1
|
Liu YJ, Wang X, Sun Y, Feng Y. Bacterial 5' UTR: A treasure-trove for post-transcriptional regulation. Biotechnol Adv 2025; 78:108478. [PMID: 39551455 DOI: 10.1016/j.biotechadv.2024.108478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/19/2024]
Abstract
In bacteria, where gene transcription and translation occur concurrently, post-transcriptional regulation is acknowledged to be effective and precise. The 5' untranslated regions (5' UTRs) typically harbor diverse post-transcriptional regulatory elements, like riboswitches, RNA thermometers, small RNAs, and upstream open reading frames, that serve to modulate transcription termination, translation initiation, and mRNA stability. Consequently, exploring 5' UTR-derived regulatory elements is vital for synthetic biology and metabolic engineering. Over the past few years, the investigation of successive mechanisms has facilitated the development of various genetic tools from bacterial 5' UTRs. This review consolidates current understanding of 5' UTR regulatory functions, presents recent progress in 5' UTR-element design and screening, updates the tools and regulatory strategies developed, and highlights the challenges and necessity of establishing reliable bioinformatic analysis methods and non-model bacterial chassis in the future.
Collapse
Affiliation(s)
- Ya-Jun Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaoqing Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuman Sun
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Zhang T, Zhu K, Zhang X, Yu X, Shen L, Gao D, Chen Y, Wang Q, Chen S, Bao L. Development of CadR-based cadmium whole cell biosensor for visual detection of environmental Cd 2. Anal Chim Acta 2024; 1330:343299. [PMID: 39489979 DOI: 10.1016/j.aca.2024.343299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND As a threat to human health and public health, cadmium (Cd) pollution has received widespread social concern. Our previously constructed CadR-based bacterial whole cell biosensor (WCB) epCadR5 showed high sensitivity and specificity in cadmium detection. However, the application of the sensor is still hindered by the need for laboratory equipment to read the fluorescence signal output. In this study, we aimed to optimizing the sensor to make it available for visual detection of environmental cadmium and simplify the detection process to advance practical application of the sensor. RESULTS By replacing the constitutive promoter with J110, the fluorescence signal output of the sensor was significantly increased and the fluorescence leakage was decreased. In addition, the fluorescence signal output of green fluorescence protein (GFP) was enhanced by the addition of a 5' untranslated region (5'-UTR) mlcR10. The fluorescence signal output of the WCB is sufficiently robust to be visible and distinguishable to the naked eye, which is of paramount importance for visual detection. The sensor readout can be conveniently recorded by mobile phone camera and quantified. For ease of on-site application, the WCB's visual detection procedures and conditions were further optimized and simplified. The WCB demonstrated good linearity and detection limit (1.81 μg/L) for visual detection of Cd2+ without the assistance of bulky laboratory equipment. For the detection of real environmental samples, the WCB visual detection results were close to those of WCB-flow cytometry (FACS) and graphite furnace atomic absorption spectroscopy (GFAAS). SIGNIFICANCE In this work, we developed an easy-to-use, on-site and visual detection biosensor for monitoring environmental Cd2+. It will advance the utilization of cadmium WCBs in practical settings. The optimization and simplification strategy in the study also provide new insights into the visualization of other bacterial biosensors, and will advance the practical application of WCBs.
Collapse
Affiliation(s)
- Tianyi Zhang
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - KaiLi Zhu
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, Anhui, China
| | - Xia Zhang
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Xin Yu
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Liang Shen
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Defeng Gao
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Yiwen Chen
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Qinghua Wang
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Shaopeng Chen
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China.
| | - Lingzhi Bao
- School of Public Health, Wannan Medical College, 241002, Wuhu, Anhui, China; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, 230039, Hefei, Anhui, China.
| |
Collapse
|
3
|
Jiang R, Yuan S, Zhou Y, Wei Y, Li F, Wang M, Chen B, Yu H. Strategies to overcome the challenges of low or no expression of heterologous proteins in Escherichia coli. Biotechnol Adv 2024; 75:108417. [PMID: 39038691 DOI: 10.1016/j.biotechadv.2024.108417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Protein expression is a critical process in diverse biological systems. For Escherichia coli, a widely employed microbial host in industrial catalysis and healthcare, researchers often face significant challenges in constructing recombinant expression systems. To maximize the potential of E. coli expression systems, it is essential to address problems regarding the low or absent production of certain target proteins. This article presents viable solutions to the main factors posing challenges to heterologous protein expression in E. coli, which includes protein toxicity, the intrinsic influence of gene sequences, and mRNA structure. These strategies include specialized approaches for managing toxic protein expression, addressing issues related to mRNA structure and codon bias, advanced codon optimization methodologies that consider multiple factors, and emerging optimization techniques facilitated by big data and machine learning.
Collapse
Affiliation(s)
- Ruizhao Jiang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Shuting Yuan
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Yilong Zhou
- Tanwei College, Tsinghua University, Beijing 100084, China
| | - Yuwen Wei
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China
| | - Fulong Li
- Beijing Evolyzer Co.,Ltd., 100176, China
| | | | - Bo Chen
- Beijing Evolyzer Co.,Ltd., 100176, China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Industrial Biocatalysis (Tsinghua University), the Ministry of Education, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
4
|
Kondo T, Shimizu T. TED: Enhancing Translation Efficiency in Bacterial Expression Systems. Methods Mol Biol 2024; 2844:211-218. [PMID: 39068342 DOI: 10.1007/978-1-0716-4063-0_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Genetic engineering enables the forced expression of desired products in bacteria, which can then be used for a variety of applications, including functional analysis and pharmaceuticals. Here, we describe a method for tuning translation in bacteria, including Escherichia coli and Rhodobacter capsulatus, based on a phenomenon known as TED (translation enhancement by a Dictyostelium gene sequence). This method promotes translation of mRNA encoded by downstream genes by inserting a short nucleotide sequence into the 5' untranslated region between the promoter and the Shine-Dalgarno (SD) sequence. Various expression levels can be observed depending on the inserted sequence and its length, even with an identical promoter.
Collapse
Affiliation(s)
- Tomo Kondo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Takayuki Shimizu
- Research Group of Biological Sciences, Division of Natural Sciences, Nara Women's University, Kitauoya-nishimachi, Nara, Japan
| |
Collapse
|
5
|
Zhu K, Chen D, Cai Y, Zhang T, Ma J, Bao L, Zhao F, Wu L, Chen S. Engineering the Ultrasensitive Visual Whole-Cell Biosensors by Evolved MerR and 5' UTR for Detection of Ultratrace Mercury. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16964-16973. [PMID: 37863904 DOI: 10.1021/acs.est.3c04915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
The existing mercury whole-cell biosensors (WCBs, parts per billion range) are not able to meet the real-world requirements due to their lack of sensitivity for the detection of ultratrace mercury in the environment. Ultratrace mercury is a potential threat to human health via the food chain. Here, we developed an ultrasensitive mercury WCB by directed evolution of the mercury-responsive transcriptional activator (MerR) sensing module to detect ultratrace mercury. Subsequently, the mutant WCB (m4-1) responding to mercury in the parts per trillion range after 1 h of induction was obtained. Its detection limit (LOD) was 0.313 ng/L, comparable to those of some analytical instruments. Surprisingly, the m4-1 WCB also responded to methylmercury (LOD = 98 ng/L), which is far more toxic than inorganic mercury. For more convenient detection, we have increased another green fluorescent protein reporter module with an optimized 5' untranslated region (5' UTR) sequence. This yields two visual WCBs with an enhanced fluorescence output. At a concentration of 2.5 ng/L, the fluorescence signals can be directly observed by the naked eye. With the combination of mobile phone imaging and image processing software, the 2GC WCB provided simple, rapid, and reliable quantitative and qualitative analysis of real samples (LOD = 0.307 ng/L). Taken together, these results indicate that the ultrasensitive visual whole-cell biosensors for ultratrace mercury detection are successfully designed using a combination of directed evolution and synthetic biotechnology.
Collapse
Affiliation(s)
- Kaili Zhu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, China, P. R. China
| | - Dongdong Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Yeshen Cai
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, China, P. R. China
| | - TianYi Zhang
- School of Public Health, Wannan Medical College, Wuhu 241002, P. R. China
| | - Jie Ma
- School of Public Health, Wannan Medical College, Wuhu 241002, P. R. China
| | - Lingzhi Bao
- School of Public Health, Wannan Medical College, Wuhu 241002, P. R. China
| | - Feng Zhao
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, P. R. China
| | - Lijun Wu
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P. R. China
- University of Science and Technology of China, Hefei 230026, China, P. R. China
| | - Shaopeng Chen
- School of Public Health, Wannan Medical College, Wuhu 241002, P. R. China
| |
Collapse
|
6
|
Kondo T, Yumura S. Strategies for enhancing gene expression in Escherichia coli. Appl Microbiol Biotechnol 2020; 104:3825-3834. [PMID: 32125482 DOI: 10.1007/s00253-020-10430-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/27/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
Regulation of gene expression is fundamental for cellular function. Upon manipulation of the mechanism of gene expression in Escherichia coli, various bioproducts have been developed that are valuable industrially and medically in the last four decades. To efficiently produce bioproducts, numerous molecular tools are used for enhancing expression at the transcriptional and translational levels. Our recent discovery identified a new approach that enhances the gene expression in E. coli using the gene sequence of the eukaryote, Dictyostelium discoideum. In this review, we highlight the current molecular strategies used for high-level gene expression techniques commonly utilized in basic and applied microbiology.
Collapse
Affiliation(s)
- Tomo Kondo
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-8902, Japan.
| | - Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| |
Collapse
|
7
|
An improved molecular tool for screening bacterial colonies using GFP expression enhanced by a Dictyostelium sequence. Biotechniques 2019; 68:91-95. [PMID: 31825246 DOI: 10.2144/btn-2019-0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
During molecular cloning, screening bacterial transformants is a time-consuming and labor-intensive process; however, tractable tools that can be applied to various vectors for visual confirmation of desired colonies are limited. Recently, we reported that translational enhancement by a Dictyostelium gene sequence (TED) boosted protein expression even without an expression inducer in Escherichia coli. Here, we demonstrate a generally applicable molecular tool using the expression of green fluorescent protein enhanced by TED. By inserting a module related to TED into the cloning site in advance, we effectively screened E. coli colonies harboring the desired plasmid functions in a prokaryote (Magnetospirillum gryphiswaldense) or eukaryote (Dictyostelium discoideum). Thus, our system represents a user-friendly technique for cloning.
Collapse
|