1
|
Moroz LL. Brief History of Ctenophora. Methods Mol Biol 2024; 2757:1-26. [PMID: 38668961 DOI: 10.1007/978-1-0716-3642-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ctenophores are the descendants of the earliest surviving lineage of ancestral metazoans, predating the branch leading to sponges (Ctenophore-first phylogeny). Emerging genomic, ultrastructural, cellular, and systemic data indicate that virtually every aspect of ctenophore biology as well as ctenophore development are remarkably different from what is described in representatives of other 32 animal phyla. The outcome of this reconstruction is that most system-level components associated with the ctenophore organization result from convergent evolution. In other words, the ctenophore lineage independently evolved as high animal complexities with the astonishing diversity of cell types and structures as bilaterians and cnidarians. Specifically, neurons, synapses, muscles, mesoderm, through gut, sensory, and integrative systems evolved independently in Ctenophora. Rapid parallel evolution of complex traits is associated with a broad spectrum of unique ctenophore-specific molecular innovations, including alternative toolkits for making an animal. However, the systematic studies of ctenophores are in their infancy, and deciphering their remarkable morphological and functional diversity is one of the hot topics in biological research, with many anticipated surprises.
Collapse
Affiliation(s)
- Leonid L Moroz
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA.
| |
Collapse
|
2
|
Asadi Sofilar A, Shirdel A, Jafarian V, Khalifeh K. An in silico analysis on the photoproteins Mnemiopsin 1 and Mnemiopsin 2 to explain the experimental results. LUMINESCENCE 2023; 38:1946-1954. [PMID: 37610051 DOI: 10.1002/bio.4584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/24/2023]
Abstract
Mnemiopsin 1 (Mn1) and Mnemiopsin 2 (Mn2) are photoproteins found in Mnemiopsis leidyi. We have tried to answer the question of whether the structural features of photoproteins can explain the observed activity data. According to the activity measurements data, they have the same characteristic wavelength. However, the initial intensity of Mn2 is significantly higher than that of Mn1, and decay time of Mn1 (0.92 s-1 ) is lower than that of Mn2 (1.46 s-1 ). The phylogenetic analysis demonstrates that, compared with Obelin and Aequorin from Obelia longissima and Aequorea victoria, respectively, a gene modification event may have caused the expansion of the N-terminal side of all photoproteins from M. leidyi. An in silico study has shown that the stability of the photoprotein-substrate complex of Mn2 is higher than that of Mn1, indicating a higher affinity of the substrate for Mn2 compared with Mn1. It was revealed that the active EF-hand loops 1 and III in Mn2 is locally more rigid compared with those in Mn1. We concluded that different stability of the photoprotein complexes leads to different initial intensity. While different patterns of the local dynamics of loops I and III may influence the decay rate.
Collapse
Affiliation(s)
| | - Akram Shirdel
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
| | - Vahab Jafarian
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Khosrow Khalifeh
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
- Department of Biotechnology, Research Institute of Modern Biological Techniques, University of Zanjan, Zanjan, Iran
| |
Collapse
|
3
|
Natashin PV, Burakova LP, Kovaleva MI, Shevtsov MB, Dmitrieva DA, Eremeeva EV, Markova SV, Mishin AV, Borshchevskiy VI, Vysotski ES. The Role of Tyr-His-Trp Triad and Water Molecule Near the N1-Atom of 2-Hydroperoxycoelenterazine in Bioluminescence of Hydromedusan Photoproteins: Structural and Mutagenesis Study. Int J Mol Sci 2023; 24:ijms24076869. [PMID: 37047842 PMCID: PMC10095345 DOI: 10.3390/ijms24076869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
Hydromedusan photoproteins responsible for the bioluminescence of a variety of marine jellyfish and hydroids are a unique biochemical system recognized as a stable enzyme-substrate complex consisting of apoprotein and preoxygenated coelenterazine, which is tightly bound in the protein inner cavity. The binding of calcium ions to the photoprotein molecule is only required to initiate the light emission reaction. Although numerous experimental and theoretical studies on the bioluminescence of these photoproteins were performed, many features of their functioning are yet unclear. In particular, which ionic state of dioxetanone intermediate decomposes to yield a coelenteramide in an excited state and the role of the water molecule residing in a proximity to the N1 atom of 2-hydroperoxycoelenterazine in the bioluminescence reaction are still under discussion. With the aim to elucidate the function of this water molecule as well as to pinpoint the amino acid residues presumably involved in the protonation of the primarily formed dioxetanone anion, we constructed a set of single and double obelin and aequorin mutants with substitutions of His, Trp, Tyr, and Ser to residues with different properties of side chains and investigated their bioluminescence properties (specific activity, bioluminescence spectra, stopped-flow kinetics, and fluorescence spectra of Ca2+-discharged photoproteins). Moreover, we determined the spatial structure of the obelin mutant with a substitution of His64, the key residue of the presumable proton transfer, to Phe. On the ground of the bioluminescence properties of the obelin and aequorin mutants as well as the spatial structures of the obelin mutants with the replacements of His64 and Tyr138, the conclusion was made that, in fact, His residue of the Tyr-His-Trp triad and the water molecule perform the "catalytic function" by transferring the proton from solvent to the dioxetanone anion to generate its neutral ionic state in complex with water, as only the decomposition of this form of dioxetanone can provide the highest light output in the light-emitting reaction of the hydromedusan photoproteins.
Collapse
Affiliation(s)
- Pavel V Natashin
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| | - Ludmila P Burakova
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Margarita I Kovaleva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Mikhail B Shevtsov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Daria A Dmitrieva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Svetlana V Markova
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
- Institute of Fundamental Biology and Biotechnology, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics of Siberian Branch of the Russian Academy of Sciences, Federal Research Center "Krasnoyarsk Science Center" of Siberian Branch of the Russian Academy of Sciences", Krasnoyarsk 660036, Russia
| |
Collapse
|
4
|
Vysotski ES. Bioluminescent and Fluorescent Proteins: Molecular Mechanisms and Modern Applications. Int J Mol Sci 2022; 24:ijms24010281. [PMID: 36613724 PMCID: PMC9820413 DOI: 10.3390/ijms24010281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
Light emission by living organisms in the visible spectrum range is called bioluminescence [...].
Collapse
Affiliation(s)
- Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk 660036, Russia
| |
Collapse
|
5
|
Recombinant light-sensitive photoprotein berovin from ctenophore Beroe abyssicola: Bioluminescence and absorbance characteristics. Biochem Biophys Res Commun 2022; 624:23-27. [DOI: 10.1016/j.bbrc.2022.07.079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/20/2022] [Indexed: 11/20/2022]
|
6
|
Hematyar M, Jafarian V, Shirdel A. Longer characteristic wavelength in a novel engineered photoprotein Mnemiopsin 2. Photochem Photobiol Sci 2022; 21:1031-1040. [PMID: 35226332 DOI: 10.1007/s43630-022-00191-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
We designed two mutants of photoprotein Mnemiopsin 2 (Mn2) including M52I and V144I, where the mutations were applied in the EF-hand loops I and III. Far-UV CD measurements demonstrated that the stability of the helices in the wild-type (WT) protein is greater compared with the mutants. Heat-induced denaturation experiments in the apo-form of photoproteins showed that WT Mn2 has higher value of the enthalpy change for the unfolding process, indicating that it has more stabilizing interaction compared with mutants. According to the activity measurement data, both mutants, particularly V144I have lower initial intensity as well as slower decay rate as compared with the WT photoprotein. Importantly, it was found that V144I variant shows 25 nm of red shift in the characteristic wavelengths as compared with the WT photoprotein. This finding can be considered as an advantage for in vivo application of photoprotein for imaging purposes. It concluded that this position on loop III of Mn2 is a hotspot point for characteristic wavelength determination. However, further research on this mutant is needed for making stable variants of Mn2 with novel optical features.
Collapse
Affiliation(s)
- Mahsa Hematyar
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran
| | - Vahab Jafarian
- Department of Biology, Faculty of Sciences, University of Zanjan, Zanjan, Iran.
| | - Akram Shirdel
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Larionova MD, Wu L, Eremeeva EV, Natashin PV, Gulnov DV, Nemtseva EV, Liu D, Liu Z, Vysotski ES. Crystal structure of semisynthetic obelin-v. Protein Sci 2022; 31:454-469. [PMID: 34802167 PMCID: PMC8819848 DOI: 10.1002/pro.4244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 02/03/2023]
Abstract
Coelenterazine-v (CTZ-v), a synthetic derivative with an additional benzyl ring, yields a bright bioluminescence of Renilla luciferase and its "yellow" mutant with a significant shift in the emission spectrum toward longer wavelengths, which makes it the substrate of choice for deep tissue imaging. Although Ca2+ -regulated photoproteins activated with CTZ-v also display red-shifted light emission, in contrast to Renilla luciferase their bioluminescence activities are very low, which makes photoproteins activated by CTZ-v unusable for calcium imaging. Here, we report the crystal structure of Ca2+ -regulated photoprotein obelin with 2-hydroperoxycoelenterazine-v (obelin-v) at 1.80 Å resolution. The structures of obelin-v and obelin bound with native CTZ revealed almost no difference; only the minor rearrangement in hydrogen-bond pattern and slightly increased distances between key active site residues and some atoms of 2-hydroperoxycoelenterazine-v were found. The fluorescence quantum yield (ΦFL ) of obelin bound with coelenteramide-v (0.24) turned out to be even higher than that of obelin with native coelenteramide (0.19). Since both obelins are in effect the enzyme-substrate complexes containing the 2-hydroperoxy adduct of CTZ-v or CTZ, we reasonably assume the chemical reaction mechanisms and the yields of the reaction products (ΦR ) to be similar for both obelins. Based on these findings we suggest that low bioluminescence activity of obelin-v is caused by the low efficiency of generating an electronic excited state (ΦS ). In turn, the low ΦS value as compared to that of native CTZ might be the result of small changes in the substrate microenvironment in the obelin-v active site.
Collapse
Affiliation(s)
- Marina D. Larionova
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia,iHuman Institute, ShanghaiTech UniversityShanghaiChina
| | - Lijie Wu
- iHuman Institute, ShanghaiTech UniversityShanghaiChina
| | - Elena V. Eremeeva
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia,Institute of Fundamental Biology and Biotechnology, Siberian Federal UniversityKrasnoyarskRussia
| | - Pavel V. Natashin
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia
| | - Dmitry V. Gulnov
- Institute of Fundamental Biology and Biotechnology, Siberian Federal UniversityKrasnoyarskRussia
| | - Elena V. Nemtseva
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia,Institute of Fundamental Biology and Biotechnology, Siberian Federal UniversityKrasnoyarskRussia
| | - Dongsheng Liu
- iHuman Institute, ShanghaiTech UniversityShanghaiChina
| | - Zhi‐Jie Liu
- iHuman Institute, ShanghaiTech UniversityShanghaiChina,School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - Eugene S. Vysotski
- Photobiology LaboratoryInstitute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”KrasnoyarskRussia
| |
Collapse
|
8
|
Tomilin FN, Rogova AV, Burakova LP, Tchaikovskaya ON, Avramov PV, Fedorov DG, Vysotski ES. Unusual shift in the visible absorption spectrum of an active ctenophore photoprotein elucidated by time-dependent density functional theory. Photochem Photobiol Sci 2021; 20:10.1007/s43630-021-00039-5. [PMID: 33834429 DOI: 10.1007/s43630-021-00039-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/29/2021] [Indexed: 11/28/2022]
Abstract
Active hydromedusan and ctenophore Ca2+-regulated photoproteins form complexes consisting of apoprotein and strongly non-covalently bound 2-hydroperoxycoelenterazine (an oxygenated intermediate of coelenterazine). Whereas the absorption maximum of hydromedusan photoproteins is at 460-470 nm, ctenophore photoproteins absorb at 437 nm. Finding out a physical reason for this blue shift is the main objective of this work, and, to achieve it, the whole structure of the protein-substrate complex was optimized using a linear scaling quantum-mechanical method. Electronic excitations pertinent to the spectra of the 2-hydroperoxy adduct of coelenterazine were simulated with time-dependent density functional theory. The dihedral angle of 60° of the 6-(p-hydroxy)-phenyl group relative to the imidazopyrazinone core of 2-hydroperoxycoelenterazine molecule was found to be the key factor determining the absorption of ctenophore photoproteins at 437 nm. The residues relevant to binding of the substrate and its adopting the particular rotation were also identified.
Collapse
Affiliation(s)
- Felix N Tomilin
- Kirensky Institute of Physics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/38, Krasnoyarsk, 660036, Russia
- Siberian Federal University, Svobodny 79 pr., Krasnoyarsk, 660041, Russia
- National Research Tomsk State University, Lenin Avenue 36, Tomsk, 634050, Russia
| | - Anastasia V Rogova
- Siberian Federal University, Svobodny 79 pr., Krasnoyarsk, 660041, Russia
| | - Ludmila P Burakova
- Siberian Federal University, Svobodny 79 pr., Krasnoyarsk, 660041, Russia
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, Krasnoyarsk, 660036, Russia
| | - Olga N Tchaikovskaya
- National Research Tomsk State University, Lenin Avenue 36, Tomsk, 634050, Russia
| | - Pavel V Avramov
- Kyungpook National University, 80 Daehakro, Bukgu, Daegu, 41566, South Korea
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, 305-8568, Japan.
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Akademgorodok 50/50, Krasnoyarsk, 660036, Russia.
| |
Collapse
|
9
|
Syed AJ, Anderson JC. Applications of bioluminescence in biotechnology and beyond. Chem Soc Rev 2021; 50:5668-5705. [DOI: 10.1039/d0cs01492c] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bioluminescent probes have hugely benefited from the input of synthetic chemistry and protein engineering. Here we review the latest applications of these probes in biotechnology and beyond, with an eye on current limitations and future directions.
Collapse
Affiliation(s)
- Aisha J. Syed
- Department of Chemistry
- University College London
- London
- UK
| | | |
Collapse
|
10
|
Eremeeva EV, Jiang T, Malikova NP, Li M, Vysotski ES. Bioluminescent Properties of Semi-Synthetic Obelin and Aequorin Activated by Coelenterazine Analogues with Modifications of C-2, C-6, and C-8 Substituents. Int J Mol Sci 2020; 21:E5446. [PMID: 32751691 PMCID: PMC7432523 DOI: 10.3390/ijms21155446] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Ca2+-regulated photoproteins responsible for bioluminescence of a variety of marine organisms are single-chain globular proteins within the inner cavity of which the oxygenated coelenterazine, 2-hydroperoxycoelenterazine, is tightly bound. Alongside with native coelenterazine, photoproteins can also use its synthetic analogues as substrates to produce flash-type bioluminescence. However, information on the effect of modifications of various groups of coelenterazine and amino acid environment of the protein active site on the bioluminescent properties of the corresponding semi-synthetic photoproteins is fragmentary and often controversial. In this paper, we investigated the specific bioluminescence activity, light emission spectra, stopped-flow kinetics and sensitivity to calcium of the semi-synthetic aequorins and obelins activated by novel coelenterazine analogues and the recently reported coelenterazine derivatives. Several semi-synthetic photoproteins activated by the studied coelenterazine analogues displayed sufficient bioluminescence activities accompanied by various changes in the spectral and kinetic properties as well as in calcium sensitivity. The poor activity of certain semi-synthetic photoproteins might be attributed to instability of some coelenterazine analogues in solution and low efficiency of 2-hydroperoxy adduct formation. In most cases, semi-synthetic obelins and aequorins displayed different properties upon being activated by the same coelenterazine analogue. The results indicated that the OH-group at the C-6 phenyl ring of coelenterazine is important for the photoprotein bioluminescence and that the hydrogen-bond network around the substituent in position 6 of the imidazopyrazinone core could be the reason of different bioluminescence activities of aequorin and obelin with certain coelenterazine analogues.
Collapse
Affiliation(s)
- Elena V. Eremeeva
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk 660036, Russia; (E.V.E.); (N.P.M.)
| | - Tianyu Jiang
- Key Laboratory of Chemical Biology (MOE), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China;
- State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China
| | - Natalia P. Malikova
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk 660036, Russia; (E.V.E.); (N.P.M.)
| | - Minyong Li
- Key Laboratory of Chemical Biology (MOE), Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, China;
| | - Eugene S. Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”, Krasnoyarsk 660036, Russia; (E.V.E.); (N.P.M.)
| |
Collapse
|
11
|
Burakova LP, Eremeeva EV, Vysotski ES. The interaction of C-terminal Tyr208 and Tyr13 of the first α-helix ensures a closed conformation of ctenophore photoprotein berovin. Photochem Photobiol Sci 2020; 19:313-323. [PMID: 32057065 DOI: 10.1039/c9pp00436j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light-sensitive Ca2+-regulated photoprotein berovin is responsible for the bioluminescence of the ctenophore Beroe abyssicola. It shares many properties of hydromedusan photoproteins although the degree of identity of its amino acid sequence with those of photoproteins is low. There is a hydrogen bond between C-terminal Pro and Arg situated in the N-terminal α-helix of hydromedusan photoproteins that supports a closed conformation of the internal cavity of the photoprotein molecule with bound 2-hydroperoxycoelenterazine. The C- and N-terminal hydrogen bond network is necessary to properly isolate the photoprotein active site from the solvent and consequently to provide a high quantum yield of the bioluminescence reaction. In order to find out which berovin residues perform the same function we modified the N- and C-termini of the protein by replacing or deleting various amino acid residues. The studies on berovin mutants showed that the interaction between C-terminal Tyr208 and Tyr13 localized in the first α-helix of the photoprotein is important for the stabilization and proper orientation of the oxygenated coelenterazine adduct within the internal cavity as well as for supporting the closed photoprotein conformation. We also suggest that the interplay between Tyr residues in ctenophore photoproteins occurs rather through the π-π interaction of their phenyl rings than through hydrogen bonds as in hydromedusan photoproteins.
Collapse
Affiliation(s)
- Ludmila P Burakova
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | - Elena V Eremeeva
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia
| | - Eugene S Vysotski
- Photobiology Laboratory, Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", Krasnoyarsk, Russia.
| |
Collapse
|