1
|
Moazami Goodarzi M, Jalalirad R, Doroud D, Hozouri H, Aghasadeghi MR. DOE-based process optimization for development of efficient methods for purification of recombinant hepatitis B surface antigen from Pichia pastoris feedstock using Capto adhere resin. Heliyon 2024; 10:e35124. [PMID: 39161833 PMCID: PMC11332888 DOI: 10.1016/j.heliyon.2024.e35124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Background The multimodal chromatography resins, such as Capto adhere, are considered good candidates to be utilized in downstream processing due to their high capacity and selectivity; however, their multimodal interactions lead to an intricacy in the adsorption-desorption patterns and systematic characterization of conditions for process steps is necessary. Methods Capto adhere, a strong ion exchanger with multimodal functionality, was used in this study for the final aim of recombinant hepatitis B surface antigen (rHBsAg) purification from Pichia pastoris (P. pastoris) industrial feedstock. Optimization of various parameters was done using the design of experiments (DOE) approach to determine the best binding and non-binding conditions. Results Maximum rHBsAg binding on Capto adhere occurred in 20 mM sodium acetate, pH 4.5, and a binding capacity of about 0.75 mg/ml was achieved, which was much higher than rHBsAg binding capacity of other resins reported so far. In elution optimization investigations, it was revealed that 1 M arginine (buffered in 50 mM sodium phosphate, pH 6.5) was the most efficient eluting agent. The binding and elution optimal conditions were utilized for further purification of rHBsAg from P. pastoris industrial feedstock in bind-elute mode, and the recovery and purity of the obtained rHBsAg were about 60% and 100%, respectively. Following optimization in the flow-through purification mode, the target protein recovery was significantly increased (up to 97%) and the target protein purity of more than 95% was achievable. SEC-HPLC analysis showed that the obtained retention times for the purified rHBsAg were similar to those reported previously. Conclusions These results suggest that Capto adhere under such optimized conditions can be considered as a good candidate for efficient purification of rHBsAg from P. pastoris industrial feedstock in downstream processing.
Collapse
Affiliation(s)
- Maryam Moazami Goodarzi
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, 3159915111, Karaj, Iran
| | - Reza Jalalirad
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, 3159915111, Karaj, Iran
| | - Delaram Doroud
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, 3159915111, Karaj, Iran
| | - Hamidreza Hozouri
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, 3159915111, Karaj, Iran
| | | |
Collapse
|
2
|
Ahuja R, Kaur A, Kumari G, Kumar A, Kumar S, Roy AK, Majumdar T. Enhanced expression and solubility of main protease (Mpro) of SARS-CoV-2 from E. coli. Protein Expr Purif 2023; 211:106337. [PMID: 37453569 DOI: 10.1016/j.pep.2023.106337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/28/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The main protease (Mpro) of SARS-CoV-2 is a essential enzyme that facilitates viral transcription and replication. Furthermore, the conservation of Mpro across different variants and its non-overlapping nature with human proteases make it an appealing target for therapeutic interventions against SARS-CoV-2. Multiple inhibitors specifically target Mpro to mitigate the infection caused by SARS-CoV-2. In the current study, successful cloning and expression of SARS-CoV-2 Mpro were achieved using two E. coli hosts, namely BL21-DE3 and BL21-DE3-RIL. By optimizing the conditions for induction, the expression of Mpro in the soluble fraction of E. coli was improved. Subsequently, Mpro was purified using affinity chromatography, yielding significantly higher quantities from the BL21-DE3-RIL strain compared to the BL21-DE3 strain, with the former producing nearly twice as much as the latter. The purified Mpro was further characterized by mass spectrometry, fluorescence spectroscopy and circular dichroism (CD). Through fluorescence quenching studies, it was discovered that both GC376 and chitosan, which are inhibitors of Mpro, induced structural changes in the purified Mpro protein. This indicates that the protein retained its functional activity even after being expressed in a bacterial host. Further, FRET-based assay highlighted that the enzymatic activity of Mpro was significantly reduced in presence of both GC376 and chitosan. Consequently, the utilization of optimal conditions and the BL21-DE3-RIL bacterial host facilitates the cost-effective production of Mpro on a large scale, enabling high yields. This production approach can be applied for the screening of potent therapeutic drugs, making it a valuable resource for drug development endeavors.
Collapse
Affiliation(s)
- Rahul Ahuja
- National Institute of Immunology, New Delhi, 110067, India.
| | | | - Geetika Kumari
- National Institute of Immunology, New Delhi, 110067, India
| | - Amit Kumar
- National Institute of Immunology, New Delhi, 110067, India
| | - Santosh Kumar
- National Institute of Immunology, New Delhi, 110067, India
| | - Atul Kumar Roy
- National Institute of Immunology, New Delhi, 110067, India
| | | |
Collapse
|
3
|
Tito FR, Pepe A, Tonón CV, Daleo GR, Guevara MG. Optimization of caseinolytic and coagulating activities of Solanum tuberosum rennets for cheese making. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6947-6957. [PMID: 37314022 DOI: 10.1002/jsfa.12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND In recent years, the rising global demand for cheese, the high cost and limited supply of calf rennet, and consumer choices have increased research into new alternatives to animal or recombinant chymosins for cheese making. Plant proteases with caseinolytic activity (CA) and milk-clotting activity (MCA) have been proposed as alternatives for milk clotting to obtain artisanal cheeses with new organoleptic properties. They have been named vegetable rennets (vrennets). The aim of this study was to evaluate the performance of two Solanum tuberosum aspartic proteases (StAP1 and StAP3) as vrennets for cheese making and to obtain a statistical model that could predict and optimize their enzymatic activity. RESULTS To optimize the CA and MCA activities, a response surface methodology was used. Maximum values of CA and MCA for both enzymes were found at pH 5.0 and 30-35 °C. Analysis of the degradation of casein subunits showed that it is possible to tune the specificity of both enzymes by changing the pH. At pH 6.5, the αS - and β- subunit degradation is reduced while conserving a significant MCA. CONCLUSION The statistical models obtained in this work showed that StAP1 and StAP3 exert CA and MCA under pH and temperature conditions compatible with those used for cheese making. The casein subunit degradation percentages obtained also allowed us to select the best conditions for the degradation of the κ-casein subunit by StAPs. These results suggest that StAP1 and StAP3 are good candidates as vrennets for artisan cheese making. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Florencia R Tito
- Biological Research Institute, National Scientific and Technical Research Council (CONICET), University of Mar del Plata (UNMDP), Mar del Plata, Argentina
| | - Alfonso Pepe
- Bioengineering Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Claudia V Tonón
- Biological Research Institute, National Scientific and Technical Research Council (CONICET), University of Mar del Plata (UNMDP), Mar del Plata, Argentina
| | - Gustavo R Daleo
- Biological Research Institute, National Scientific and Technical Research Council (CONICET), University of Mar del Plata (UNMDP), Mar del Plata, Argentina
| | - María G Guevara
- Biological Research Institute, National Scientific and Technical Research Council (CONICET), University of Mar del Plata (UNMDP), Mar del Plata, Argentina
| |
Collapse
|
4
|
Belenkaya SV, Shcherbakov DN, Chapoval AI, Esina TI, Elchaninov VV. The effect of thioredoxin and prochymosin coexpression on the refolding of recombinant alpaca chymosin. Vavilovskii Zhurnal Genet Selektsii 2023; 27:421-427. [PMID: 37465195 PMCID: PMC10350866 DOI: 10.18699/vjgb-23-50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 07/20/2023] Open
Abstract
The milk-clotting enzyme chymosin is a member of the group of aspartate proteinases. Chymosin is the main component of rennet traditionally obtained from the stomachs of dairy calves and widely used to coagulate milk in the production of various types of cheese. Another source of chymosin, which does not require the killing of animals, is based on recombinant DNA technology. Recombinant alpaca chymosin has a number of valuable technological properties that make it attractive for use in cheese-making as an alternative to recombinant bovine chymosin. The purpose of this work is to study the effect of coexpression of thioredoxin and prochymosin on the refolding of the recombinant zymogen and the activity of alpaca chymosin. To achieve this goal, on the basis of the pET32a plasmid, an expression vector was constructed containing the thioredoxin A gene fused to the N-terminal sequence of the marker enzyme zymogen, alpaca prochymosin. Using the constructed vector, pET-TrxProChn, a strain-producer of the recombinant chimeric protein thioredoxin-prochymosin was obtained. The choice of prochymosin as a model protein is due to the ability of autocatalytic activation of this zymogen, in which the pro-fragment is removed, together with the thioredoxin sequence attached to it, with the formation of active chymosin. It is shown that Escherichia coli strain BL21 transformed with the pET-TrxProChn plasmid provides an efficient synthesis of the thioredoxin-prochymosin chimeric molecule. However, the chimeric protein accumulates in inclusion bodies in an insoluble form. Therefore, a renaturation procedure was used to obtain the active target enzyme. Fusion of thioredoxin capable of disulfide-reductase activity to the N-terminal sequence of prochymosin provides optimal conditions for zymogen refolding and increases the yield of recombinant alpaca chymosin immediately after activation and during long-term storage by 13 and 15 %, respectively. The inclusion of thioredoxin in the composition of the chimeric protein, apparently, contributes to the process of correct reduction of disulfide bonds in the prochymosin molecule, which is reflected in the dynamics of the increase in the milk-clotting activity of alpaca chymosin during long-term storage.
Collapse
Affiliation(s)
- S V Belenkaya
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia Altai State University, Barnaul, Russia
| | - D N Shcherbakov
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia Altai State University, Barnaul, Russia
| | | | - T I Esina
- State Research Center of Virology and Biotechnology "Vector", Rospotrebnadzor, Koltsovo, Novosibirsk region, Russia
| | - V V Elchaninov
- Federal Altai Scientific Center for Agrobiotechnology, Siberian Research Institute of Cheesemaking, Barnaul, Russia
| |
Collapse
|
5
|
Lu Z, Liu N, Huang H, Wang Y, Tu T, Qin X, Wang X, Zhang J, Su X, Tian J, Bai Y, Luo H, Yao B, Zhang H. Recombinant expression of IGF-1 and LR3 IGF-1 fused with xylanase in Pichia pastoris. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12606-0. [PMID: 37261455 DOI: 10.1007/s00253-023-12606-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/07/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
Insulin-like growth factor-1 (IGF-1) is a pleiotropic protein hormone and has become an attractive therapeutic target because of its multiple roles in various physiological processes, including growth, development, and metabolism. However, its production is hindered by low heterogenous protein expression levels in various expression systems and hard to meet the needs of clinical and scientific research. Here, we report that human IGF-1 and its analog Long R3 IGF-1 (LR3 IGF-1) are recombinant expressed and produced in the Pichia pastoris (P. pastoris) expression system through being fused with highly expressed xylanase XynCDBFV. Furthermore, purified IGF-1 and LR3 IGF-1 display excellent bioactivity of cell proliferation compared to the standard IGF-1. Moreover, higher heterologous expression levels of the fusion proteins XynCDBFV-IGF-1 and XynCDBFV-LR3 IGF-1 are achieved by fermentation in a 15-L bioreactor, reaching up to about 0.5 g/L XynCDBFV-IGF-1 and 1 g/L XynCDBFV-TEV-LR3 IGF-1. Taken together, high recombinant expression of bioactive IGF-1 and LR3 IGF-1 is acquired with the assistance of xylanase as a fusion partner in P. pastoris, which could be used for both clinical and scientific applications. KEY POINTS: • Human IGF-1 and LR3 IGF-1 are produced in the P. pastoris expression system. • Purified IGF-1 and LR3 IGF-1 show bioactivity comparable to the standard IGF-1. • High heterologous expression of IGF-1 and LR3 IGF-1 is achieved by fermentation in a bioreactor.
Collapse
Affiliation(s)
- Zequn Lu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
| | - Ning Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuan Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xing Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaolu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoyun Su
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jian Tian
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Honglian Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
6
|
Venkatesan M, Semper C, Skrivergaard S, Di Leo R, Mesa N, Rasmussen MK, Young JF, Therkildsen M, Stogios PJ, Savchenko A. Recombinant production of growth factors for application in cell culture. iScience 2022; 25:105054. [PMID: 36157583 PMCID: PMC9489951 DOI: 10.1016/j.isci.2022.105054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 06/07/2022] [Accepted: 08/26/2022] [Indexed: 11/04/2022] Open
Abstract
Culturing eukaryotic cells has widespread applications in research and industry, including the emerging field of cell-cultured meat production colloquially referred to as “cellular agriculture”. These applications are often restricted by the high cost of growth medium necessary for cell growth. Mitogenic protein growth factors (GFs) are essential components of growth medium and account for upwards of 90% of the total costs. Here, we present a set of expression constructs and a simplified protocol for recombinant production of functionally active GFs, including FGF2, IGF1, PDGF-BB, and TGF-β1 in Escherichia coli. Using this E. coli expression system, we produced soluble GF orthologs from species including bovine, chicken, and salmon. Bioactivity analysis revealed orthologs with improved performance compared to commercially available alternatives. We estimated that the production cost of GFs using our methodology will significantly reduce the cost of cell culture medium, facilitating low-cost protocols tailored for cultured meat production and tissue engineering. Developed methodology for low-cost production of soluble, bioactive GFs Purified GFs were active on NIH-3T3 and bovine satellite cells Some GF orthologs outperformed commercially sourced GFs Production of GFs using these methods can foster significant cost savings
Collapse
Affiliation(s)
- Meenakshi Venkatesan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E8, Canada
| | - Cameron Semper
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - Rosa Di Leo
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E8, Canada
| | - Nathalie Mesa
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E8, Canada
| | | | | | | | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E8, Canada
| | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E8, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
7
|
Aer L, Jiang Q, Gul I, Qi Z, Feng J, Tang L. Overexpression and kinetic analysis of Ideonella sakaiensis PETase for polyethylene terephthalate (PET) degradation. ENVIRONMENTAL RESEARCH 2022; 212:113472. [PMID: 35577005 DOI: 10.1016/j.envres.2022.113472] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Ideonella sakaiensis PET hydrolase (IsPETase) is a well-characterized enzyme for effective PET biodegradation. However, the low soluble expression level of the enzyme hampers its practical implementation in the biodegradation of PET. Herein, the expression of IsPETaseMut, one of the most active mutants of IsPETase obtained so far, was systematically explored in E. coli by adopting a series of strategies. A notable improvement of soluble IsPETaseMut was observed by using chaperon co-expression and fusion expression systems. Under the optimized conditions, GroEL/ES co-expression system yielded 75 ± 3.4 mg·L-1 purified soluble IsPETaseMut (GroEL/ES), and NusA fusion expression system yielded 80 ± 3.7 mg·L-1 purified soluble NusA-IsPETaseMut, which are 12.5- and 4.6-fold, respectively, higher than its commonly expression in E. coli. The two purified enzymes were further characterized. The results showed that IsPETaseMut (GroEL/ES) displayed the same catalytic behavior as IsPETaseMut, while the fusion of NusA conferred new enzymatic properties to IsPETaseMut. Although NusA-IsPETaseMut displayed a lower initial hydrolysis capacity than IsPETaseMut, it showed a 1.4-fold higher adsorption constant toward PET. Moreover, the product inhibition effect of terephthalic acid (TPA) on IsPETase was reduced with NusA-IsPETaseMut. Taken together, the latter two catalytic properties of NusA-IsPETaseMut are more likely to contribute to the enhanced product release by NusA-IsPETaseMut PET degradation for two weeks.
Collapse
Affiliation(s)
- Lizhu Aer
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Qifa Jiang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ijaz Gul
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, PR China
| | - Zixuan Qi
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Juan Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lixia Tang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China; Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
8
|
Machine learning modeling for solubility prediction of recombinant antibody fragment in four different E. coli strains. Sci Rep 2022; 12:5463. [PMID: 35361835 PMCID: PMC8971470 DOI: 10.1038/s41598-022-09500-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/14/2022] [Indexed: 11/08/2022] Open
Abstract
The solubility of proteins is usually a necessity for their functioning. Recently an emergence of machine learning approaches as trained alternatives to statistical models has been evidenced for empirical modeling and optimization. Here, soluble production of anti-EpCAM extracellular domain (EpEx) single chain variable fragment (scFv) antibody was modeled and optimized as a function of four literature based numerical factors (post-induction temperature, post-induction time, cell density of induction time, and inducer concentration) and one categorical variable using artificial neural network (ANN) and response surface methodology (RSM). Models were established by the CCD experimental data derived from 232 separate experiments. The concentration of soluble scFv reached 112.4 mg/L at the optimum condition and strain (induction at cell density 0.6 with 0.4 mM IPTG for 24 h at 23 °C in Origami). The predicted value obtained by ANN for the response (106.1 mg/L) was closer to the experimental result than that obtained by RSM (97.9 mg/L), which again confirmed a higher accuracy of ANN model. To the author's knowledge this is the first report on comparison of ANN and RSM in statistical optimization of fermentation conditions of E.coli for the soluble production of recombinant scFv.
Collapse
|
9
|
Khalilvand AB, Aminzadeh S, Sanati MH, Mahboudi F. Cytoplasmic soluble Lispro insulin production in Escherichia coli, product yield optimization and physiochemical characterization. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Falak S, Sajed M, Rashid N. Strategies to enhance soluble production of heterologous proteins in Escherichia coli. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00994-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Different strategies for expression and purification of the CT26-poly-neoepitopes vaccine in Escherichia coli. Mol Biol Rep 2022; 49:859-873. [DOI: 10.1007/s11033-021-06727-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022]
|
12
|
Soltaninasab S, Ahmadzadeh M, Shahhosseini S, Mohit E. Evaluating the efficacy of immobilized metal affinity chromatography (IMAC) for host cell protein (HCP) removal from anti-HER2 scFv expressed in Escherichia coli. Protein Expr Purif 2021; 190:106004. [PMID: 34688918 DOI: 10.1016/j.pep.2021.106004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022]
Abstract
Host cell proteins (HCPs) are process-related impurities that have influence on product safety and efficacy. HCPs should effectively be removed by chromatographic steps in downstream purification process. In this study, we aimed to evaluate the efficacy of immobilized-metal affinity chromatography (IMAC) for separation of HCPs from anti-HER2 single chain fragment variable (scFv) expressed in E. coli. This study explored how different purification conditions including native, denaturing and hybrid affect HCP level in purified anti-HER2 scFv. Furthermore, the effects of NaCl concentration in wash buffer as well as imidazole concentration in wash and elution buffer on purification yield and HCP level in purified anti-HER2 scFv were evaluated. It was found that increasing imidazole concentration in wash and elution buffers in native conditions reduced the yield of anti-HER2 scFv purification. However, enhancing NaCl concentration in wash buffer in purification under native conditions led to significant increase in the amount of anti-HER2 scFv without any change in protein purity. Herein, none of the IMAC purification methods conducted on soluble cytoplasmic proteins under native conditions could reduce the amount of HCP to acceptable level. HCP content was only lowered to ˂ 10 ppm when inclusion bodies were purified under hybrid conditions. Furthermore, increasing imidazole concentration in wash buffer in purification under hybrid conditions led to significant increase in eluted anti-HER2 scFv concentration, while HCP content was also increased in this condition. Overall, purification under hybrid conditions using wash buffer containing 40 mM imidazole resulted in the highest yield and acceptable level of HCP.
Collapse
Affiliation(s)
- Saba Soltaninasab
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Ahmadzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soraya Shahhosseini
- School of Pharmacy, Pharmaceutical Chemistry and Radiopharmacy Department and Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Behravan A, Hashemi A. RSM-based Model to Predict Optimum Fermentation Conditions for Soluble Expression of the Antibody Fragment Derived from 4D5MOC-B Humanized Mab in SHuffle™ T7 E. coli. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:254-266. [PMID: 34400955 PMCID: PMC8170757 DOI: 10.22037/ijpr.2020.114377.14822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Overexpression of the EpCAM in epithelial-derived neoplasms makes this receptor a promising target in antibody-based therapy. Due to the lack of N-glycosylation, Escherichia coli (E. coli) seems to be the most appropriate choice for the expression of antibody fragments. However, developing a robust and cost-effective process that produces consistent therapeutic proteins from inclusion bodies is a major challenge. Undoubtedly, it can be circumvented by the soluble expression of these proteins. Utilization of numerous genetically modified hosts and optimization of cultivation conditions are two effective approaches widely used to overcome the insolubility problem. Due to the cytoplasmic expression of DsbC and the ability to the correct formation of disulfide bonds, the Shuffle™ T7 strain can be a suitable host for the soluble production of recombinant proteins. Here, Box-Behnken design (BBD)- Response surface methodology (RSM) modeling was employed to develop optimized culture conditions for 4D5MOC-B scFv fragment production in SHuffle™ T7 strain while solubility and production level were considered as responses. Although both responses were significantly influenced by post-induction temperature, cell density at induction time, and IPTG concentration, the temperature had the largest effect. The maximum experimental soluble protein obtained by adding 1 mM of IPTG into the M9 medium when the cell density reached 0.7 at 23 ᵒC was 693.56 µg/mL which was in good correlation with the predicted value of 720.742 µg/mL. Predictable total expression value was also experimentally verified. This strategy can be scaled-up for the production of large amounts of scFvs from SHuffle™ T7 E. coli to facilitate their potential applications as therapeutic and diagnostic agents.
Collapse
Affiliation(s)
- Aidin Behravan
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Slater SL, Mavridou DAI. Harnessing the potential of bacterial oxidative folding to aid protein production. Mol Microbiol 2021; 116:16-28. [PMID: 33576091 DOI: 10.1111/mmi.14700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/09/2021] [Indexed: 11/30/2022]
Abstract
Protein folding is central to both biological function and recombinant protein production. In bacterial expression systems, which are easy to use and offer high protein yields, production of the protein of interest in its native fold can be hampered by the limitations of endogenous posttranslational modification systems. Disulfide bond formation, entailing the covalent linkage of proximal cysteine amino acids, is a fundamental posttranslational modification reaction that often underpins protein stability, especially in extracytoplasmic environments. When these bonds are not formed correctly, the yield and activity of the resultant protein are dramatically decreased. Although the mechanism of oxidative protein folding is well understood, unwanted or incorrect disulfide bond formation often presents a stumbling block for the expression of cysteine-containing proteins in bacteria. It is therefore important to consider the biochemistry of prokaryotic disulfide bond formation systems in the context of protein production, in order to take advantage of the full potential of such pathways in biotechnology applications. Here, we provide a critical overview of the use of bacterial oxidative folding in protein production so far, and propose a practical decision-making workflow for exploiting disulfide bond formation for the expression of any given protein of interest.
Collapse
Affiliation(s)
- Sabrina L Slater
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
15
|
Javadian FS, Basafa M, Behravan A, Hashemi A. Solubility assessment of single-chain antibody fragment against epithelial cell adhesion molecule extracellular domain in four Escherichia coli strains. J Genet Eng Biotechnol 2021; 19:26. [PMID: 33543415 PMCID: PMC7862456 DOI: 10.1186/s43141-021-00126-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/25/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Overexpression of the EpCAM (epithelial cell adhesion molecule) in malignancies makes it an attractive target for passive immunotherapy in a wide range of carcinomas. In comparison with full-length antibodies, due to the small size, the scFvs (single-chain variable fragments) are more suitable for recombinant expression in E. coli (Escherichia coli). However, the proteins expressed in large amounts in E. coli tend to form inclusion bodies that need to be refolded which may result in poor recovery of bioactive proteins. Various engineered strains were shown to be able to alleviate the insolubility problem. Here, we studied the impact of four E. coli strains on the soluble level of anti-EpEX-scFv (anti-EpCAM extracellular domain-scFv) protein. RESULTS Although results showed that the amount of soluble anti-EpEX-scFv obtained in BL21TM (DE3) (114.22 ± 3.47 mg/L) was significantly higher to those produced in the same condition in E. coli RosettaTM (DE3) (71.39 ± 0.31 mg/L), and OrigamiTM T7 (58.99 ± 0.44 mg/L) strains, it was not significantly different from that produced by E. coli SHuffleTM T7 (108.87 ± 2.71 mg/L). Furthermore, the highest volumetric productivity of protein reached 318.29 ± 26.38 mg/L in BL21TM (DE3). CONCLUSIONS Although BL21TM (DE3) can be a suitable strain for high-level production of anti-EpEX-scFv protein, due to higher solubility yield (about 55%), E. coli SHuffleTM T7 seems to be better candidate for soluble production of scfv compared to BL21TM (DE3) (solubility yield of about 30%).
Collapse
Affiliation(s)
- Fatemeh Sadat Javadian
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, ValiAsr Avenue, Niayesh Junction, PO Box 14155-6153, Tehran, Iran
| | - Majid Basafa
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, ValiAsr Avenue, Niayesh Junction, PO Box 14155-6153, Tehran, Iran
| | - Aidin Behravan
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, ValiAsr Avenue, Niayesh Junction, PO Box 14155-6153, Tehran, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, ValiAsr Avenue, Niayesh Junction, PO Box 14155-6153, Tehran, Iran.
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, ValiAsr Avenue, Niayesh Junction, PO Box 14155-6153, Tehran, Iran.
| |
Collapse
|
16
|
Jamshidi S, Yadollahi A, Arab MM, Soltani M, Eftekhari M, Shiri J. High throughput mathematical modeling and multi-objective evolutionary algorithms for plant tissue culture media formulation: Case study of pear rootstocks. PLoS One 2020; 15:e0243940. [PMID: 33338074 PMCID: PMC7748151 DOI: 10.1371/journal.pone.0243940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/30/2020] [Indexed: 11/19/2022] Open
Abstract
Simplified prediction of the interactions of plant tissue culture media components is of critical importance to efficient development and optimization of new media. We applied two algorithms, gene expression programming (GEP) and M5' model tree, to predict the effects of media components on in vitro proliferation rate (PR), shoot length (SL), shoot tip necrosis (STN), vitrification (Vitri) and quality index (QI) in pear rootstocks (Pyrodwarf and OHF 69). In order to optimize the selected prediction models, as well as achieving a precise multi-optimization method, multi-objective evolutionary optimization algorithms using genetic algorithm (GA) and particle swarm optimization (PSO) techniques were compared to the mono-objective GA optimization technique. A Gamma test (GT) was used to find the most important determinant input for optimizing each output factor. GEP had a higher prediction accuracy than M5' model tree. GT results showed that BA (Γ = 4.0178), Mesos (Γ = 0.5482), Mesos (Γ = 184.0100), Micros (Γ = 136.6100) and Mesos (Γ = 1.1146), for PR, SL, STN, Vitri and QI respectively, were the most important factors in culturing OHF 69, while for Pyrodwarf culture, BA (Γ = 10.2920), Micros (Γ = 0.7874), NH4NO3 (Γ = 166.410), KNO3 (Γ = 168.4400), and Mesos (Γ = 1.4860) were the most important influences on PR, SL, STN, Vitri and QI respectively. The PSO optimized GEP models produced the best outputs for both rootstocks.
Collapse
Affiliation(s)
- Saeid Jamshidi
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
| | - Abbas Yadollahi
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
- * E-mail:
| | - Mohammad Mehdi Arab
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
- Department of Horticultural Sciences, College of Aburaihan, University of Tehran (UT), Tehran, Iran
| | - Mohammad Soltani
- Department of Irrigation and Drainage Engineering, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Maliheh Eftekhari
- Department of Horticultural Science, Faculty of Agriculture, Tarbiat Modares University (TMU), Tehran, Iran
| | - Jalal Shiri
- Department of Water Engineering, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
17
|
Kanno AI, Leite LCDC, Pereira LR, de Jesus MJR, Andreata-Santos R, Alves RPDS, Durigon EL, Ferreira LCDS, Gonçalves VM. Optimization and scale-up production of Zika virus ΔNS1 in Escherichia coli: application of Response Surface Methodology. AMB Express 2019; 10:1. [PMID: 31893321 PMCID: PMC6938527 DOI: 10.1186/s13568-019-0926-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/03/2019] [Indexed: 02/01/2023] Open
Abstract
Diagnosing Zika virus (ZIKV) infections has been challenging due to the cross-reactivity of induced antibodies with other flavivirus. The concomitant occurrence of ZIKV and Dengue virus (DENV) in endemic regions requires diagnostic tools with the ability to distinguish these two viral infections. Recent studies demonstrated that immunoassays using the C-terminal fragment of ZIKV NS1 antigen (ΔNS1) can be used to discriminate ZIKV from DENV infections. In order to be used in serological tests, the expression/solubility of ΔNS1 and growth of recombinant E. coli strain were optimized by Response Surface Methodology. Temperature, time and IPTG concentration were evaluated. According to the model, the best condition determined in small scale cultures was 21 °C for 20 h with 0.7 mM of IPTG, which predicted 7.5 g/L of biomass and 962 mg/L of ΔNS1. These conditions were validated and used in a 6-L batch in the bioreactor, which produced 6.4 g/L of biomass and 500 mg/L of ΔNS1 in 12 h of induction. The serological ELISA test performed with purified ΔNS1 showed low cross-reactivity with antibodies from DENV-infected human subjects. Denaturation of ΔNS1 decreased the detection of anti-ZIKV antibodies, thus indicating the contribution of conformational epitopes and confirming the importance of properly folded ΔNS1 for the specificity of the serological analyses. Obtaining high yields of soluble ΔNS1 supports the viability of an effective serologic diagnostic test capable of differentiating ZIKV from other flavivirus infections.
Collapse
|