1
|
Skala LE, Philmus B, Mahmud T. Modifications of Protein-Bound Substrates by Trans-Acting Enzymes in Natural Products Biosynthesis. Chembiochem 2024; 25:e202400056. [PMID: 38386898 PMCID: PMC11021167 DOI: 10.1002/cbic.202400056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Enzymatic modifications of small molecules are a common phenomenon in natural product biosynthesis, leading to the production of diverse bioactive compounds. In polyketide biosynthesis, modifications commonly take place after the completion of the polyketide backbone assembly by the polyketide synthases and the mature products are released from the acyl-carrier protein (ACP). However, exceptions to this rule appear to be widespread, as on-line hydroxylation, methyl transfer, and cyclization during polyketide assembly process are common, particularly in trans-AT PKS systems. Many of these modifications are catalyzed by specific domains within the modular PKS systems. However, several of the on-line modifications are catalyzed by stand-alone proteins. Those include the on-line Baeyer-Villiger oxidation, α-hydroxylation, halogenation, epoxidation, and methyl esterification during polyketide assembly, dehydrogenation of ACP-bound short fatty acids by acyl-CoA dehydrogenase-like enzymes, and glycosylation of ACP-bound intermediates by discrete glycosyltransferase enzymes. This review article highlights some of these trans-acting proteins that catalyze enzymatic modifications of ACP-bound small molecules in natural product biosynthesis.
Collapse
Affiliation(s)
- Leigh E Skala
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331, U.S.A
| | - Benjamin Philmus
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331, U.S.A
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, 203 Pharmacy Building, Corvallis, Oregon, 97331, U.S.A
| |
Collapse
|
2
|
Parys JB, Van Coppenolle F. Sec61 complex/translocon: The role of an atypical ER Ca 2+-leak channel in health and disease. Front Physiol 2022; 13:991149. [PMID: 36277220 PMCID: PMC9582130 DOI: 10.3389/fphys.2022.991149] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2023] Open
Abstract
The heterotrimeric Sec61 protein complex forms the functional core of the so-called translocon that forms an aqueous channel in the endoplasmic reticulum (ER). The primary role of the Sec61 complex is to allow protein import in the ER during translation. Surprisingly, a completely different function in intracellular Ca2+ homeostasis has emerged for the Sec61 complex, and the latter is now accepted as one of the major Ca2+-leak pathways of the ER. In this review, we first discuss the structure of the Sec61 complex and focus on the pharmacology and regulation of the Sec61 complex as a Ca2+-leak channel. Subsequently, we will pay particular attention to pathologies that are linked to Sec61 mutations, such as plasma cell deficiency and congenital neutropenia. Finally, we will explore the relevance of the Sec61 complex as a Ca2+-leak channel in various pathophysiological (ER stress, apoptosis, ischemia-reperfusion) and pathological (type 2 diabetes, cancer) settings.
Collapse
Affiliation(s)
- Jan B. Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Kanker Instituut, KU Leuven, Leuven, Belgium
| | - Fabien Van Coppenolle
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, Lyon, France
- Groupement Hospitalier EST, Department of Cardiology, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
3
|
Tsunoda T, Tanoeyadi S, Proteau PJ, Mahmud T. The chemistry and biology of natural ribomimetics and related compounds. RSC Chem Biol 2022; 3:519-538. [PMID: 35656477 PMCID: PMC9092360 DOI: 10.1039/d2cb00019a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022] Open
Abstract
Natural ribomimetics represent an important group of specialized metabolites with significant biological activities. Many of the activities, e.g., inhibition of seryl-tRNA synthetases, glycosidases, or ribosomes, are manifestations of their structural resemblance to ribose or related sugars, which play roles in the structural, physiological, and/or reproductive functions of living organisms. Recent studies on the biosynthesis and biological activities of some natural ribomimetics have expanded our understanding on how they are made in nature and why they have great potential as pharmaceutically relevant products. This review article highlights the discovery, biological activities, biosynthesis, and development of this intriguing class of natural products.
Collapse
Affiliation(s)
- Takeshi Tsunoda
- Department of Pharmaceutical Sciences, Oregon State University Corvallis OR 97331 USA
| | - Samuel Tanoeyadi
- Department of Pharmaceutical Sciences, Oregon State University Corvallis OR 97331 USA
| | - Philip J Proteau
- Department of Pharmaceutical Sciences, Oregon State University Corvallis OR 97331 USA
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University Corvallis OR 97331 USA
| |
Collapse
|
4
|
Zhou W, Posri P, Liu XJ, Ju Z, Lan WJ, Mahmud T. Identification and Biological Activity of NFAT-133 Congeners from Streptomyces pactum. JOURNAL OF NATURAL PRODUCTS 2021; 84:2411-2419. [PMID: 34519213 PMCID: PMC8577183 DOI: 10.1021/acs.jnatprod.1c00152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The soil bacterium Streptomyces pactum ATCC 27456 produces a number of polyketide natural products. Among them is NFAT-133, an inhibitor of the nuclear factor of activated T cells (NFAT) that suppresses interleukin-2 (IL-2) expression and T cell proliferation. Biosynthetic gene inactivation in the ATCC 27456 strain revealed the ability of this strain to produce other polyketide compounds including analogues of NFAT-133. Consequently, seven new derivatives of NFAT-133, TM-129-TM-135, together with a known compound, panowamycin A, were isolated from the culture broth of S. pactum ATCC 27456 ΔptmTDQ. Their chemical structures were elucidated on the basis of their HRESIMS, 1D and 2D NMR spectroscopy, and ECD calculation and spectral data. NFAT-133, TM-132, TM-135, and panowamycin A showed no antibacterial activity or cytotoxicity, but weakly reduced the production of LPS-induced nitric oxide in RAW264.7 cells in a dose-dependent manner. A revised chemical structure of panowamycin A and proposed modes of formation of the new NFAT-133 analogues are also presented.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Priyapan Posri
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Xiao-Jing Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Zhiran Ju
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, United States
| | - Wen-Jian Lan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, United States
| |
Collapse
|
5
|
Cheema MT, Ponomareva LV, Liu T, Voss SR, Thorson JS, Shaaban KA, Sajid I. Taxonomic and Metabolomics Profiling of Actinobacteria Strains from Himalayan Collection Sites in Pakistan. Curr Microbiol 2021; 78:3044-3057. [PMID: 34125273 PMCID: PMC10716794 DOI: 10.1007/s00284-021-02557-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/28/2021] [Indexed: 01/08/2023]
Abstract
Actinobacteria have proven themselves as the major producers of bioactive compounds with wide applications. In this study, 35 actinobacteria strains were isolated from soil samples collected from the Himalayan mountains region in Pakistan. The isolated strains were identified by polyphasic taxonomy and were prioritized based on biological and chemical screening to identify the strains with ability to produce inimitable metabolites. The biological screening included antimicrobial activity against Staphylococcus aureus, Micrococcus luteus, Salmonella enterica, Escherichia coli, Mycobacterium aurum, and Bacillus subtilis and anticancer activity using human cancer cell lines PC3 and A549. For chemical screening, methanolic extracts were investigated using TLC, HPLC-UV/MS. The actinobacteria strain PU-MM93 was selected for scale-up fermentation based on its unique chemical profile and cytotoxicity (50-60% growth inhibition) against PC3 and A549 cell lines. The scale-up fermentation of PU-MM93, followed by purification and structure elucidation of compounds revealed this strain as a promising producer of the cytotoxic anthracycline aranciamycin and aglycone SM-173-B along with the potent neuroprotective carboxamide oxachelin C. Other interesting metabolites produced include taurocholic acid as first report herein from microbial origin, pactamycate and cyclo(L-Pro-L-Leu). The study suggested exploring more bioactive microorganisms from the untapped Himalayan region in Pakistan, which can produce commercially significant compounds.
Collapse
Affiliation(s)
- Mohsin T Cheema
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Larissa V Ponomareva
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Tao Liu
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
- Department of Natural Products Chemistry, School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - S Randal Voss
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
- Ambystoma Genetic Stock Center, University of Kentucky, Lexington, KY, 40536, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Jon S Thorson
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY, 40536, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA
| | - Khaled A Shaaban
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, KY, 40536, USA.
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, 40536, USA.
| | - Imran Sajid
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
6
|
Gerstner NC, Nicastri KA, Schomaker JM. Strategien für die Synthese von Pactamycin und Jogyamycin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202004560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nels C. Gerstner
- Department of Chemistry University of Wisconsin 1101 University Avenue Madison WI 53706 USA
| | - Kate A. Nicastri
- Department of Chemistry University of Wisconsin 1101 University Avenue Madison WI 53706 USA
| | - Jennifer M. Schomaker
- Department of Chemistry University of Wisconsin 1101 University Avenue Madison WI 53706 USA
| |
Collapse
|
7
|
Zhou W, Posri P, Mahmud T. Natural Occurrence of Hybrid Polyketides from Two Distinct Biosynthetic Pathways in Streptomyces pactum. ACS Chem Biol 2021; 16:270-276. [PMID: 33601889 DOI: 10.1021/acschembio.0c00982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nature has always been seemingly limitless in its ability to create new chemical entities. It provides vastly diverse natural compounds through a biomanufacturing process that involves myriads of biosynthetic machineries. Here we report a case of unusual formations of hybrid natural products that are derived from two distinct polyketide biosynthetic pathways, the NFAT-133 and conglobatin pathways, in Streptomyces pactum ATCC 27456. Their chemical structures were determined by NMR spectroscopy, mass spectrometry, and chemical synthesis. Genome sequence analysis and gene inactivation experiments uncovered the biosynthetic gene cluster of conglobatin in S. pactum. Biochemical studies of the recombinant thioesterase (TE) domain of the conglobatin polyketide synthase (PKS) as well as its S74A mutant revealed that the formation of these hybrid compounds requires an active TE domain. We propose that NFAT-133 can interfere with conglobatin biosynthesis by reacting with the TE-domain-bound intermediates in the conglobatin PKS assembly line to form hybrid NFAT-133/conglobatin products.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States
| | - Priyapan Posri
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States
| |
Collapse
|
8
|
Gerstner NC, Nicastri KA, Schomaker JM. Strategies for the Syntheses of Pactamycin and Jogyamycin. Angew Chem Int Ed Engl 2021; 60:14252-14271. [PMID: 32392399 DOI: 10.1002/anie.202004560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Indexed: 01/24/2023]
Abstract
Pactamycin and jogyamycin are aminocyclopentitol natural products, where each core carbon bears a stereodefined alcohol or amine moiety. Their structural complexity, coupled with the diversity of functional groups coexisting in a condensed space, make them fascinating synthetic targets in their own right. Pactamycin and its derivatives bind to the 30S ribosomal subunit and display activity against parasites responsible for drug-resistant malaria and African sleeping sickness; however, efforts to develop their therapeutic potential have been hampered by their cellular toxicity. Interestingly, bioengineered analogues display differences in selectivity and toxicity towards mammalian cells, spurring efforts to develop flexible strategies to thoroughly probe structure-activity relationships (SAR), particularly in analogues lacking the C7 hydroxyl group of pactamycin. This review compares and contrasts approaches towards pactamycin and jogyamycin, including two successful total syntheses of the former. The implications of each route for preparing analogues to inform SAR and lead to compounds with increased selectivity for binding malarial over human ribosomes are briefly discussed.
Collapse
Affiliation(s)
- Nels C Gerstner
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI, 53706, USA
| | - Kate A Nicastri
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI, 53706, USA
| | - Jennifer M Schomaker
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, WI, 53706, USA
| |
Collapse
|
9
|
Zhou W, Posri P, Abugrain ME, Weisberg AJ, Chang JH, Mahmud T. Biosynthesis of the Nuclear Factor of Activated T Cells Inhibitor NFAT-133 in Streptomyces pactum. ACS Chem Biol 2020; 15:3217-3226. [PMID: 33284588 DOI: 10.1021/acschembio.0c00775] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
NFAT-133 is a Streptomyces-derived aromatic polyketide compound with immunosuppressive, antidiabetic, and antitrypanosomal activities. It inhibits transcription mediated by nuclear factor of activated T cells (NFAT), leading to the suppression of interleukin-2 expression and T cell proliferation. It also activates the AMPK pathway in L6 myotubes and increases glucose uptake. In addition to NFAT-133, a number of its congeners, e.g., panowamycins and benwamycins, have been identified. However, little is known about their modes of formation in the producing organisms. Through genome sequencing of Streptomyces pactum ATCC 27456, gene inactivation, and genetic complementation experiments, the biosynthetic gene cluster of NFAT-133 and its congeners has been identified. The cluster contains a highly disordered genetic organization of type I modular polyketide synthase genes with several genes that are necessary for the formation of the aromatic core unit and tailoring processes. In addition, a number of new analogs of NFAT-133 were isolated and their chemical structures elucidated. It is suggested that the heptaketide NFAT-133 is derived from an octaketide intermediate, TM-123. The current study shows yet another unusual biosynthetic pathway involving a noncanonical polyketide synthase assembly line to produce a group of small molecules with valuable bioactivities.
Collapse
|
10
|
Upadhyay C, Chaudhary M, De Oliveira RN, Borbas A, Kempaiah P, Singh P, Rathi B. Fluorinated scaffolds for antimalarial drug discovery. Expert Opin Drug Discov 2020; 15:705-718. [PMID: 32202162 DOI: 10.1080/17460441.2020.1740203] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The unique physicochemical properties and chemical diversity of organofluorine compounds have remarkably contributed for their wide utility in the area of pharmaceuticals, materials and agrochemicals. The noteworthy characteristics of fluorine include high electron affinity, lipophilicity and bioavailability, extending the half-life of the drugs. The incorporation of fluorine substituents, particularly trifluoromethyl groups, into organic molecules has led to their high potency against various diseases, including malaria. Hence, organofluorinated molecules offer valuable avenues for the design of new drug candidates against malaria. AREAS COVERED In this review, the authors discuss the importance of fluorine substituents present in the chemical compounds, and their potential applications for antimalarial drug discovery. EXPERT OPINION Fluorinated molecules represent a reliable strategy to develop new antimalarial drugs. Fluorine or fluorinated groups have been identified as a promising precursor, and their presence in approximately twenty-five percent of approved drugs is notable. Selective fluorination of chemical entities has the potential to be applied not only to improve the activity profile against the malaria parasite, but could be extrapolated for favorable pharmacological applications. Hazardous reagents such as HF, F2 and SF4 used for fluorination, are not considered as safe, and therefore, this process remains challenging, particularly for the pharmaceutical industry.
Collapse
Affiliation(s)
- Charu Upadhyay
- Department of Chemistry, Miranda House, University of Delhi , Delhi, India
| | - Monika Chaudhary
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi , Delhi, India
| | - Ronaldo N De Oliveira
- Laboratory of Synthesis of Bioactive Compounds, Department of Chemistry, Federal Rural University of Pernambuco , Recife, Brazil
| | - Aniko Borbas
- Department of Pharmaceutical Chemistry, University of Debrecen , Debrecen, Hungary
| | - Prakasha Kempaiah
- Department of Medicine, Loyola University Stritch School of Medicine , Chicago, USA
| | - Poonam Singh
- Department of Chemistry, Miranda House, University of Delhi , Delhi, India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College University Enclave, University of Delhi , Delhi, India
| |
Collapse
|