1
|
Song T, Li C, Jin K, Xia Y. The Forkhead Box Gene, MaSep1, Negatively Regulates UV- and Thermo-Tolerances and Is Required for Microcycle Conidiation in Metarhizium acridum. J Fungi (Basel) 2024; 10:544. [PMID: 39194870 DOI: 10.3390/jof10080544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Insect pathogenic fungi have shown great potential in agricultural pest control. Conidiation is crucial for the survival of filamentous fungi, and dispersal occurs through two methods: normal conidiation, where conidia differentiate from mycelium, and microcycle conidiation, which involves conidial budding. The conidiation process is related to cell separation. The forkhead box gene Sep1 in Schizosaccharomyces pombe plays a crucial role in cell separation. Nevertheless, the function of Sep1 has not been clarified in filamentous fungi. Here, MaSep1, the homolog of Sep1 in Metarhizium acridum, was identified and subjected to functional analysis. The findings revealed that conidial germination of the MaSep1-deletion strain (ΔMaSep1) was accelerated and the time for 50% germination rate of conidial was shortened by 1 h, while the conidial production of ΔMaSep1 was considerably reduced. The resistances to heat shock and UV-B irradiation of ΔMaSep1 were enhanced, and the expression of some genes involved in DNA damage repair and heat shock response was significantly increased in ΔMaSep1. The disruption of MaSep1 had no effect on the virulence of M. acridum. Interestingly, ΔMaSep1 conducted the normal conidiation on the microcycle conidiation medium, SYA. Furthermore, 127 DEGs were identified by RNA-Seq between the wild-type and ΔMaSep1 strains during microcycle conidiation, proving that MaSep1 mediated the conidiation pattern shift by governing some genes associated with conidiation, cell division, and cell wall formation.
Collapse
Affiliation(s)
- Tiantian Song
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Chan Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| |
Collapse
|
2
|
Yao G, Han N, Zheng H, Wang L. The Histone Deacetylase HstD Regulates Fungal Growth, Development and Secondary Metabolite Biosynthesis in Aspergillus terreus. Int J Mol Sci 2023; 24:12569. [PMID: 37628749 PMCID: PMC10454297 DOI: 10.3390/ijms241612569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Histone acetylation modification significantly affects secondary metabolism in filamentous fungi. However, how histone acetylation regulates secondary metabolite synthesis in the lovastatin (a lipid-lowering drug) producing Aspergillus terreus remains unknown because protein is involved and has been identified in this species. Here, the fungal-specific histone deacetylase gene, hstD, was characterized through functional genomics in two marine-derived A. terreus strains, Mj106 and RA2905. The results showed that the ablation of HstD resulted in reduced mycelium growth, less conidiation, and decreased lovastatin biosynthesis but significantly increased terrein biosynthesis. However, unlike its homologs in yeast, HstD was not required for fungal responses to DNA damage agents, indicating that HstD likely plays a novel role in the DNA damage repair process in A. terreus. Furthermore, the loss of HstD resulted in a significant upregulation of H3K56 and H3K27 acetylation when compared to the wild type, suggesting that epigenetic functions of HstD, as a deacetylase, target H3K27 and H3K56. Additionally, a set of no-histone targets with potential roles in fungal growth, conidiation, and secondary metabolism were identified for the first time using acetylated proteomic analysis. In conclusion, we provide a comprehensive analysis of HstD for its targets in histone or non-histone and its roles in fungal growth and development, DNA damage response, and secondary metabolism in A. terreus.
Collapse
Affiliation(s)
- Guangshan Yao
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou 350108, China (N.H.); (H.Z.)
| | - Na Han
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou 350108, China (N.H.); (H.Z.)
- Key Laboratory of Marine Drugs, The Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Huawei Zheng
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou 350108, China (N.H.); (H.Z.)
| | - Lu Wang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Institute of Oceanography, Minjiang University, Fuzhou 350108, China (N.H.); (H.Z.)
| |
Collapse
|
3
|
Proteomic Analysis of a Hypervirulent Mutant of the Insect-Pathogenic Fungus Metarhizium anisopliae Reveals Changes in Pathogenicity and Terpenoid Pathways. Microbiol Spectr 2022; 10:e0076022. [PMID: 36314906 PMCID: PMC9769655 DOI: 10.1128/spectrum.00760-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Metarhizium anisopliae is a commercialized entomopathogenic fungus widely used for the control of insect pests. Significant efforts have been expended to screen and/or select for isolates that display increased virulence toward target insect hosts. UV-induced mutagenesis has resulted in the isolation of a number of hypervirulent M. anisopliae mutants; however, the underlying mechanisms that have led to the desired phenotype have yet to be characterized. Here, we performed a comparative proteomic analysis of an M. anisopliae UV-induced hypervirulent mutant (MaUV-HV) and its wild-type parent using tandem mass tag (TMT)-based quantitative proteomics. A total of 842 differentially abundant proteins were identified, with 360 being more abundant in the hypervirulent mutant and 482 in the wild-type parent. In terms of differential abundance, the critical pathways affected included those involved in secondary metabolite production, virulence, and stress response. In addition, a number of genes involved in terpenoid biosynthesis pathways were identified as significantly mutated in the MaUV-HV strain. In particular, mutations in the farnesyl pyrophosphate synthase (FPPS1) and geranylgeranyl diphosphate synthase (GGPPS5) genes were seen. The effects of the FPPS1 mutation were confirmed via the construction and characterization of a targeted gene knockout strain (ΔMaFPPS1). The overall effects of the mutations were increased resistance to UV stress, faster growth, and increased virulence. These results provide mechanistic insights and new avenues for modulating fungal virulence in efforts to increase the biological control potential of insect-pathogenic fungi. IMPORTANCE The mechanisms that underlie and contribute to microbial (fungal) virulence are known to be varied; however, the identification of contributing pathways beyond known virulence factors remains difficult. Using TMT-based proteomic analyses, changes in the proteomes of an M. anisopliae hypervirulent mutant and its wild-type parent were determined. These data revealed alterations in pathogenicity, stress, and growth/developmental pathways, as well as pathways not previously known to affect virulence. These include terpenoid pathways that can be manipulated to increase the efficacy of fungal insect biological control agents for increased sustainable pest control.
Collapse
|
4
|
Song L, Xue X, Wang S, Li J, Jin K, Xia Y. MaAts, an Alkylsulfatase, Contributes to Fungal Tolerances against UV-B Irradiation and Heat-Shock in Metarhizium acridum. J Fungi (Basel) 2022; 8:jof8030270. [PMID: 35330272 PMCID: PMC8951457 DOI: 10.3390/jof8030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 11/30/2022] Open
Abstract
Sulfatases are commonly divided into three classes: type I, type II, and type III sulfatases. The type III sulfatase, alkylsulfatase, could hydrolyze the primary alkyl sulfates, such as sodium dodecyl sulfate (SDS) and sodium octyl sulfate. Thus, it has the potential application of SDS biodegradation. However, the roles of alkylsulfatase in biological control fungus remain unclear. In this study, an alkylsulfatase gene MaAts was identified from Metarhizium acridum. The deletion strain (ΔMaAts) and the complemented strain (CP) were constructed to reveal their functions in M. acridum. The activity of alkylsulfatase in ΔMaAts was dramatically reduced compared to the wild-type (WT) strain. The loss of MaAts delayed conidial germination, conidiation, and significantly declined the fungal tolerances to UV-B irradiation and heat-shock, while the fungal conidial yield and virulence were unaffected in M. acridum. The transcription levels of stress resistance-related genes were significantly changed after MaAts inactivation. Furthermore, digital gene expression profiling showed that 512 differential expression genes (DEGs), including 177 up-regulated genes and 335 down-regulated genes in ΔMaAts, were identified. Of these DEGs, some genes were involved in melanin synthesis, cell wall integrity, and tolerances to various stresses. These results indicate that MaAts and the DEGs involved in fungal stress tolerances may be candidate genes to be adopted to improve the stress tolerances of mycopesticides.
Collapse
Affiliation(s)
- Lei Song
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Xiaoning Xue
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Shuqin Wang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Juan Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
- Correspondence: (K.J.); (Y.X.); Tel.: +86-23-65120990 (Y.X.)
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (L.S.); (X.X.); (S.W.); (J.L.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing 401331, China
- Correspondence: (K.J.); (Y.X.); Tel.: +86-23-65120990 (Y.X.)
| |
Collapse
|
5
|
Enhancing the Biocontrol Potential of the Entomopathogenic Fungus in Multiple Respects via the Overexpression of a Transcription Factor Gene MaSom1. J Fungi (Basel) 2022; 8:jof8020105. [PMID: 35205860 PMCID: PMC8879238 DOI: 10.3390/jof8020105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/22/2022] Open
Abstract
Entomopathogenic fungi play important roles in the control of populations of agricultural and disease vector pests in nature. The shortcomings of mycoinsecticides for pest management in the field cannot be completely overcome by improving single biocontrol properties of fungi. Therefore, enhancing the biocontrol potential of entomopathogenic fungi in multiple respects by genetic engineering is desirable. Transcription factors are usually involved in various important processes during fungal growth and pathogenesis via regulating a series of genes, and are important candidates for fungal improvement via genetic engineering. Herein, overexpression of MaSom1, a key transcription factor gene in the cAMP/PKA pathway, improves the biocontrol traits of Metarhizium acridum in multiple respects. When compared with WT, the MaSom1-overexpression strains exhibit enhanced tolerances to UV-B and heat shock, with increased mean 50% inhibition times by 66.9% and 155.2%, respectively. Advanced conidiation emerged accompanied by increased conidial yield up to 3.89 times after 3-day incubation for the MaSom1-overexpression strains compared to WT. Furthermore, when compared with WT, the virulence of the MaSom1-overexpression strains was also increased with the mean 50% lethality times reduced by 21.8% to 23.8%. Taken together, the MaSom1-overexpression improved the biocontrol potential of M. acridum in multiple respects. Our results provide insights into the application of key transcription factors for genetic engineering and offer a credible way to further improve the biocontrol potential of entomopathogenic fungi.
Collapse
|
6
|
Dipeptidase PEPDA is required for the conidiation pattern shift in Metarhizium acridum. Appl Environ Microbiol 2021; 87:e0090821. [PMID: 34288712 DOI: 10.1128/aem.00908-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Filamentous fungi conduct two types of conidiation, typical conidiation from mycelia and microcycle conidiation (MC). Fungal conidiation can shift between the two patterns, which involved a large number of genes in the regulation of this process. In this study, we investigated the role of a dipeptidase gene pepdA in conidiation pattern shift in Metarhizium acridum, which is upregulated in MC pattern compared to typical conidiation. Results showed that disruption of the pepdA resulted in a shift of conidiation pattern from MC to typical conidiation. Metabolomic analyses of amino acids showed that the levels of 19 amino acids significantly changed in ΔpepdA mutant. The defect of MC in ΔpepdA can be rescued when nonpolar amino acids, α-alanine, β-alanine or proline, were added into sucrose yeast extract agar (SYA) medium. Digital gene expression profiling analysis revealed that PEPDA mediated transcription of sets of genes which were involved in hyphal growth and development, sporulation, cell division, and amino acid metabolism. Our results demonstrated that PEPDA played important roles in the regulation of MC by manipulating the levels of amino acids in M. acridum. IMPORTANCE Conidia, as the asexual propagules in many fungi, are start and end of fungal lifecycle. In entomopathogenic fungi, conidia are the infective form essential for their pathogenicity. Filamentous fungi conduct two types of conidiation, typical conidiation from mycelia and microcycle conidiation. The mechanisms of the shift between the two conidiation patterns remain to be elucidated. In this study, we demonstrated that the dipeptidase PEPDA, a key enzyme from the insect-pathogenic fungus Metarhizium acridum for the hydrolysis of dipeptides, is associated with a shift of conidiation pattern. The conidiation pattern of the ΔpepdA mutant was restored when supplemented with the nonpolar amino acids rather than polar amino acids. Therefore, this report highlights that the dipeptidase PEPDA regulates MC by manipulating the levels of amino acids in M. acridum.
Collapse
|
7
|
Zheng R, Xia Y, Keyhani NO. Differential responses of the antennal proteome of male and female migratory locusts to infection by a fungal pathogen. J Proteomics 2020; 232:104050. [PMID: 33217581 DOI: 10.1016/j.jprot.2020.104050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/04/2020] [Accepted: 11/15/2020] [Indexed: 11/24/2022]
Abstract
The narrow host range entomopathogenic fungus, Metarhizium acridum, is an environmentally friendly acridid specific pathogen used for locust control. The locust is capable of responding within hours of infection, however, little is known concerning how the locust detects the pathogen. Here, we have identified 3213 proteins in the infected antennal proteome of the migratory locust, Locusta migratoria. iTRAQ comparative analyses of antennal proteomes identified 194 differentially abundant proteins (DAPs) between uninfected and infected males, 218 DAPs between uninfected and infected females, and 240 DAPs between infected males and infected females. In relation to olfaction, a total of 29 chemosensory proteins (CSPs), 9 odorant binding proteins (OBPs), 31 odorant receptors (ORs), and 8 ionotropic receptors (IRs) were differentially abundant after M. acridum infection, with a subset of 12 proteins found in both infected male and female antennae not present in uninfected individuals. The time course of the gene expression profiles of olfaction related DAPs were investigated by quantitative real-time PCR (qRT-PCR). Our data indicate significant changes in the antennal proteomes of male and female locusts in response to a microbial pathogen, highlighting the potential participation of olfactory processes in pathogen detection and response. BIOLOGICAL SIGNIFICANCE: The ability of an organism to detect microbial pathogens is essential for mounting a response to mitigate the spread of the infection. Using iTRAQ-based proteomic analyses changes in the protein repertoire of the antennae of male and female locusts in response to infection by a host-specific pathogen were determined. These data show proteomic alterations that are also sex-specific, identifying members of olfactory pathways that are modified in response to infection. Our data identify antennal and related olfactory proteins that are candidates for mediating host detection of pathogens, and that may contribute to subsequent behavioral and/or immune responses of the host to the infection challenge.
Collapse
Affiliation(s)
- Renwen Zheng
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 400030, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 400030, China.
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Bldg. 981, Museum Rd., Gainesville FL32611, USA.
| |
Collapse
|
8
|
Li J, Guo M, Cao Y, Xia Y. Disruption of a C69-Family Cysteine Dipeptidase Gene Enhances Heat Shock and UV-B Tolerances in Metarhizium acridum. Front Microbiol 2020; 11:849. [PMID: 32431687 PMCID: PMC7214794 DOI: 10.3389/fmicb.2020.00849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 04/08/2020] [Indexed: 12/14/2022] Open
Abstract
In fungi, peptidases play a crucial role in adaptability. At present, the roles of peptidases in ultraviolet (UV) and thermal tolerance are still unclear. In this study, a C69-family cysteine dipeptidase of the entomopathogenic fungus Metarhizium acridum, MaPepDA, was expressed in Escherichia coli. The purified enzyme had a molecular mass of 56-kDa, and displayed a high activity to dipeptide substrate with an optimal Ala-Gln hydrolytic activity at about pH 6.0 and 55°C. It was demonstrated that MaPepDA is an intracellular dipeptidase localized in the cytosol, and that it is expressed during the whole fungal growth. Disruption of the MaPepDA gene increased conidial germination, growth rate, and significantly improved the tolerance to UV-B and heat stress in M. acridum. However, virulence and conidia production was largely unaffected in the ΔMaPepDA mutant. Digital gene expression data revealed that the ΔMaPepDA mutant had a higher UV-B and heat-shock tolerance compared to wild type by regulating transcription of sets of genes involved in cell surface component, cell growth, DNA repair, amino acid metabolism, sugar metabolism and some important signaling pathways of stimulation. Our results suggested that disruption of the MaPepDA could potentially improve the performance of fungal pesticides in the field application with no adverse effect on virulence and conidiation.
Collapse
Affiliation(s)
- Juan Li
- School of Life Sciences, Chongqing University, Chongqing, China.,Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China.,Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing, China
| | - Mei Guo
- School of Life Sciences, Chongqing University, Chongqing, China.,Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China.,Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing, China
| | - Yueqing Cao
- School of Life Sciences, Chongqing University, Chongqing, China.,Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China.,Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing, China
| | - Yuxian Xia
- School of Life Sciences, Chongqing University, Chongqing, China.,Chongqing Engineering Research Center for Fungal Insecticides, Chongqing, China.,Key Laboratory of Gene Function and Regulation Technologies, Chongqing Municipal Education Commission, Chongqing, China
| |
Collapse
|
9
|
Guo H, Wang H, Keyhani NO, Xia Y, Peng G. Disruption of an adenylate-forming reductase required for conidiation, increases virulence of the insect pathogenic fungus Metarhizium acridum by enhancing cuticle invasion. PEST MANAGEMENT SCIENCE 2020; 76:758-768. [PMID: 31392798 DOI: 10.1002/ps.5576] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 07/27/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Metarhizium acridum, is a specific acridid pathogen developed for use against the migratory locust (Locusta migratoria manilensis). Adenylate-forming reductases (AFRs) include enzymes that are involved in natural product biosynthesis. Here, we genetically characterize the functions of a class IV AFR in M. acridum (MaAfrIV ) on fungal development and virulence. RESULTS Gene expression analyses indicated MaAfrIV was induced on locust wings early during the infection process. Surprisingly, loss of MaAfrIV increased virulence (25.20% decrease in the median lethal time) against the locust in topical bioassays but was no different than the wild type when the cuticle was bypassed by direct infection of conidia into the insect hemocoel. Virulence markers including protease (Pr1) expression and appressorial turgor pressure were higher in the mutant than the parent strain. No difference was seen in the expression of host immune genes (Toll pathway) or in polyphenol oxidase (PPO) activity in locusts infected by the ΔMaAfrIV or wild type strains. However, the ΔMaAfrIV strain was unable to successfully sporulate on dead cadavers. CONCLUSION Disruption of MaAfrIV increased fungal virulence by promoting insect cuticle invasion without altering host immune response or fungal immune evasion. Although loss of MaAfrIV conferred an apparent benefit to the fungus in terms of enhanced virulence, a significant trade-off was seen in the inability of the fungus to sporulate on the cadaver. As conidiation on the cadaver is essential for subsequent propagation in the environment, loss of MaAfrIV can reduce the engineering strains survivability in the field and improve the safety. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haoyu Guo
- Chongqing Engineering Research Center for Fungal Insecticides and Key Lab of Functional Gene and Regulation Technology under Chongqing Municipal Education Commission, School of Life Sciences, Chongqing University, Chongqing, China
| | - Hongjuan Wang
- Chongqing Engineering Research Center for Fungal Insecticides and Key Lab of Functional Gene and Regulation Technology under Chongqing Municipal Education Commission, School of Life Sciences, Chongqing University, Chongqing, China
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Yuxian Xia
- Chongqing Engineering Research Center for Fungal Insecticides and Key Lab of Functional Gene and Regulation Technology under Chongqing Municipal Education Commission, School of Life Sciences, Chongqing University, Chongqing, China
| | - Guoxiong Peng
- Chongqing Engineering Research Center for Fungal Insecticides and Key Lab of Functional Gene and Regulation Technology under Chongqing Municipal Education Commission, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
10
|
Huang S, Keyhani NO, Zhao X, Zhang Y. The Thm1 Zn(II)2Cys6transcription factor contributes to heat, membrane integrity and virulence in the insect pathogenic fungusBeauveria bassiana. Environ Microbiol 2019; 21:3153-3171. [DOI: 10.1111/1462-2920.14718] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Shuaishuai Huang
- Biotechnology Research Center, Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest UniversitySouthwest University Chongqing 400715 P. R. China
- Department of Microbiology and Cell ScienceUniversity of Florida Gainesville Florida 32611 USA
| | - Nemat O. Keyhani
- Department of Microbiology and Cell ScienceUniversity of Florida Gainesville Florida 32611 USA
| | - Xin Zhao
- Biotechnology Research Center, Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest UniversitySouthwest University Chongqing 400715 P. R. China
| | - Yongjun Zhang
- Biotechnology Research Center, Academy of Agricultural Sciences, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest UniversitySouthwest University Chongqing 400715 P. R. China
| |
Collapse
|