristics and functions of AGP degradative enzymes in human intestinal bacteria.
Collapse
Affiliation(s)
- Kiyotaka Fujita
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan. .,The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan.
| | - Yuki Sasaki
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Kanefumi Kitahara
- Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan.,The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| |
Collapse
|
32
|
Singh RP. Glycan utilisation system in Bacteroides and Bifidobacteria and their roles in gut stability and health. Appl Microbiol Biotechnol 2019; 103:7287-7315. [PMID: 31332487 DOI: 10.1007/s00253-019-10012-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023]
Abstract
Gut residential hundred trillion microbial cells are indispensable for maintaining gut homeostasis and impact on host physiology, development and immune systems. Many of them have displayed excellence in utilising dietary- and host-derived complex glycans and are producing useful postbiotics including short-chain fatty acids to primarily fuel different organs of the host. Therefore, employing individual microbiota is nowadays becoming a propitious target in biomedical for improving gut dysbiosis conditions of the host. Among other gut microbial communities, Bacteroides and Bifidobacteria are coevolved to utilise diverse ranges of diet- and host-derived glycans through harmonising distinct glycan utilisation systems. These gut symbionts frequently share digested oligosaccharides, carbohydrate-active enzymes and fermentable intermediate molecules for sustaining gut microbial symbiosis and improving fitness of own or other communities. Genomics approaches have provided unprecedented insights into these functions, but their precise mechanisms of action have poorly known. Sympathetic glycan-utilising strategy of each gut commensal will provide overview of mechanistic dynamic nature of the gut environment and will then assist in applying aptly personalised nutritional therapy. Thus, the review critically summarises cutting edge understanding of major plant- and host-derived glycan-utilising systems of Bacteroides and Bifidobacteria. Their evolutionary adaptation to gut environment and roles of postbiotics in human health are also highlighted.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Food and Nutritional Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), SAS, Nagar, Punjab, 140306, India.
| |
Collapse
|
33
|
Two Novel α-l-Arabinofuranosidases from Bifidobacterium longum subsp. longum Belonging to Glycoside Hydrolase Family 43 Cooperatively Degrade Arabinan. Appl Environ Microbiol 2019; 85:AEM.02582-18. [PMID: 30635377 DOI: 10.1128/aem.02582-18] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/30/2018] [Indexed: 11/20/2022] Open
Abstract
Arabinose-containing poly- or oligosaccharides are suitable carbohydrate sources for Bifidobacterium longum subsp. longum However, their degradation pathways are poorly understood. In this study, we cloned and characterized the previously uncharacterized glycoside hydrolase family 43 (GH43) enzymes B. longum subsp. longum ArafC (BlArafC; encoded by BLLJ_1852) and B. longum subsp. longum ArafB (BlArafB; encoded by BLLJ_1853) from B. longum subsp. longum JCM 1217. Both enzymes exhibited α-l-arabinofuranosidase activity toward p-nitrophenyl-α-l-arabinofuranoside but no activity toward p-nitrophenyl-β-d-xylopyranoside. The specificities of the two enzymes for l-arabinofuranosyl linkages were different. BlArafC catalyzed the hydrolysis of α1,2- and α1,3-l-arabinofuranosyl linkages found on the side chains of both arabinan and arabinoxylan. It released l-arabinose 100 times faster from arabinan than from arabinoxylan but did not act on arabinogalactan. On the other hand, BlArafB catalyzed the hydrolysis of the α1,5-l-arabinofuranosyl linkage found on the arabinan backbone. It released l-arabinose from arabinan but not from arabinoxylan or arabinogalactan. Coincubation of BlArafC and BlArafB revealed that these two enzymes are able to degrade arabinan in a synergistic manner. Both enzyme activities were suppressed with EDTA treatment, suggesting that they require divalent metal ions. The GH43 domains of BlArafC and BlArafB are classified into GH43 subfamilies 27 and 22, respectively, but show very low similarity (less than 15% identity) with other biochemically characterized members in the corresponding subfamilies. The B. longum subsp. longum strain lacking the GH43 gene cluster that includes BLLJ_1850 to BLLJ_1853 did not grow in arabinan medium, suggesting that BlArafC and BlArafB are important for assimilation of arabinan.IMPORTANCE We identified two novel α-l-arabinofuranosidases, BlArafC and BlArafB, from B. longum subsp. longum JCM 1217, both of which are predicted to be extracellular membrane-bound enzymes. The former specifically acts on α1,2/3-l-arabinofuranosyl linkages, while the latter acts on the α1,5-l-arabinofuranosyl linkage. These enzymes cooperatively degrade arabinan and are required for the efficient growth of bifidobacteria in arabinan-containing medium. The genes encoding these enzymes are located side by side in a gene cluster involved in metabolic pathways for plant-derived polysaccharides, which may confer adaptability in adult intestines.
Collapse
|