1
|
Liu Y, Wang L, Feng Y, Liao Q, Lei X, Hu X, Zhou L, Zhang Y. Untargeted Metabolomics Approach for the Discovery of Salinity-Related Alkaloids in a Stony Coral-Derived Fungus Aspergillus terreus. Int J Mol Sci 2024; 25:10544. [PMID: 39408873 PMCID: PMC11476925 DOI: 10.3390/ijms251910544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
As a part of the important species that form coral reef ecosystems, stony corals have become a potential source of pharmacologically active lead compounds for an increasing number of compounds with novel chemical structures and strong biological activity. In this study, the secondary metabolites and biological activities are reported for Aspergillus terreus C21-1, an epiphytic fungus acquired from Porites pukoensis collected from Xuwen Coral Reef Nature Reserve, China. This strain was cultured in potato dextrose broth (PDB) media and rice media with different salinities based on the OSMAC strategy. The mycelial morphology and high-performance thin layer chromatographic (HPTLC) fingerprints of the fermentation extracts together with bioautography were recorded. Furthermore, an untargeted metabolomics study was performed using principal component analysis (PCA), orthogonal projection to latent structure discriminant analysis (O-PLSDA), and feature-based molecular networking (FBMN) to analyze their secondary metabolite variations. The comprehensive results revealed that the metabolite expression in A. terreus C21-1 differed significantly between liquid and solid media. The metabolites produced in liquid medium were more diverse but less numerous compared to those in solid medium. Meanwhile, the mycelial morphology underwent significant changes with increasing salinity under PDB cultivation conditions, especially in PDB with 10% salinity. Untargeted metabolomics revealed significant differences between PDB with 10% salinity and other media, as well as between liquid and solid media. FBMN analysis indicated that alkaloids, which might be produced under high salt stress, contributed largely to the differences. The biological activities results showed that six groups of crude extracts exhibited acetylcholinesterase (AChE) inhibitory activities, along with 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging and antibacterial activities. The results of this study showed that the increase in salinity favored the production of unique alkaloid compounds by A. terreus C21-1.
Collapse
Affiliation(s)
- Yayue Liu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugsand Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (L.W.); (Y.F.); (Q.L.); (X.L.); (X.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Li Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugsand Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (L.W.); (Y.F.); (Q.L.); (X.L.); (X.H.)
| | - Yunkai Feng
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugsand Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (L.W.); (Y.F.); (Q.L.); (X.L.); (X.H.)
| | - Qingnan Liao
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugsand Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (L.W.); (Y.F.); (Q.L.); (X.L.); (X.H.)
| | - Xiaoling Lei
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugsand Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (L.W.); (Y.F.); (Q.L.); (X.L.); (X.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xueqiong Hu
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugsand Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (L.W.); (Y.F.); (Q.L.); (X.L.); (X.H.)
| | - Longjian Zhou
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugsand Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (L.W.); (Y.F.); (Q.L.); (X.L.); (X.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Engineering Laboratory for Marine Biological Products, Guangdong Provincial Center for Modern Agricultural Scientific Innovation, Shenzhen Institute of Guangdong Ocean University, Zhanjiang Municipal Key Laboratory of Marine Drugsand Nutrition for Brain Health, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Y.L.); (L.W.); (Y.F.); (Q.L.); (X.L.); (X.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524088, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
2
|
Xie L, Zhou L, Zhang R, Zhou H, Yang Y. Material Composition Characteristics of Aspergillus cristatus under High Salt Stress through LC-MS Metabolomics. Molecules 2024; 29:2513. [PMID: 38893389 PMCID: PMC11173666 DOI: 10.3390/molecules29112513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/24/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Aspergillus cristatus is a crucial edible fungus used in tea fermentation. In the industrial fermentation process, the fungus experiences a low to high osmotic pressure environment. To explore the law of material metabolism changes during osmotic pressure changes, NaCl was used here to construct different osmotic pressure environments. Liquid chromatography-mass spectrometry (LC-MS) combined with multivariate analysis was performed to analyze the distribution and composition of A. cristatus under different salt concentrations. At the same time, the in vitro antioxidant activity was evaluated. The LC-MS metabolomics analysis revealed significant differences between three A. cristatus mycelium samples grown on media with and without NaCl concentrations of 8% and 18%. The contents of gibberellin A3, A124, and prostaglandin A2 related to mycelial growth and those of arabitol and fructose-1,6-diphosphate related to osmotic pressure regulation were significantly reduced at high NaCl concentrations. The biosynthesis of energy-related pantothenol and pantothenic acid and antagonism-related fluvastatin, aflatoxin, and alternariol significantly increased at high NaCl concentrations. Several antioxidant capacities of A. cristatus mycelia were directly related to osmotic pressure and exhibited a significant downward trend with an increase in environmental osmotic pressure. The aforementioned results indicate that A. cristatus adapts to changes in salt concentration by adjusting their metabolite synthesis. At the same time, a unique set of strategies was developed to cope with high salt stress, including growth restriction, osmotic pressure balance, oxidative stress response, antioxidant defense, and survival competition.
Collapse
Affiliation(s)
| | - Lihong Zhou
- Key Laboratory of Plant Resource Conservation and Germplasm lnnovation in Mountainous Region (Ministry of Education), College of Life Sciences, Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China; (L.X.); (R.Z.); (H.Z.); (Y.Y.)
| | | | | | | |
Collapse
|
3
|
Yu J, Zhang Y, Liu H, Liu Y, Mohsin A, Liu Z, Zheng Y, Xing J, Han J, Zhuang Y, Guo M, Wang Z. Temporal dynamics of stress response in Halomonas elongata to NaCl shock: physiological, metabolomic, and transcriptomic insights. Microb Cell Fact 2024; 23:88. [PMID: 38519954 PMCID: PMC10960403 DOI: 10.1186/s12934-024-02358-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The halophilic bacterium Halomonas elongata is an industrially important strain for ectoine production, with high value and intense research focus. While existing studies primarily delve into the adaptive mechanisms of this bacterium under fixed salt concentrations, there is a notable dearth of attention regarding its response to fluctuating saline environments. Consequently, the stress response of H. elongata to salt shock remains inadequately understood. RESULTS This study investigated the stress response mechanism of H. elongata when exposed to NaCl shock at short- and long-time scales. Results showed that NaCl shock induced two major stresses, namely osmotic stress and oxidative stress. In response to the former, within the cell's tolerable range (1-8% NaCl shock), H. elongata urgently balanced the surging osmotic pressure by uptaking sodium and potassium ions and augmenting intracellular amino acid pools, particularly glutamate and glutamine. However, ectoine content started to increase until 20 min post-shock, rapidly becoming the dominant osmoprotectant, and reaching the maximum productivity (1450 ± 99 mg/L/h). Transcriptomic data also confirmed the delayed response in ectoine biosynthesis, and we speculate that this might be attributed to an intracellular energy crisis caused by NaCl shock. In response to oxidative stress, transcription factor cysB was significantly upregulated, positively regulating the sulfur metabolism and cysteine biosynthesis. Furthermore, the upregulation of the crucial peroxidase gene (HELO_RS18165) and the simultaneous enhancement of peroxidase (POD) and catalase (CAT) activities collectively constitute the antioxidant defense in H. elongata following shock. When exceeding the tolerance threshold of H. elongata (1-13% NaCl shock), the sustained compromised energy status, resulting from the pronounced inhibition of the respiratory chain and ATP synthase, may be a crucial factor leading to the stagnation of both cell growth and ectoine biosynthesis. CONCLUSIONS This study conducted a comprehensive analysis of H. elongata's stress response to NaCl shock at multiple scales. It extends the understanding of stress response of halophilic bacteria to NaCl shock and provides promising theoretical insights to guide future improvements in optimizing industrial ectoine production.
Collapse
Affiliation(s)
- Junxiong Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Yue Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Hao Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Yuxuan Liu
- Department of Chemical Engineering for Energy Resources, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Zebo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Yanning Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Jianmin Xing
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, PR China
| | - Jing Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichen West Road, Chaoyang District, Beijing, 100101, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China.
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China.
| |
Collapse
|
4
|
Ding X, Liu W, Liu K, Gao X, Liu Y. The Deletion of LeuRS Revealed Its Important Roles in Osmotic Stress Tolerance, Amino Acid and Sugar Metabolism, and the Reproduction Process of Aspergillus montevidensis. J Fungi (Basel) 2024; 10:36. [PMID: 38248946 PMCID: PMC10820851 DOI: 10.3390/jof10010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024] Open
Abstract
Aspergillus montevidensis is an important domesticated fungus that has been applied to produce many traditional fermented foods under high osmotic conditions. However, the detailed mechanisms of tolerance to osmotic stress remain largely unknown. Here, we construct a target-deleted strain (ΔLeuRS) of A. montevidensis and found that the ΔLeuRS mutants grew slowly and suppressed the development of the cleistothecium compared to the wide-type strains (WT) under salt-stressed and non-stressed conditions. Furthermore, differentially expressed genes (p < 0.001) governed by LeuRS were involved in salt tolerance, ABC transporter, amino acid metabolism, sugar metabolism, and the reproduction process. The ΔLeuRS strains compared to WT strains under short- and long-term salinity stress especially altered accumulation levels of metabolites, such as amino acids and derivatives, carbohydrates, organic acids, and fatty acids. This study provides new insights into the underlying mechanisms of salinity tolerance and lays a foundation for flavor improvement of foods fermented with A. montevidensis.
Collapse
Affiliation(s)
| | | | - Kaihui Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China (Y.L.)
| | | | | |
Collapse
|
5
|
Enuh BM, Nural Yaman B, Tarzi C, Aytar Çelik P, Mutlu MB, Angione C. Whole-genome sequencing and genome-scale metabolic modeling of Chromohalobacter canadensis 85B to explore its salt tolerance and biotechnological use. Microbiologyopen 2022; 11:e1328. [PMID: 36314754 PMCID: PMC9597258 DOI: 10.1002/mbo3.1328] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/01/2022] [Indexed: 11/06/2022] Open
Abstract
Salt tolerant organisms are increasingly being used for the industrial production of high-value biomolecules due to their better adaptability compared to mesophiles. Chromohalobacter canadensis is one of the early halophiles to show promising biotechnology potential, which has not been explored to date. Advanced high throughput technologies such as whole-genome sequencing allow in-depth insight into the potential of organisms while at the frontiers of systems biology. At the same time, genome-scale metabolic models (GEMs) enable phenotype predictions through a mechanistic representation of metabolism. Here, we sequence and analyze the genome of C. canadensis 85B, and we use it to reconstruct a GEM. We then analyze the GEM using flux balance analysis and validate it against literature data on C. canadensis. We show that C. canadensis 85B is a metabolically versatile organism with many features for stress and osmotic adaptation. Pathways to produce ectoine and polyhydroxybutyrates were also predicted. The GEM reveals the ability to grow on several carbon sources in a minimal medium and reproduce osmoadaptation phenotypes. Overall, this study reveals insights from the genome of C. canadensis 85B, providing genomic data and a draft GEM that will serve as the first steps towards a better understanding of its metabolism, for novel applications in industrial biotechnology.
Collapse
Affiliation(s)
- Blaise Manga Enuh
- Biotechnology and Biosafety Department, Graduate and Natural Applied ScienceEskişehir Osmangazi UniversityEskişehirTurkey
| | - Belma Nural Yaman
- Biotechnology and Biosafety Department, Graduate and Natural Applied ScienceEskişehir Osmangazi UniversityEskişehirTurkey
- Department of Biomedical Engineering, Faculty of Engineering and ArchitectureEskişehir Osmangazi UniversityEskişehirTurkey
| | - Chaimaa Tarzi
- School of Computing, Engineering & Digital TechnologiesTeesside UniversityMiddlesbroughUK
| | - Pınar Aytar Çelik
- Biotechnology and Biosafety Department, Graduate and Natural Applied ScienceEskişehir Osmangazi UniversityEskişehirTurkey
- Environmental Protection and Control ProgramEskişehir Osmangazi UniversityEskişehirTurkey
| | - Mehmet Burçin Mutlu
- Department of Biology, Faculty of ScienceEskisehir Technical UniversityEskisehirTurkey
| | - Claudio Angione
- School of Computing, Engineering & Digital TechnologiesTeesside UniversityMiddlesbroughUK
- Centre for Digital InnovationTeesside UniversityMiddlesbroughUK
- National Horizons CentreTeesside UniversityDarlingtonUK
| |
Collapse
|
6
|
Borin GP, Oliveira JVDC. Assessing the intracellular primary metabolic profile of Trichoderma reesei and Aspergillus niger grown on different carbon sources. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:998361. [PMID: 37746225 PMCID: PMC10512294 DOI: 10.3389/ffunb.2022.998361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 09/26/2023]
Abstract
Trichoderma reesei and Aspergillus niger are efficient biological platforms for the production of various industrial products, including cellulases and organic acids. Nevertheless, despite the extensive research on these fungi, integrated analyses of omics-driven approaches are still missing. In this study, the intracellular metabolic profile of T. reesei RUT-C30 and A. niger N402 strains grown on glucose, lactose, carboxymethylcellulose (CMC), and steam-exploded sugarcane bagasse (SEB) as carbon sources for 48 h was analysed by proton nuclear magnetic resonance. The aim was to verify the changes in the primary metabolism triggered by these substrates and use transcriptomics data from the literature to better understand the dynamics of the observed alterations. Glucose and CMC induced higher fungal growth whereas fungi grown on lactose showed the lowest dry weight. Metabolic profile analysis revealed that mannitol, trehalose, glutamate, glutamine, and alanine were the most abundant metabolites in both fungi regardless of the carbon source. These metabolites are of particular interest for the mobilization of carbon and nitrogen, and stress tolerance inside the cell. Their concomitant presence indicates conserved mechanisms adopted by both fungi to assimilate carbon sources of different levels of recalcitrance. Moreover, the higher levels of galactose intermediates in T. reesei suggest its better adaptation in lactose, whereas glycolate and malate in CMC might indicate activation of the glyoxylate shunt. Glycerol and 4-aminobutyrate accumulated in A. niger grown on CMC and lactose, suggesting their relevant role in these carbon sources. In SEB, a lower quantity and diversity of metabolites were identified compared to the other carbon sources, and the metabolic changes and higher xylanase and pNPGase activities indicated a better utilization of bagasse by A. niger. Transcriptomic analysis supported the observed metabolic changes and pathways identified in this work. Taken together, we have advanced the knowledge about how fungal primary metabolism is affected by different carbon sources, and have drawn attention to metabolites still unexplored. These findings might ultimately be considered for developing more robust and efficient microbial factories.
Collapse
Affiliation(s)
- Gustavo Pagotto Borin
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), São Paulo, Brazil
- Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
7
|
Liu K, Ding X, Wang G, Liu W. Complete Genome Sequencing of Halophilic Endophytic Aspergillus montevidensis, Strain ZYD4, Isolated from Alfalfa Stems Grown in Saline-Alkaline Soils. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:867-869. [PMID: 35822852 DOI: 10.1094/mpmi-12-21-0314-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Kaihui Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaowei Ding
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guoliang Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wanting Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
8
|
Jiménez-Gómez I, Valdés-Muñoz G, Moreno-Ulloa A, Pérez-Llano Y, Moreno-Perlín T, Silva-Jiménez H, Barreto-Curiel F, Sánchez-Carbente MDR, Folch-Mallol JL, Gunde-Cimerman N, Lago-Lestón A, Batista-García RA. Surviving in the Brine: A Multi-Omics Approach for Understanding the Physiology of the Halophile Fungus Aspergillus sydowii at Saturated NaCl Concentration. Front Microbiol 2022; 13:840408. [PMID: 35586858 PMCID: PMC9108488 DOI: 10.3389/fmicb.2022.840408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/07/2022] [Indexed: 11/30/2022] Open
Abstract
Although various studies have investigated osmoadaptations of halophilic fungi to saline conditions, only few analyzed the fungal mechanisms occurring at saturated NaCl concentrations. Halophilic Aspergillus sydowii is a model organism for the study of molecular adaptations of filamentous fungi to hyperosmolarity. For the first time a multi-omics approach (i.e., transcriptomics and metabolomics) was used to compare A. sydowii at saturated concentration (5.13 M NaCl) to optimal salinity (1 M NaCl). Analysis revealed 1,842 genes differentially expressed of which 704 were overexpressed. Most differentially expressed genes were involved in metabolism and signal transduction. A gene ontology multi-scale network showed that ATP binding constituted the main network node with direct interactions to phosphorelay signal transduction, polysaccharide metabolism, and transferase activity. Free amino acids significantly decreased and amino acid metabolism was reprogrammed at 5.13 M NaCl. mRNA transcriptional analysis revealed upregulation of genes involved in methionine and cysteine biosynthesis at extreme water deprivation by NaCl. No modifications of membrane fatty acid composition occurred. Upregulated genes were involved in high-osmolarity glycerol signal transduction pathways, biosynthesis of β-1,3-glucans, and cross-membrane ion transporters. Downregulated genes were related to the synthesis of chitin, mannose, cell wall proteins, starvation, pheromone synthesis, and cell cycle. Non-coding RNAs represented the 20% of the total transcripts with 7% classified as long non-coding RNAs (lncRNAs). The 42% and 69% of the total lncRNAs and RNAs encoding transcription factors, respectively, were differentially expressed. A network analysis showed that differentially expressed lncRNAs and RNAs coding transcriptional factors were mainly related to the regulation of metabolic processes, protein phosphorylation, protein kinase activity, and plasma membrane composition. Metabolomic analyses revealed more complex and unknown metabolites at saturated NaCl concentration than at optimal salinity. This study is the first attempt to unravel the molecular ecology of an ascomycetous fungus at extreme water deprivation by NaCl (5.13 M). This work also represents a pioneer study to investigate the importance of lncRNAs and transcriptional factors in the transcriptomic response to high NaCl stress in halophilic fungi.
Collapse
Affiliation(s)
- Irina Jiménez-Gómez
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Gisell Valdés-Muñoz
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Aldo Moreno-Ulloa
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Yordanis Pérez-Llano
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Tonatiuh Moreno-Perlín
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Hortencia Silva-Jiménez
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Ensenada, Mexico
| | | | | | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Asunción Lago-Lestón
- Departamento de Innovación Biomédica, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
- *Correspondence: Ramón Alberto Batista-García, ;
| |
Collapse
|
9
|
Tirumalai MR, Anane-Bediakoh D, Rajesh S, Fox GE. Net Charges of the Ribosomal Proteins of the S10 and spc Clusters of Halophiles Are Inversely Related to the Degree of Halotolerance. Microbiol Spectr 2021; 9:e0178221. [PMID: 34908470 PMCID: PMC8672879 DOI: 10.1128/spectrum.01782-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/24/2021] [Indexed: 11/20/2022] Open
Abstract
Net positive charge(s) on ribosomal proteins (r-proteins) have been reported to influence the assembly and folding of ribosomes. A high percentage of r-proteins from extremely halophilic archaea are known to be acidic or even negatively charged. Those proteins that remain positively charged are typically far less positively charged. Here, the analysis is extended to non-archaeal halophilic bacteria, eukaryotes, and halotolerant archaea. The net charges (pH 7.4) of the r-proteins that comprise the S10-spc operon/cluster from individual microbial and eukaryotic genomes were estimated and intercompared. It was observed that, as a general rule, the net charges of individual proteins remained mostly basic as the salt tolerance of the bacterial strains increased from 5 to 15%. The most striking exceptions were the extremely halophilic bacterial strains, Salinibacter ruber SD01, Acetohalobium arabaticum DSM 5501 and Selenihalanaerobacter shriftii ATCC BAA-73, which are reported to require a minimum of 18% to 21% salt for their growth. All three strains have higher numbers of acidic S10-spc cluster r-proteins than what is seen in the moderate halophiles or the halotolerant strains. Of the individual proteins, only uL2 never became acidic. uS14 and uL16 also seldom became acidic. The net negative charges on several of the S10-spc cluster r-proteins are a feature generally shared by all extremely halophilic archaea and bacteria. The S10-spc cluster r-proteins of halophilic fungi and algae (eukaryotes) were exceptions: these were positively charged despite the halophilicity of the organisms. IMPORTANCE The net charges (at pH 7.4) of the ribosomal proteins (r-proteins) that comprise the S10-spc cluster show an inverse relationship with the halophilicity/halotolerance levels in both bacteria and archaea. In non-halophilic bacteria, the S10-spc cluster r-proteins are generally basic (positively charged), while the rest of the proteomes in these strains are generally acidic. On the other hand, the whole proteomes of the extremely halophilic strains are overall negatively charged, including the S10-spc cluster r-proteins. Given that the distribution of charged residues in the ribosome exit tunnel influences cotranslational folding, the contrasting charges observed in the S10-spc cluster r-proteins have potential implications for the rate of passage of these proteins through the ribosomal exit tunnel. Furthermore, the universal protein uL2, which lies in the oldest part of the ribosome, is always positively charged irrespective of the strain/organism it belongs to. This has implications for its role in the prebiotic context.
Collapse
Affiliation(s)
- Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | | - Sidharth Rajesh
- Clements High School (Class of 2023), Fort Bend Independent School District, Sugar Land, Texas, USA
| | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
10
|
Toplis B, Bosch C, Stander M, Taylor M, Perfect JR, Botha A. A link between urease and polyamine metabolism in Cryptococcus neoformans. Microb Pathog 2021; 158:105076. [PMID: 34216740 DOI: 10.1016/j.micpath.2021.105076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/05/2021] [Accepted: 06/24/2021] [Indexed: 01/09/2023]
Abstract
The urease enzyme of Cryptococcus neoformans is linked to different metabolic pathways within the yeast cell, several of which are involved in polyamine metabolism. Cryptococcal biogenic amine production is, however, largely unexplored and is yet to be investigated in relation to urease. The aim of this study was therefore to explore and compare polyamine metabolism in wild-type, urease-negative and urease-reconstituted strains of C. neoformans. Mass spectrometry analysis showed that agmatine and spermidine were the major extra- and intracellular polyamines of C. neoformans and significant differences were observed between 26 and 37 °C. In addition, compared to the wild-type, the relative percentages of extracellular putrescine and spermidine were found to be lower and agmatine higher in cultures of the urease-deficient mutant. The inverse was true for intracellular spermidine and agmatine. Cyclohexylamine was a more potent polyamine inhibitor compared to DL-α-difluoromethylornithine and inhibitory effects were more pronounced at 37 °C than at 26 °C. At both temperatures, the urease-deficient mutant was less susceptible to cyclohexylamine treatment compared to the wild-type. For both inhibitors, growth inhibition was alleviated with polyamine supplementation. This study has provided novel insight into the polyamine metabolism of C. neoformans, highlighting the involvement of urease in biogenic amine production.
Collapse
Affiliation(s)
- Barbra Toplis
- Department of Microbiology, University of Stellenbosch, Matieland, 7602, Stellenbosch, South Africa
| | - Caylin Bosch
- Department of Microbiology, University of Stellenbosch, Matieland, 7602, Stellenbosch, South Africa
| | - Marietjie Stander
- Mass Spectrometry Unit, Central Analytical Facilities, University of Stellenbosch, Matieland, 7602, Stellenbosch, South Africa
| | - Malcolm Taylor
- Mass Spectrometry Unit, Central Analytical Facilities, University of Stellenbosch, Matieland, 7602, Stellenbosch, South Africa
| | - John R Perfect
- Division of Infectious Diseases, Duke University Medical Centre, Durham, NC, 27710-1000, USA
| | - Alfred Botha
- Department of Microbiology, University of Stellenbosch, Matieland, 7602, Stellenbosch, South Africa.
| |
Collapse
|
11
|
Li PS, Kong WL, Wu XQ. Salt Tolerance Mechanism of the Rhizosphere Bacterium JZ-GX1 and Its Effects on Tomato Seed Germination and Seedling Growth. Front Microbiol 2021; 12:657238. [PMID: 34168626 PMCID: PMC8217874 DOI: 10.3389/fmicb.2021.657238] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022] Open
Abstract
Salinity is one of the strongest abiotic factors in nature and has harmful effects on plants and microorganisms. In recent years, the degree of soil salinization has become an increasingly serious problem, and the use of plant growth-promoting rhizobacteria has become an option to improve the stress resistance of plants. In the present study, the salt tolerance mechanism of the rhizosphere bacterium Rahnella aquatilis JZ-GX1 was investigated through scanning electron microscopy observations and analysis of growth characteristics, compatible solutes, ion distribution and gene expression. In addition, the effect of JZ-GX1 on plant germination and seedling growth was preliminarily assessed through germination experiments. R. aquatilis JZ-GX1 was tolerant to 0-9% NaCl and grew well at 3%. Strain JZ-GX1 promotes salt tolerance by stimulating the production of exopolysaccharides, and can secrete 60.6983 mg/L of exopolysaccharides under the high salt concentration of 9%. Furthermore, the accumulation of the compatible solute trehalose in cells as the NaCl concentration increased was shown to be the primary mechanism of resistance to high salt concentrations in JZ-GX1. Strain JZ-GX1 could still produce indole-3-acetic acid (IAA) and siderophores and dissolve inorganic phosphorus under salt stress, characteristics that promote the ability of plants to resist salt stress. When the salt concentration was 100 mmol/L, strain JZ-GX1 significantly improved the germination rate, germination potential, fresh weight, primary root length and stem length of tomato seeds by 10.52, 125.56, 50.00, 218.18, and 144.64%, respectively. Therefore, R. aquatilis JZ-GX1 is a moderately halophilic bacterium with good growth-promoting function that has potential for future development as a microbial agent and use in saline-alkali land resources.
Collapse
Affiliation(s)
- Pu-Sheng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Wei-Liang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Xiao-Qin Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
12
|
Mascarin GM, Iwanicki NS, Ramirez JL, Delalibera Í, Dunlap CA. Transcriptional Responses of Beauveria bassiana Blastospores Cultured Under Varying Glucose Concentrations. Front Cell Infect Microbiol 2021; 11:644372. [PMID: 33842391 PMCID: PMC8024584 DOI: 10.3389/fcimb.2021.644372] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/09/2021] [Indexed: 11/17/2022] Open
Abstract
Culturing the entomopathogenic fungus, Beauveria bassiana, under high glucose concentrations coupled with high aeration results in a fungal developmental shift from hyphal growth to mostly blastospores (yeast-like cells). The underlying molecular mechanisms involved in this shift remain elusive. A systematic transcriptome analysis of the differential gene expression was preformed to uncover the fungal transcriptomic response to osmotic and oxidative stresses associated with the resulting high blastospore yield. Differential gene expression was compared under moderate (10% w/v) and high (20% w/v) glucose concentrations daily for three days. The RNAseq-based transcriptomic results depicted a higher proportion of downregulated genes when the fungus was grown under 20% glucose than 10%. Additional experiments explored a broader glucose range (4, 8, 12, 16, 20% w/v) with phenotype assessment and qRT-PCR transcript abundance measurements of selected genes. Antioxidant, calcium transport, conidiation, and osmosensor-related genes were highly upregulated in higher glucose titers (16-20%) compared to growth in lower glucose (4-6%) concentrations. The class 1 hydrophobin gene (Hyd1) was highly expressed throughout the culturing. Hyd1 is known to be involved in spore coat rodlet layer assembly, and indicates that blastospores or another cell type containing hydrophobin 1 is expressed in the haemocoel during the infection process. Furthermore, we found implications of the HOG signaling pathway with upregulation of homologous genes Ssk2 and Hog1 for all fermentation time points under hyperosmotic medium (20% glucose). These findings expand our knowledge of the molecular mechanisms behind blastospore development and may help facilitate large-scale industrial production of B. bassiana blastospores for pest control applications.
Collapse
Affiliation(s)
- Gabriel Moura Mascarin
- Laboratory of Environmental Microbiology, Brazilian Agricultural Research Corporation, Embrapa Environment, Jaguariúna, Brazil
| | - Natasha Sant'Anna Iwanicki
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture/University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | - Jose Luis Ramirez
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture, Agriculture Research Service, Peoria, IL, United States
| | - Ítalo Delalibera
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture/University of São Paulo (ESALQ/USP), Piracicaba, Brazil
| | - Christopher A Dunlap
- Crop Bioprotection Research Unit, National Center for Agricultural Utilization Research, United States Department of Agriculture, Agriculture Research Service, Peoria, IL, United States
| |
Collapse
|
13
|
Chen DD, Fang BZ, Manzoor A, Liu YH, Li L, Mohamad OAA, Shu WS, Li WJ. Revealing the salinity adaptation mechanism in halotolerant bacterium Egicoccus halophilus EGI 80432 T by physiological analysis and comparative transcriptomics. Appl Microbiol Biotechnol 2021; 105:2497-2511. [PMID: 33625547 DOI: 10.1007/s00253-021-11190-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/30/2021] [Accepted: 02/17/2021] [Indexed: 02/02/2023]
Abstract
Egicoccus halophilus EGI 80432T, a halotolerant bacterium isolated from a saline-alkaline soil, belongs to a member of the class Nitriliruptoria, which exhibits high adaptability to salt environments. At present, the detailed knowledge of the salinity adaptation strategies of Nitriliruptoria was limited except for one research by using comparative genomics analysis. Here, we investigated the salinity adaptation mechanism of E. halophilus EGI 80432T by comparative physiological and transcriptomic analyses. The results of physiological analyses showed that trehalose and glutamate were accumulated by salt stress and showed the maximum at moderate salinity condition. Furthermore, the contents of histidine, threonine, proline, and ectoine were increased with increasing salt concentration. We found that both 0% and 9% NaCl conditions resulted in increased expressions of genes involved in carbohydrate and energy metabolisms, but negatively affected the Na+ efflux, iron, and molybdate transport. Moreover, the high salt condition led to enhancement of transcription of genes required for the synthesis of compatible solutes, e.g., glutamate, histidine, threonine, proline, and ectoine, which agree with the results of physiological analyses. The above results revealed that E. halophilus EGI 80432T increased inorganic ions uptake and accumulated trehalose and glutamate in response to moderate salinity condition, while the salinity adaptation strategy was changed from a "salt-in-cytoplasm" strategy to a "compatible solute" strategy under high salinity condition. The findings in this study would promote further studies in salt tolerance molecular mechanism of Nitriliruptoria and provide a theoretical support for E. halophilus EGI 80432T's application in ecological restoration.Key Points• Salt stress affected gene expressions responsible for carbohydrate and energy metabolisms of E. halophilus EGI 8042T.• E. halophilus EGI 80432T significantly accumulated compatible solutes under salt stress.• E. halophilus EGI 80432T adopted a "compatible solute" strategy to withstand high salt stress.
Collapse
Affiliation(s)
- Dai-Di Chen
- Institute of Ecological Science, School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China.,State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Bao-Zhu Fang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Ahmad Manzoor
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.,Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Al-Arish, Egypt
| | - Wen-Sheng Shu
- Institute of Ecological Science, School of Life Science, South China Normal University, Guangzhou, 510631, People's Republic of China.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China. .,State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
14
|
Fedoseeva EV, Danilova OA, Ianutsevich EA, Terekhova VA, Tereshina VM. Micromycete Lipids and Stress. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261721010045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
15
|
Haloadaptative Responses of Aspergillus sydowii to Extreme Water Deprivation: Morphology, Compatible Solutes, and Oxidative Stress at NaCl Saturation. J Fungi (Basel) 2020; 6:jof6040316. [PMID: 33260894 PMCID: PMC7711451 DOI: 10.3390/jof6040316] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Water activity (aw) is critical for microbial growth, as it is severely restricted at aw < 0.90. Saturating NaCl concentrations (~5.0 M) induce extreme water deprivation (aw ≅ 0.75) and cellular stress responses. Halophilic fungi have cellular adaptations that enable osmotic balance and ionic/oxidative stress prevention to grow at high salinity. Here we studied the morphology, osmolyte synthesis, and oxidative stress defenses of the halophile Aspergillus sydowii EXF-12860 at 1.0 M and 5.13 M NaCl. Colony growth, pigmentation, exudate, and spore production were inhibited at NaCl-saturated media. Additionally, hyphae showed unpolarized growth, lower diameter, and increased septation, multicellularity and branching compared to optimal NaCl concentration. Trehalose, mannitol, arabitol, erythritol, and glycerol were produced in the presence of both 1.0 M and 5.13 M NaCl. Exposing A. sydowii cells to 5.13 M NaCl resulted in oxidative stress evidenced by an increase in antioxidant enzymes and lipid peroxidation biomarkers. Also, genes involved in cellular antioxidant defense systems were upregulated. This is the most comprehensive study that investigates the micromorphology and the adaptative cellular response of different non-enzymatic and enzymatic oxidative stress biomarkers in halophilic filamentous fungi.
Collapse
|
16
|
Ding X, Liu K, Gong G, Tian L, Ma J. Volatile organic compounds in the salt-lake sediments of the Tibet Plateau influence prokaryotic diversity and community assembly. Extremophiles 2020; 24:307-318. [PMID: 32025854 DOI: 10.1007/s00792-020-01155-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/06/2020] [Indexed: 11/30/2022]
Abstract
Volatile organic compounds (VOCs) are important environmental factors because they supply nutrients for microbial cells and mediate intercellular interactions. However, few studies have focused on the effects of VOCs on prokaryotic diversity and community composition. In this study, we examined the relationship between prokaryotic diversity and community composition and the content of VOCs in salt-lake sediments from the Tibet Plateau using amplicon sequencing of the 16S rRNA gene. Results showed that the alpha-diversity indices (Chao1, Shannon, and Simpson) were generally negatively correlated with the content of 36 VOCs (P < 0.05). The prokaryotic communities were significantly driven by multiple VOCs at the lineage-dependent pattern (P < 0.05). Further analysis indicated that VOCs, including 3-methylpyruvate, biuret, isocitric acid, and stearic acid, jointly explained 37.3% of the variations in prokaryotic communities. Supplemental VOCs-pyruvate, biuret, alanine, and aspartic acid-notably decreased the Chao1 and Shannon indices and significantly assembled co-occurrence networks for the bacterial communities in the saline sediments. Together, these results demonstrated that VOCs play a critical role in the regulation of the diversity, compositions, and network structures of prokaryotic communities in saline sediments.
Collapse
Affiliation(s)
- Xiaowei Ding
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Kaihui Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Guoli Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Lu Tian
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jun Ma
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|