1
|
De La Cruz KF, Townsend EC, Alex Cheong JZ, Salamzade R, Liu A, Sandstrom S, Davila E, Huang L, Xu KH, Wu SY, Meudt JJ, Shanmuganayagam D, Gibson ALF, Kalan LR. The porcine skin microbiome exhibits broad fungal antagonism. Fungal Genet Biol 2024; 173:103898. [PMID: 38815692 PMCID: PMC11662304 DOI: 10.1016/j.fgb.2024.103898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The skin and its microbiome function to protect the host from pathogen colonization and environmental stressors. In this study, using the Wisconsin Miniature Swine™ model, we characterize the porcine skin fungal and bacterial microbiomes, identify bacterial isolates displaying antifungal activity, and use whole-genome sequencing to identify biosynthetic gene clusters encoding for secondary metabolites that may be responsible for the antagonistic effects on fungi. Through this comprehensive approach of paired microbiome sequencing with culturomics, we report the discovery of novel species of Corynebacterium and Rothia. Further, this study represents the first comprehensive evaluation of the porcine skin mycobiome and the evaluation of bacterial-fungal interactions on this surface. Several diverse bacterial isolates exhibit potent antifungal properties against opportunistic fungal pathogens in vitro. Genomic analysis of inhibitory species revealed a diverse repertoire of uncharacterized biosynthetic gene clusters suggesting a reservoir of novel chemical and biological diversity. Collectively, the porcine skin microbiome represents a potential unique source of novel antifungals.
Collapse
Affiliation(s)
- Karinda F De La Cruz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Elizabeth C Townsend
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States; Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - J Z Alex Cheong
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Rauf Salamzade
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Aiping Liu
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Evelin Davila
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; National Summer Undergraduate Research Project, University of Arizona, Tucson, AZ, United States
| | - Lynda Huang
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Kayla H Xu
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Sherrie Y Wu
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jennifer J Meudt
- Department of Animal & Dairy Sciences, University of Wisconsin, Madison, WI, United States; Center for Biomedical Swine Research & Innovation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Dhanansayan Shanmuganayagam
- Department of Animal & Dairy Sciences, University of Wisconsin, Madison, WI, United States; Center for Biomedical Swine Research & Innovation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Angela L F Gibson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada; David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
2
|
Rahman MS, Shimul MEK, Parvez MAK. Comprehensive analysis of genomic variation, pan-genome and biosynthetic potential of Corynebacterium glutamicum strains. PLoS One 2024; 19:e0299588. [PMID: 38718091 PMCID: PMC11078359 DOI: 10.1371/journal.pone.0299588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/13/2024] [Indexed: 05/12/2024] Open
Abstract
Corynebacterium glutamicum is a non-pathogenic species of the Corynebacteriaceae family. It has been broadly used in industrial biotechnology for the production of valuable products. Though it is widely accepted at the industrial level, knowledge about the genomic diversity of the strains is limited. Here, we investigated the comparative genomic features of the strains and pan-genomic characteristics. We also observed phylogenetic relationships among the strains based on average nucleotide identity (ANI). We found diversity between strains at the genomic and pan-genomic levels. Less than one-third of the C. glutamicum pan-genome consists of core genes and soft-core genes. Whereas, a large number of strain-specific genes covered about half of the total pan-genome. Besides, C. glutamicum pan-genome is open and expanding, which indicates the possible addition of new gene families to the pan-genome. We also investigated the distribution of biosynthetic gene clusters (BGCs) among the strains. We discovered slight variations of BGCs at the strain level. Several BGCs with the potential to express novel bioactive secondary metabolites have been identified. Therefore, by utilizing the characteristic advantages of C. glutamicum, different strains can be potential applicants for natural drug discovery.
Collapse
Affiliation(s)
- Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Bioinformatics and Microbial Biotechnology Laboratory, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Ebrahim Khalil Shimul
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Bioinformatics and Microbial Biotechnology Laboratory, Jashore University of Science and Technology, Jashore, Bangladesh
| | | |
Collapse
|
3
|
Milke L, Kabuu M, Zschoche R, Gätgens J, Krumbach K, Carlstedt KL, Wurzbacher CE, Balluff S, Beemelmanns C, Jogler C, Marienhagen J, Kallscheuer N. A type III polyketide synthase cluster in the phylum Planctomycetota is involved in alkylresorcinol biosynthesis. Appl Microbiol Biotechnol 2024; 108:239. [PMID: 38407604 PMCID: PMC10896814 DOI: 10.1007/s00253-024-13065-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/27/2024]
Abstract
Members of the bacterial phylum Planctomycetota have recently emerged as promising and for the most part untapped sources of novel bioactive compounds. The characterization of more than 100 novel species in the last decade stimulated recent bioprospection studies that start to unveil the chemical repertoire of the phylum. In this study, we performed systematic bioinformatic analyses based on the genomes of all 131 described members of the current phylum focusing on the identification of type III polyketide synthase (PKS) genes. Type III PKSs are versatile enzymes involved in the biosynthesis of a wide array of structurally diverse natural products with potent biological activities. We identified 96 putative type III PKS genes of which 58 are encoded in an operon with genes encoding a putative oxidoreductase and a methyltransferase. Sequence similarities on protein level and the genetic organization of the operon point towards a functional link to the structurally related hierridins recently discovered in picocyanobacteria. The heterologous expression of planctomycetal type III PKS genes from strains belonging to different families in an engineered Corynebacterium glutamicum strain led to the biosynthesis of pentadecyl- and heptadecylresorcinols. Phenotypic assays performed with the heterologous producer strains and a constructed type III PKS gene deletion mutant suggest that the natural function of the identified compounds differs from that confirmed in other bacterial alkylresorcinol producers. KEY POINTS: • Planctomycetal type III polyketide synthases synthesize long-chain alkylresorcinols. • Phylogenetic analyses suggest an ecological link to picocyanobacterial hierridins. • Engineered C. glutamicum is suitable for an expression of planctomycete-derived genes.
Collapse
Affiliation(s)
- Lars Milke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Moses Kabuu
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Renè Zschoche
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Jochem Gätgens
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Karin Krumbach
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Kim-Loreen Carlstedt
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Carmen E Wurzbacher
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Sven Balluff
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123, Saarbrücken, Germany
| | - Christine Beemelmanns
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), 66123, Saarbrücken, Germany
- Saarland University, Saarbrücken, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Institute for Microbiology, Friedrich Schiller University, 07743, Jena, Germany.
| |
Collapse
|
4
|
Yang L, Li J, Zhang Y, Chen L, Ouyang Z, Liao D, Zhao F, Han S. Characterization of the enzyme kinetics of EMP and HMP pathway in Corynebacterium glutamicum: reference for modeling metabolic networks. Front Bioeng Biotechnol 2023; 11:1296880. [PMID: 38090711 PMCID: PMC10713844 DOI: 10.3389/fbioe.2023.1296880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/13/2023] [Indexed: 04/04/2024] Open
Abstract
The model of intracellular metabolic network based on enzyme kinetics parameters plays an important role in understanding the intracellular metabolic process of Corynebacterium glutamicum, and constructing such a model requires a large number of enzymological parameters. In this work, the genes encoding the relevant enzymes of the EMP and HMP metabolic pathways from Corynebacterium glutamicum ATCC 13032 were cloned, and engineered strains for protein expression with E.coli BL21 and P.pastoris X33 as hosts were constructed. The twelve enzymes (GLK, GPI, TPI, GAPDH, PGK, PMGA, ENO, ZWF, RPI, RPE, TKT, and TAL) were successfully expressed and purified by Ni2+ chelate affinity chromatography in their active forms. In addition, the kinetic parameters (V max, K m, and K cat) of these enzymes were measured and calculated at the same pH and temperature. The kinetic parameters of enzymes associated with EMP and the HMP pathway were determined systematically and completely for the first time in C.glutamicum. These kinetic parameters enable the prediction of key enzymes and rate-limiting steps within the metabolic pathway, and support the construction of a metabolic network model for important metabolic pathways in C.glutamicum. Such analyses and models aid in understanding the metabolic behavior of the organism and can guide the efficient production of high-value chemicals using C.glutamicum as a host.
Collapse
Affiliation(s)
- Liu Yang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Junyi Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yaping Zhang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Linlin Chen
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Zhilin Ouyang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Daocheng Liao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Fengguang Zhao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
5
|
Tharmasothirajan A, Melcr J, Linney J, Gensch T, Krumbach K, Ernst KM, Brasnett C, Poggi P, Pitt AR, Goddard AD, Chatgilialoglu A, Marrink SJ, Marienhagen J. Membrane manipulation by free fatty acids improves microbial plant polyphenol synthesis. Nat Commun 2023; 14:5619. [PMID: 37699874 PMCID: PMC10497605 DOI: 10.1038/s41467-023-40947-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
Microbial synthesis of nutraceutically and pharmaceutically interesting plant polyphenols represents a more environmentally friendly alternative to chemical synthesis or plant extraction. However, most polyphenols are cytotoxic for microorganisms as they are believed to negatively affect cell integrity and transport processes. To increase the production performance of engineered cell factories, strategies have to be developed to mitigate these detrimental effects. Here, we examine the accumulation of the stilbenoid resveratrol in the cell membrane and cell wall during its production using Corynebacterium glutamicum and uncover the membrane rigidifying effect of this stilbenoid experimentally and with molecular dynamics simulations. A screen of free fatty acid supplements identifies palmitelaidic acid and linoleic acid as suitable additives to attenuate resveratrol's cytotoxic effects resulting in a three-fold higher product titer. This cost-effective approach to counteract membrane-damaging effects of product accumulation is transferable to the microbial production of other polyphenols and may represent an engineering target for other membrane-active bioproducts.
Collapse
Affiliation(s)
- Apilaasha Tharmasothirajan
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Josef Melcr
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - John Linney
- College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | - Thomas Gensch
- Institute for Information Processing, IBI-1: Molecular and Cellular Physiology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Karin Krumbach
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Karla Marlen Ernst
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Christopher Brasnett
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Paola Poggi
- Remembrane Srl, via San Francesco 40, 40026, Imola, Italy
| | - Andrew R Pitt
- College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
- Manchester Institute of Biotechnology and Department of Chemistry, University of Manchester, Manchester, UK
| | - Alan D Goddard
- College of Health and Life Sciences, Aston University, Birmingham, B4 7ET, UK
| | | | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany.
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.
| |
Collapse
|
6
|
Zhan C, Lee N, Lan G, Dan Q, Cowan A, Wang Z, Baidoo EEK, Kakumanu R, Luckie B, Kuo RC, McCauley J, Liu Y, Valencia L, Haushalter RW, Keasling JD. Improved polyketide production in C. glutamicum by preventing propionate-induced growth inhibition. Nat Metab 2023; 5:1127-1140. [PMID: 37443355 DOI: 10.1038/s42255-023-00830-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 05/25/2023] [Indexed: 07/15/2023]
Abstract
Corynebacterium glutamicum is a promising host for production of valuable polyketides. Propionate addition, a strategy known to increase polyketide production by increasing intracellular methylmalonyl-CoA availability, causes growth inhibition in C. glutamicum. The mechanism of this inhibition was unclear before our work. Here we provide evidence that accumulation of propionyl-CoA and methylmalonyl-CoA induces growth inhibition in C. glutamicum. We then show that growth inhibition can be relieved by introducing methylmalonyl-CoA-dependent polyketide synthases. With germicidin as an example, we used adaptive laboratory evolution to leverage the fitness advantage of polyketide production in the presence of propionate to evolve improved germicidin production. Whole-genome sequencing revealed mutations in germicidin synthase, which improved germicidin titer, as well as mutations in citrate synthase, which effectively evolved the native glyoxylate pathway to a new methylcitrate pathway. Together, our results show that C. glutamicum is a capable host for polyketide production and we can take advantage of propionate growth inhibition to drive titers higher using laboratory evolution or to screen for production of polyketides.
Collapse
Affiliation(s)
- Chunjun Zhan
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, CA, USA
| | - Namil Lee
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, CA, USA
| | - Guangxu Lan
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Qingyun Dan
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Aidan Cowan
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Zilong Wang
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ramu Kakumanu
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Bridget Luckie
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Rita C Kuo
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Joshua McCauley
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yuzhong Liu
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Luis Valencia
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Robert W Haushalter
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Jay D Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Departments of Chemical & Biomolecular Engineering and of Bioengineering, University of California, Berkeley, CA, USA.
- Center for Biosustainability, Danish Technical University, Lyngby, Denmark.
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Shenzhen, China.
| |
Collapse
|
7
|
Vollmann DJ, Winand L, Nett M. Emerging concepts in the semisynthetic and mutasynthetic production of natural products. Curr Opin Biotechnol 2022; 77:102761. [DOI: 10.1016/j.copbio.2022.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/18/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
|
8
|
Lin K, Han S, Zheng S. Application of Corynebacterium glutamicum engineering display system in three generations of biorefinery. Microb Cell Fact 2022; 21:14. [PMID: 35090458 PMCID: PMC8796525 DOI: 10.1186/s12934-022-01741-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/09/2022] [Indexed: 11/29/2022] Open
Abstract
The fermentation production of platform chemicals in biorefineries is a sustainable alternative to the current petroleum refining process. The natural advantages of Corynebacterium glutamicum in carbon metabolism have led to C. glutamicum being used as a microbial cell factory that can use various biomass to produce value-added platform chemicals and polymers. In this review, we discussed the use of C. glutamicum surface display engineering bacteria in the three generations of biorefinery resources, and analyzed the C. glutamicum engineering display system in degradation, transport, and metabolic network reconstruction models. These engineering modifications show that the C. glutamicum engineering display system has great potential to become a cell refining factory based on sustainable biomass, and further optimizes the inherent properties of C. glutamicum as a whole-cell biocatalyst. This review will also provide a reference for the direction of future engineering transformation.
Collapse
Affiliation(s)
- Kerui Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China. .,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
9
|
Kallscheuer N, Jogler C. The bacterial phylum Planctomycetes as novel source for bioactive small molecules. Biotechnol Adv 2021; 53:107818. [PMID: 34537319 DOI: 10.1016/j.biotechadv.2021.107818] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/21/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
Extensive knowledge and methodological expertise on the bacterial cell biology have been accumulated over the last decades and bacterial cells have now become an integral part of several (bio-)technological processes. While it appears reasonable to focus on a relatively small number of fast-growing and genetically easily manipulable model bacteria as biotechnological workhorses, the for the most part untapped diversity of bacteria needs to be explored when it comes to bioprospecting for natural product discovery. Members of the underexplored and evolutionarily deep-branching phylum Planctomycetes have only recently gained increased attention with respect to the production of small molecules with biomedical activities, e.g. as a natural source of novel antibiotics. Next-generation sequencing and metagenomics can provide access to the genomes of uncultivated bacteria from sparsely studied phyla, this, however, should be regarded as an addition rather than a substitute for classical strain isolation approaches. Ten years ago, a large sampling campaign was initiated to isolate planctomycetes from their varied natural habitats and protocols were developed to address complications during cultivation of representative species in the laboratory. The characterisation of approximately 90 novel strains by several research groups in the recent years opened a detailed in silico look into the coding potential of individual members of this phylum. Here, we review the current state of planctomycetal research, focusing on diversity, small molecule production and potential future applications. Although the field developed promising, the time frame of 10 years illustrates that the study of additional promising bacterial phyla as sources for novel small molecules needs to start rather today than tomorrow.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Institute of Bio- and Geosciences (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany; Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
10
|
Tippelt A, Nett M. Saccharomyces cerevisiae as host for the recombinant production of polyketides and nonribosomal peptides. Microb Cell Fact 2021; 20:161. [PMID: 34412657 PMCID: PMC8374128 DOI: 10.1186/s12934-021-01650-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/05/2021] [Indexed: 01/30/2023] Open
Abstract
As a robust, fast growing and genetically tractable organism, the budding yeast Saccharomyces cerevisiae is one of the most widely used hosts in biotechnology. Its applications range from the manufacturing of vaccines and hormones to bulk chemicals and biofuels. In recent years, major efforts have been undertaken to expand this portfolio to include structurally complex natural products, such as polyketides and nonribosomally synthesized peptides. These compounds often have useful pharmacological properties, which make them valuable drugs for the treatment of infectious diseases, cancer, or autoimmune disorders. In nature, polyketides and nonribosomal peptides are generated by consecutive condensation reactions of short chain acyl-CoAs or amino acids, respectively, with the substrates and reaction intermediates being bound to large, multidomain enzymes. For the reconstitution of these multistep catalytic processes, the enzymatic assembly lines need to be functionally expressed and the required substrates must be supplied in reasonable quantities. Furthermore, the production hosts need to be protected from the toxicity of the biosynthetic products. In this review, we will summarize and evaluate the status quo regarding the heterologous production of polyketides and nonribosomal peptides in S. cerevisiae. Based on a comprehensive literature analysis, prerequisites for a successful pathway reconstitution could be deduced, as well as recurring bottlenecks in this microbial host.
Collapse
Affiliation(s)
- Anna Tippelt
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany.
| |
Collapse
|
11
|
Advances in metabolic engineering of Corynebacterium glutamicum to produce high-value active ingredients for food, feed, human health, and well-being. Essays Biochem 2021; 65:197-212. [PMID: 34096577 PMCID: PMC8313993 DOI: 10.1042/ebc20200134] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
The soil microbe Corynebacterium glutamicum is a leading workhorse in industrial biotechnology and has become famous for its power to synthetise amino acids and a range of bulk chemicals at high titre and yield. The product portfolio of the microbe is continuously expanding. Moreover, metabolically engineered strains of C. glutamicum produce more than 30 high value active ingredients, including signature molecules of raspberry, savoury, and orange flavours, sun blockers, anti-ageing sugars, and polymers for regenerative medicine. Herein, we highlight recent advances in engineering of the microbe into novel cell factories that overproduce these precious molecules from pioneering proofs-of-concept up to industrial productivity.
Collapse
|
12
|
Recent Advances in the Heterologous Biosynthesis of Natural Products from Streptomyces. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Streptomyces is a significant source of natural products that are used as therapeutic antibiotics, anticancer and antitumor agents, pesticides, and dyes. Recently, with the advances in metabolite analysis, many new secondary metabolites have been characterized. Moreover, genome mining approaches demonstrate that many silent and cryptic biosynthetic gene clusters (BGCs) and many secondary metabolites are produced in very low amounts under laboratory conditions. One strain many compounds (OSMAC), overexpression/deletion of regulatory genes, ribosome engineering, and promoter replacement have been utilized to activate or enhance the production titer of target compounds. Hence, the heterologous expression of BGCs by transferring to a suitable production platform has been successfully employed for the detection, characterization, and yield quantity production of many secondary metabolites. In this review, we introduce the systematic approach for the heterologous production of secondary metabolites from Streptomyces in Streptomyces and other hosts, the genome analysis tools, the host selection, and the development of genetic control elements for heterologous expression and the production of secondary metabolites.
Collapse
|
13
|
Marques F, Luzhetskyy A, Mendes MV. Engineering Corynebacterium glutamicum with a comprehensive genomic library and phage-based vectors. Metab Eng 2020; 62:221-234. [DOI: 10.1016/j.ymben.2020.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/17/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022]
|
14
|
Gläser L, Kuhl M, Jovanovic S, Fritz M, Vögeli B, Erb TJ, Becker J, Wittmann C. A common approach for absolute quantification of short chain CoA thioesters in prokaryotic and eukaryotic microbes. Microb Cell Fact 2020; 19:160. [PMID: 32778124 PMCID: PMC7418318 DOI: 10.1186/s12934-020-01413-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/20/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Thioesters of coenzyme A participate in 5% of all enzymatic reactions. In microbial cell factories, they function as building blocks for products of recognized commercial value, including natural products such as polyketides, polyunsaturated fatty acids, biofuels, and biopolymers. A core spectrum of approximately 5-10 short chain thioesters is present in many microbes, as inferred from their genomic repertoire. The relevance of these metabolites explains the high interest to trace and quantify them in microbial cells. RESULTS Here, we describe a common workflow for extraction and absolute quantification of short chain CoA thioesters in different gram-positive and gram-negative bacteria and eukaryotic yeast, i.e. Corynebacterium glutamicum, Streptomyces albus, Pseudomonas putida, and Yarrowia lipolytica. The approach assessed intracellular CoA thioesters down to the picomolar level and exhibited high precision and reproducibility for all microbes, as shown by principal component analysis. Furthermore, it provided interesting insights into microbial CoA metabolism. A succinyl-CoA synthase defective mutant of C. glutamicum exhibited an unaffected level of succinyl-CoA that indicated a complete compensation by the L-lysine pathway to bypass the disrupted TCA cycle. Methylmalonyl-CoA, an important building block of high-value polyketides, was identified as dominant CoA thioester in the actinomycete S. albus. The microbe revealed a more than 10,000-fold difference in the abundance of intracellular CoA thioesters. A recombinant strain of S. albus, which produced different derivatives of the antituberculosis polyketide pamamycin, revealed a significant depletion of CoA thioesters of the ethylmalonyl CoA pathway, influencing product level and spectrum. CONCLUSIONS The high relevance of short chain CoA thioesters to synthetize industrial products and the interesting insights gained from the examples shown in this work, suggest analyzing these metabolites in microbial cell factories more routinely than done so far. Due to its broad application range, the developed approach appears useful to be applied this purpose. Hereby, the possibility to use one single protocol promises to facilitate automatized efforts, which rely on standardized workflows.
Collapse
Affiliation(s)
- Lars Gläser
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Martin Kuhl
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Sofija Jovanovic
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michel Fritz
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Bastian Vögeli
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Tobias J. Erb
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Judith Becker
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| |
Collapse
|
15
|
Milke L, Marienhagen J. Engineering intracellular malonyl-CoA availability in microbial hosts and its impact on polyketide and fatty acid synthesis. Appl Microbiol Biotechnol 2020; 104:6057-6065. [PMID: 32385515 PMCID: PMC7316851 DOI: 10.1007/s00253-020-10643-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/09/2020] [Accepted: 04/21/2020] [Indexed: 12/20/2022]
Abstract
Malonyl-CoA is an important central metabolite serving as the basic building block for the microbial synthesis of many pharmaceutically interesting polyketides, but also fatty acid-derived compounds including biofuels. Especially Saccharomyces cerevisiae, Escherichia coli, and Corynebacterium glutamicum have been engineered towards microbial synthesis of such compounds in recent years. However, developed strains and processes often suffer from insufficient productivity. Usually, tightly regulated intracellular malonyl-CoA availability is regarded as the decisive bottleneck limiting overall product formation. Therefore, metabolic engineering towards improved malonyl-CoA availability is essential to design efficient microbial cell factories for the production of polyketides and fatty acid derivatives. This review article summarizes metabolic engineering strategies to improve intracellular malonyl-CoA formation in industrially relevant microorganisms and its impact on productivity and product range, with a focus on polyketides and other malonyl-CoA-dependent products.Key Points• Malonyl-CoA is the central building block of polyketide synthesis.• Increasing acetyl-CoA supply is pivotal to improve malonyl-CoA availability.• Improved acetyl-CoA carboxylase activity increases availability of malonyl-CoA.• Fatty acid synthesis as an ambivalent target to improve malonyl-CoA supply.
Collapse
Affiliation(s)
- Lars Milke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany. .,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
16
|
Milke L, Mutz M, Marienhagen J. Synthesis of the character impact compound raspberry ketone and additional flavoring phenylbutanoids of biotechnological interest with Corynebacterium glutamicum. Microb Cell Fact 2020; 19:92. [PMID: 32316987 PMCID: PMC7175512 DOI: 10.1186/s12934-020-01351-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022] Open
Abstract
Background The phenylbutanoid 4-(4-hydroxyphenyl)butan-2-one, commonly known as raspberry ketone, is responsible for the typical scent and flavor of ripe raspberries. Chemical production of nature-identical raspberry ketone is well established as this compound is frequently used to flavor food, beverages and perfumes. However, high demand for natural raspberry ketone, but low natural abundance in raspberries, render raspberry ketone one of the most expensive natural flavoring components. Results In this study, Corynebacterium glutamicum was engineered for the microbial synthesis of the character impact compound raspberry ketone from supplemented p-coumaric acid. In this context, the NADPH-dependent curcumin/dihydrocurcumin reductase CurA from Escherichia coli was employed to catalyze the final step of raspberry ketone synthesis as it provides a hitherto unknown benzalacetone reductase activity. In combination with a 4-coumarate: CoA ligase from parsley (Petroselinum crispum) and a monofunctional benzalacetone synthase from Chinese rhubarb (Rheum palmatum), CurA constitutes the synthetic pathway for raspberry ketone synthesis in C. glutamicum. The resulting strain accumulated up to 99.8 mg/L (0.61 mM) raspberry ketone. In addition, supplementation of other phenylpropanoids allowed for the synthesis of two other naturally-occurring and flavoring phenylbutanoids, zingerone (70 mg/L, 0.36 mM) and benzylacetone (10.5 mg/L, 0.07 mM). Conclusion The aromatic product portfolio of C. glutamicum was extended towards the synthesis of the flavoring phenylbutanoids raspberry ketone, zingerone and benzylacetone. Key to success was the identification of CurA from E. coli having a benzalacetone reductase activity. We believe, that the constructed C. glutamicum strain represents a versatile platform for the production of natural flavoring phenylbutanoids at larger scale.
Collapse
Affiliation(s)
- Lars Milke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Mario Mutz
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Jan Marienhagen
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,Bioeconomy Science Center (BioSC), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany.
| |
Collapse
|