1
|
Xu C, Shen J, Chen W, Sun X, Zhang X, Liu Y, Liu X. Targeting Design of Human Anti-idiotypic Genetically Engineered Antibody for Simulating the Structure and Insecticidal Function of Bt Cry1C Toxin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21650-21666. [PMID: 39294853 DOI: 10.1021/acs.jafc.4c06376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The β-type anti-Id (Ab2β) is considered to have potential for simulating the structure and function of the antigen. In this study, a β-type anti-Id (3A7 anti-I-GEAb) of the Cry1C toxin was captured from a GEAb library. Subsequently, a higher activity of mutant (3A7 mutant 8) was obtained from the mutagenesis library based on 3A7 anti-I-GEAb. The LD50 values of 3A7 anti-I-GEAb and 3A7 mutant 8 reach up to 38.9% and 46.8% of Cry1C toxin for P. xylostella and reach up to 32.9% and 37.4% of Cry1C toxin for H. armigera. Additionally, an IC-ELISA was established based on 3A7 mutant 8 (as the coated "antigen"), with an LOD value of 0.35 ng/mL, exhibiting good accuracy and stability for detecting Cry1C toxin in spiked samples. The present β-type anti-I-GEAb not only exhibits insecticidal activity similar to Cry1C toxin, offering potential for environmentally friendly pest management, but it can also replace the Cry1C toxin structure to establish a highly sensitive and specific IC-ELISA for monitoring Cry1C toxin.
Collapse
Affiliation(s)
- Chongxin Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianxing Shen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wei Chen
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaoming Sun
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiao Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuan Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xianjin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
2
|
Cai H, Zhang Z, Wang M, Zhong B, Li Q, Zhong Y, Wu Y, Ying T, Tang J. Pretrainable geometric graph neural network for antibody affinity maturation. Nat Commun 2024; 15:7785. [PMID: 39242604 PMCID: PMC11379722 DOI: 10.1038/s41467-024-51563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 08/13/2024] [Indexed: 09/09/2024] Open
Abstract
Increasing the binding affinity of an antibody to its target antigen is a crucial task in antibody therapeutics development. This paper presents a pretrainable geometric graph neural network, GearBind, and explores its potential in in silico affinity maturation. Leveraging multi-relational graph construction, multi-level geometric message passing and contrastive pretraining on mass-scale, unlabeled protein structural data, GearBind outperforms previous state-of-the-art approaches on SKEMPI and an independent test set. A powerful ensemble model based on GearBind is then derived and used to successfully enhance the binding of two antibodies with distinct formats and target antigens. ELISA EC50 values of the designed antibody mutants are decreased by up to 17 fold, and KD values by up to 6.1 fold. These promising results underscore the utility of geometric deep learning and effective pretraining in macromolecule interaction modeling tasks.
Collapse
Affiliation(s)
- Huiyu Cai
- BioGeometry, Beijing, China
- Mila-Québec AI Institute, Montréal, QC, Canada
- Department of Computer Science and Operations Research, Université de Montréal, Montréal, QC, Canada
| | - Zuobai Zhang
- Mila-Québec AI Institute, Montréal, QC, Canada
- Department of Computer Science and Operations Research, Université de Montréal, Montréal, QC, Canada
| | - Mingkai Wang
- Shanghai Engineering Research Center for Synthetic Immunology, Fudan University, Shanghai, China
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Bozitao Zhong
- Mila-Québec AI Institute, Montréal, QC, Canada
- Department of Computer Science and Operations Research, Université de Montréal, Montréal, QC, Canada
| | - Quanxiao Li
- Shanghai Engineering Research Center for Synthetic Immunology, Fudan University, Shanghai, China
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuxuan Zhong
- Shanghai Engineering Research Center for Synthetic Immunology, Fudan University, Shanghai, China
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanling Wu
- Shanghai Engineering Research Center for Synthetic Immunology, Fudan University, Shanghai, China.
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Tianlei Ying
- Shanghai Engineering Research Center for Synthetic Immunology, Fudan University, Shanghai, China.
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Jian Tang
- BioGeometry, Beijing, China.
- Mila-Québec AI Institute, Montréal, QC, Canada.
- Department of Decision Sciences, HEC Montréal, Montréal, QC, Canada.
| |
Collapse
|
3
|
Muñoz-López P, Ribas-Aparicio RM, Becerra-Báez EI, Fraga-Pérez K, Flores-Martínez LF, Mateos-Chávez AA, Luria-Pérez R. Single-Chain Fragment Variable: Recent Progress in Cancer Diagnosis and Therapy. Cancers (Basel) 2022; 14:cancers14174206. [PMID: 36077739 PMCID: PMC9455005 DOI: 10.3390/cancers14174206] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Recombinant antibody fragments have shown remarkable potential as diagnostic and therapeutic tools in the fight against cancer. The single-chain fragment variable (scFv) that contains the complete antigen-binding domains of a whole antibody, has several advantages such as a high specificity and affinity for antigens, a low immunogenicity, and the proven ability to penetrate tumor tissues and diffuse. This review provides an overview of the current studies on the principle, generation, and applications of scFvs, particularly in the diagnosis and therapy of cancer, and underscores their potential use in clinical trials. Abstract Cancer remains a public health problem worldwide. Although conventional therapies have led to some excellent outcomes, some patients fail to respond to treatment, they have few therapeutic alternatives and a poor survival prognosis. Several strategies have been proposed to overcome this issue. The most recent approach is immunotherapy, particularly the use of recombinant antibodies and their derivatives, such as the single-chain fragment variable (scFv) containing the complete antigen-binding domains of a whole antibody that successfully targets tumor cells. This review describes the recent progress made with scFvs as a cancer diagnostic and therapeutic tool, with an emphasis on preclinical approaches and their potential use in clinical trials.
Collapse
Affiliation(s)
- Paola Muñoz-López
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Rosa María Ribas-Aparicio
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Elayne Irene Becerra-Báez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Mexico City 11340, Mexico
| | - Karla Fraga-Pérez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
| | - Luis Fernando Flores-Martínez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
| | - Armando Alfredo Mateos-Chávez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
| | - Rosendo Luria-Pérez
- Unit of Investigative Research on Hemato-Oncological Diseases, Hospital Infantil de México Federico Gómez, Doctor Márquez 162, Mexico City 06720, Mexico
- Correspondence: ; Tel.: +52-(55)-5228-9917 (ext. 4401)
| |
Collapse
|
4
|
Luo R, Qu B, An L, Zhao Y, Cao Y, Ren P, Hang H. Simultaneous Maturation of Single Chain Antibody Stability and Affinity by CHO Cell Display. Bioengineering (Basel) 2022; 9:bioengineering9080360. [PMID: 36004885 PMCID: PMC9404881 DOI: 10.3390/bioengineering9080360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Antibody stability and affinity are two important features of its applications in therapy and diagnosis. Antibody display technologies such as yeast and bacterial displays have been successfully used for improving both affinity and stability. Although mammalian cell display has also been utilized for maturing antibody affinity, it has not been applied for improving antibody stability. Previously, we developed a Chinese hamster ovary (CHO) cell display platform in which activation-induced cytidine deaminase (AID) was used to induce antibody mutation, and antibody affinity was successfully matured using the platform. In the current study, we developed thermo-resistant (TR) CHO cells for the purpose of maturing both antibody stability and affinity. We cultured TR CHO cells displaying an antibody mutant library and labeled them at temperatures above 41 °C, enriching cells that displayed antibody mutants with both the highest affinities and the highest display levels. To evaluate our system, we chose three antibodies to improve their affinities and stabilities. We succeeded in simultaneously improving both affinities and stabilities of all three antibodies. Of note, we obtained an anti-TNFα antibody mutant with a Tm (dissolution temperature) value 12 °C higher and affinity 160-fold greater than the parent antibody after two rounds of cell proliferation and flow cytometric sorting. By using CHO cells with its advantages in protein folding, post-translational modifications, and code usage, this procedure is likely to be widely used in maturing antibodies and other proteins in the future.
Collapse
Affiliation(s)
- Ruiqi Luo
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (R.L.); (B.Q.); (L.A.); (Y.Z.)
| | - Baole Qu
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (R.L.); (B.Q.); (L.A.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili An
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (R.L.); (B.Q.); (L.A.); (Y.Z.)
| | - Yun Zhao
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (R.L.); (B.Q.); (L.A.); (Y.Z.)
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
- Correspondence: (Y.C.); (P.R.); (H.H.)
| | - Peng Ren
- Department of Thoracic Surgery, Peking University Third Hospital, Beijing 100191, China
- Correspondence: (Y.C.); (P.R.); (H.H.)
| | - Haiying Hang
- Key Laboratory for Protein and Peptide Pharmaceuticals, National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (R.L.); (B.Q.); (L.A.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.C.); (P.R.); (H.H.)
| |
Collapse
|
5
|
Deep learning guided optimization of human antibody against SARS-CoV-2 variants with broad neutralization. Proc Natl Acad Sci U S A 2022; 119:e2122954119. [PMID: 35238654 PMCID: PMC8931377 DOI: 10.1073/pnas.2122954119] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
SignificanceSARS-CoV-2 continues to evolve through emerging variants, more frequently observed with higher transmissibility. Despite the wide application of vaccines and antibodies, the selection pressure on the Spike protein may lead to further evolution of variants that include mutations that can evade immune response. To catch up with the virus's evolution, we introduced a deep learning approach to redesign the complementarity-determining regions (CDRs) to target multiple virus variants and obtained an antibody that broadly neutralizes SARS-CoV-2 variants.
Collapse
|
6
|
Vajda S, Porter KA, Kozakov D. Progress toward improved understanding of antibody maturation. Curr Opin Struct Biol 2021; 67:226-231. [PMID: 33610066 DOI: 10.1016/j.sbi.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022]
Abstract
Upon encountering an antigen, antibodies mature through various rounds of somatic mutations, resulting in higher affinities and specificities to the particular antigen. We review recent progress in four areas of antibody maturation studies. (1) Next-generation and single-cell sequencing have revolutionized the analysis of antibody repertoires by dramatically increasing the sequences available to study the state and evolution of the immune system. Computational methods, including machine learning tools, have been developed for reconstituting antibody clonal lineages and for general repertoire analysis. (2) The availability of X-ray structures, thermodynamic and kinetic data, and molecular dynamics simulations provide information on the biophysical mechanisms responsible for improved affinity. (3) In addition to improved binding to a specific antigen, providing affinity-independent diversity and self/nonself discrimination are fundamental functions of the immune system. Recent studies, including X-ray structures, yield improved understanding of both mechanisms. (4) Results from in vivo maturation help to develop methods of in vitro maturation to improve antibody properties for therapeutic applications, frequently combining computational and experimental approaches.
Collapse
Affiliation(s)
- Sandor Vajda
- Department of Biomedical Engineering, Boston University, Boston MA 02215, United States.
| | - Kathryn A Porter
- Department of Biomedical Engineering, Boston University, Boston MA 02215, United States
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook NY 11794, United States; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook NY, 11790, United States.
| |
Collapse
|
7
|
Li S, Zou Y, Zhao D, Yin Y, Song J, He N, Liu H, Qian D, Li L, Huang H. Revisiting the phosphotyrosine binding pocket of Fyn SH2 domain led to the identification of novel SH2 superbinders. Protein Sci 2020; 30:558-570. [PMID: 33314411 DOI: 10.1002/pro.4012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 01/22/2023]
Abstract
Protein engineering through directed evolution is an effective way to obtain proteins with novel functions with the potential applications as tools for diagnosis or therapeutics. Many natural proteins have undergone directed evolution in vitro in the test tubes in the laboratories worldwide, resulting in the numerous protein variants with novel or enhanced functions. we constructed here an SH2 variant library by randomizing 8 variable residues in its phosphotyrosine (pTyr) binding pocket. Selection of this library by a pTyr peptide led to the identification of SH2 variants with enhanced affinities measured by EC50. Fluorescent polarization was then applied to quantify the binding affinities of the newly identified SH2 variants. As a result, three SH2 variants, named V3, V13 and V24, have comparable binding affinities with the previously identified SH2 triple-mutant superbinder. Biolayer Interferometry assay was employed to disclose the kinetics of the binding of these SH2 superbinders to the phosphotyrosine peptide. The results indicated that all the SH2 superbinders have two-orders increase of the dissociation rate when binding the pTyr peptide while there was no significant change in their associate rates. Intriguingly, though binding the pTyr peptide with comparable affinity with other SH2 superbinders, the V3 does not bind to the sTyr peptide. However, variant V13 and V24 have cross-reactivity with both pTyr and sTyr peptides. The newly identified superbinders could be utilized as tools for the identification of pTyr-containing proteins from tissues under different physiological or pathophysiological conditions and may have the potential in the therapeutics.
Collapse
Affiliation(s)
- Shuhao Li
- College of Life Sciences, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China.,Department of Antibody Engineering, Shanghai Asia United Antibody Medical Co., Ltd, Shanghai, China
| | - Yang Zou
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Dongping Zhao
- School of Basic Medicine, Qingdao University, Qingdao, China.,Department of Antibody Engineering, Shanghai Asia United Antibody Medical Co., Ltd, Shanghai, China
| | - Yuqing Yin
- Department of Antibody Engineering, Shanghai Asia United Antibody Medical Co., Ltd, Shanghai, China
| | - Jingyi Song
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Ningning He
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Huadong Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Dongmeng Qian
- College of Life Sciences, Qingdao University, Qingdao, China.,School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lei Li
- School of Basic Medicine, Qingdao University, Qingdao, China.,The Cancer Institute, Qingdao University, Qingdao, China
| | - Haiming Huang
- Department of Antibody Engineering, Shanghai Asia United Antibody Medical Co., Ltd, Shanghai, China
| |
Collapse
|
8
|
Hutchings CJ. A review of antibody-based therapeutics targeting G protein-coupled receptors: an update. Expert Opin Biol Ther 2020; 20:925-935. [PMID: 32264722 DOI: 10.1080/14712598.2020.1745770] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION G protein-coupled receptors (GPCRs) play key roles in many biological functions and are linked to many diseases across all therapeutic areas. As such, GPCRs represent a significant opportunity for antibody-based therapeutics. AREAS COVERED The structure of the major GPCR families is summarized in the context of choice of antigen source employed in the drug discovery process and receptor biology considerations which may impact on targeting strategies. An overview of the therapeutic GPCR-antibody target landscape and the diversity of current therapeutic programs is provided along with summary case studies for marketed antibody drugs or those in advanced clinical studies. Antibodies in early clinical studies and the emergence of next-generation modalities are also highlighted. EXPERT OPINION The GPCR-antibody pipeline has progressed significantly with a number of technical developments enabling the successful resolution of some of the challenges previously encountered and this has contributed to the growing interest in antibody-based therapeutics addressing this target class.
Collapse
|