1
|
Tan Z, Chen W, Guo Z, Xu X, Xie J, Dai J, Lin Y, Sheng B, Preis S, Wei C, Zhu S. Seasonal dynamics of bacterial composition and functions in biological treatment of coking wastewater. Appl Microbiol Biotechnol 2024; 108:490. [PMID: 39422711 PMCID: PMC11489252 DOI: 10.1007/s00253-024-13274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/04/2024] [Accepted: 08/01/2024] [Indexed: 10/19/2024]
Abstract
Seasonal dynamics of bacterial composition and functions were demonstrated for the biological fluidized-bed bioreactors combined in the anoxic/aerobic1/aerobic2 (AOO) coking wastewater (CWW) treatment sequences. The bacterial composition and functions in the CWW activated sludge samples were revealed by 16S rRNA genes amplicon sequencing. Thiobacillus, Cloacibacterium, Alkaliphilus and Pseudomonas were determined as core genera with seasonal changes. Mutable microbial community composition fluctuated in different seasons in same bioreactor. Distributions of predicted KEGG pathways along four seasons consistently demonstrated enrichment in biodegradation of carbon- and nitrogen-containing compounds. The major contaminants were removed from CWW by biochemical pathway of xenobiotics biodegradation and metabolism. This Level 2 pathway mainly owned the Level 3 pathways of benzoate degradation, drug metabolism-other enzymes, drug metabolism-cytochrome P450, metabolism of xenobiotics by cytochrome P450, and aminobenzoate degradation. The RDA results showed that dissolved oxygen with seasonal fluctuation was the main parameter shaping the microbial community. The observed dynamics within the microbial community composition, coupled with the maintained stability of CWW treatment efficiencies and a consistent profile of microbial functional pathways, underscore the presence of functional redundancy in the AOO bioreactors. The study underscored stable and effective operational performances of bioreactors in the AOO sequences, contributing the knowledge of microbiological basics to the advancement of CWW biological treatment. KEY POINTS: • Seasonal fluctuations of bacterial composition described for the AOO system. • Seasonal distributions of metabolic functions focused on carbon and nitrogen removal. • Functional redundancy was revealed in the AOO microbial community.
Collapse
Affiliation(s)
- Zhijie Tan
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wenli Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ziyu Guo
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xingyuan Xu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Junting Xie
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiangpeng Dai
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yuexia Lin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Binbin Sheng
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Sergei Preis
- Department of Materials and Environmental Technology, Tallinn University of Technology, 19086, Tallinn, Estonia
| | - Chaohai Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Shuang Zhu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Ríos-Castro R, Cabo A, Teira E, Cameselle C, Gouveia S, Payo P, Novoa B, Figueras A. High-throughput sequencing as a tool for monitoring prokaryote communities in a wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160531. [PMID: 36470389 DOI: 10.1016/j.scitotenv.2022.160531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
In this study, the DNA metabarcoding technique was used to explore the prokaryote diversity and community structure in wastewater collected in spring and winter 2020-2021 as well as the efficiency of the treatment in a wastewater treatment plant (WWTP) in Ría de Vigo (NW Spain). The samplings included raw wastewater from the inlet stream (M1), the discharge water after the disinfection treatment (M3) and mussels used as bioindicators of possible contamination of the marine environment. Significant differences were discovered in the microbiome of each type of sample (M1, M3 and mussels), with 92 %, 45 % and 44 % of exclusive OTUs found in mussel, M3 and M1 samples respectively. Seasonal differences were also detected in wastewater samples, with which abiotic parameters (temperature, pH) could be strongly involved. Bacteria present in raw wastewater (M1) were associated with the human gut microbiome, and therefore, potential pathogens that could be circulating in the population in specific periods were detected (e.g., Arcobacter sp. and Clostridium sp.). A considerable decrease in putative pathogenic organisms from the M1 to M3 wastewater fractions and the scarce presence in mussels (<0.5 % total reads) confirmed the effectiveness of pathogen removal in the wastewater treatment plant. Our results showed the potential of the DNA metabarcoding technique for monitoring studies and confirmed its application in wastewater-based epidemiology (WBE) and environmental contamination studies. Although this technique cannot determine if the infective pathogens are present, it can characterize the microbial communities and the putative pathogens that are circulating through the population (microbiome of M1) and also confirm the efficacy of depuration treatment, which can directly affect the aquaculture sector and even human and veterinary health.
Collapse
Affiliation(s)
- Raquel Ríos-Castro
- Marine Research Institute IIM-CSIC, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain.
| | - Adrián Cabo
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain.
| | - Eva Teira
- University of Vigo, Departamento de Ecología y Biología Animal, Centro de Investigación Marina (CIM), Universidad de Vigo, Facultad de Ciencias do Mar, 36310 Vigo, Spain.
| | - Claudio Cameselle
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain
| | - Susana Gouveia
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain
| | - Pedro Payo
- GESECO Aguas S.A., Teixugueiras 13, 36212 Vigo, Spain.
| | - Beatriz Novoa
- Marine Research Institute IIM-CSIC, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain.
| | - Antonio Figueras
- Marine Research Institute IIM-CSIC, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain.
| |
Collapse
|
3
|
Fang YK, Sun Q, Fang PH, Li XQ, Zeng R, Wang HC, Wang AJ. Integrated constructed wetland and bioelectrochemistry system approach for simultaneous enhancment of p-chloronitrobenzene and nitrogen transformations performance. WATER RESEARCH 2022; 217:118433. [PMID: 35429886 DOI: 10.1016/j.watres.2022.118433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Constructed wetlands (CWs) integrated with the bioelectrochemical system (BES-CW) to stimulate bio-refractory compounds removal holds particular promise, owing to its inherent greater scale and well-recognized environmentally benign wastewater advanced purification technology. However, the knowledge regarding the feasibility and removal mechanisms, particularly the potential negative effects of biorefractory compounds on nitrogen removal performance for the CWs is far insufficient. This study performed a critical assessment by using BES-CW (ECW) and conventional CW (CW) to investigate the effects of p-Chloronitrobenzene (pCNB) on nitrogen transformations in CWs. The results showed that low concentration (1 mg·L-1) of pCNB would inhibit the ammonia oxidation in CWs, while ECW could improve its tolerance to pCNB to a certain level (8 mg·L-1) due to the high pCNB degradation efficiencies (2.5 times higher than CWs), accordingly, much higher TN and nitrate removal efficiencies were observed in ECWs, 81.71% - 96.82% (TN) higher than CWs, further leading to a lower N2O emission from ECWs than CWs. The main intermediate of pCNB degradation was p-Chloroaniline (pCAN) and the genera Geobacter and Propionimicrobium were consider to be the responsible pCNB degradation bacteria in the present study. However, too high concentration (20 mg·L-1) of pCNB would have a huge impact on ECW and CW, especially microbial biomass. Nevertheless, ECW could improve the 1.87 times higher microbial biomass than CW on the substrate. Accordingly, considerably higher functional gene abundance was observed in ECW. Therefore, the introduction of BES has great potential to ensure CW stability when treating industrial wastewater containing bio-refractory compounds.
Collapse
Affiliation(s)
- Ying-Ke Fang
- Key Lab of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Sun
- Key Lab of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan-Hao Fang
- China Railway Fifth Survey And Design Institute Group Co., LTD. Zhengzhou Branch, Zhengzhou, 450000, China
| | - Xi-Qi Li
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China
| | - Ran Zeng
- Nanjing Tech University, College of Civil Engineering, Nanjing, 211816, China
| | - Hong-Cheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China.
| | - Ai-Jie Wang
- Key Lab of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Yan W, Wang N, Wei D, Liang C, Chen X, Liu L, Shi J. Bacterial community compositions and nitrogen metabolism function in a cattle farm wastewater treatment plant revealed by Illumina high-throughput sequencing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40895-40907. [PMID: 33772473 DOI: 10.1007/s11356-021-13570-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Bacteria play an important role in pollutant transformation in activated sludge-based wastewater treatment plants (WWTPs). Exploring the microbial community structure and diversity is essential to improving the performance of wastewater treatment processes. This study employed Illumina MiSeq high-throughput sequencing to investigate the microbial community composition and diversity in a cattle farm wastewater treatment plant (Cf-WWTP). The results showed that the dominant phyla in the whole process were Proteobacteria, Bacteroidetes, and Firmicutes. The principal coordinate analysis (PCoA) indicated that the different stages had a significant impact on the microbial community structure; Bacteroidetes was the dominant phylum in the anearobic stage and Proteobacteria was the dominant phylum in the anoxic-oxic stage. Redundancy analysis (RDA) revealed that total phosphorus (TP) was the most significant factor that regulated the microbial community composition, followed by chemical oxygen demand (COD), total nitrogen (TN), and pH. Proteobacteria, Patescibacteria, and Chloroflexi were simultaneously negatively correlated with TN, COD, and TP. Nitrogen metabolic pathway and transformation mechanism was elucidated by a complete denitrification function predicted with phylogenetic investigation of communities with reconstruction of unobserved states (PICRUSt), as well as detection of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB). These results provide new insights into our understanding of microbial community and metabolic functions of Cf-WWTP.
Collapse
Affiliation(s)
- Weizhi Yan
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Wei
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China
| | - Chengyu Liang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaomiao Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai, 200241, China.
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
5
|
Zhou L, Zhao B, Ou P, Zhang W, Li H, Yi S, Zhuang WQ. Core nitrogen cycle of biofoulant in full-scale anoxic & oxic biofilm-membrane bioreactors treating textile wastewater. BIORESOURCE TECHNOLOGY 2021; 325:124667. [PMID: 33465647 DOI: 10.1016/j.biortech.2021.124667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/26/2020] [Accepted: 01/01/2021] [Indexed: 06/12/2023]
Abstract
Core nitrogen cycle within biofoulant in full-scale anoxic & oxic biofilm-membrane bioreactor (bMBR) treating textile wastewater was investigated. Wastewater filtered through membrane with biofoulant had elevated NH4+-N and NO2--N concentrations corresponding to decreased NO3--N concentrations. Nevertheless, total nitrogen concentrations did not change significantly, indicating negligible nitrogen removal activities within biofoulant. Metagenomic analysis revealed a lack of genes, such as AmoCAB and Hao in biofoulant, indicating absence of nitrification or anammox populations. However, genes encoding complete pathway for dissimilatory nitrate reduction to ammonium (DNRA) were discovered in 15 species that also carry genes encoding both nitrate reductase and nitrite reductase. No specie contained all genes for complete denitrification pathway. High temperature, high C:N ratio, and anoxic conditions of textile wastewater could favorite microbes growth with DNRA pathway over those with canonical denitrification pathway. High dissolved oxygen concentrations could effectively inhibit DNRA to minimize ammonia concentration in the effluent.
Collapse
Affiliation(s)
- Lijie Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Bikai Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Pingxiang Ou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wenyu Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, Guangxi 541004, China
| | - Shan Yi
- Department of Chemical and Materials Engineering, University of Auckland, Auckland 1142, New Zealand
| | - Wei-Qin Zhuang
- Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
6
|
Bestawy EE, El-Shatby BF, Eltaweil AS. Integration between bacterial consortium and magnetite (Fe3O4) nanoparticles for the treatment of oily industrial wastewater. World J Microbiol Biotechnol 2020; 36:141. [DOI: 10.1007/s11274-020-02915-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022]
|
7
|
Viggor S, Jõesaar M, Soares-Castro P, Ilmjärv T, Santos PM, Kapley A, Kivisaar M. Microbial Metabolic Potential of Phenol Degradation in Wastewater Treatment Plant of Crude Oil Refinery: Analysis of Metagenomes and Characterization of Isolates. Microorganisms 2020; 8:E652. [PMID: 32365784 PMCID: PMC7285258 DOI: 10.3390/microorganisms8050652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 01/30/2023] Open
Abstract
The drilling, processing and transportation of oil are the main sources of pollution in water and soil. The current work analyzes the microbial diversity and aromatic compounds degradation potential in the metagenomes of communities in the wastewater treatment plant (WWTP) of a crude oil refinery. By focusing on the degradation of phenol, we observed the involvement of diverse indigenous microbial communities at different steps of the WWTP. The anaerobic bacterial and archaeal genera were replaced by aerobic and facultative anaerobic bacteria through the biological treatment processes. The phyla Proteobacteria, Bacteroidetes and Planctomycetes were dominating at different stages of the treatment. Most of the established protein sequences of the phenol degradation key enzymes belonged to bacteria from the class Alphaproteobacteria. From 35 isolated strains, 14 were able to grow on aromatic compounds, whereas several phenolic compound-degrading strains also degraded aliphatic hydrocarbons. Two strains, Acinetobacter venetianus ICP1 and Pseudomonas oleovorans ICTN13, were able to degrade various aromatic and aliphatic pollutants and were further characterized by whole genome sequencing and cultivation experiments in the presence of phenol to ascertain their metabolic capacity in phenol degradation. When grown alone, the intermediates of catechol degradation, the meta or ortho pathways, accumulated into the growth environment of these strains. In the mixed cultures of the strains ICP1 and ICTN13, phenol was degraded via cooperation, in which the strain ICP1 was responsible for the adherence of cells and ICTN13 diminished the accumulation of toxic intermediates.
Collapse
Affiliation(s)
- Signe Viggor
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia; (M.J.); (T.I.); (M.K.)
| | - Merike Jõesaar
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia; (M.J.); (T.I.); (M.K.)
| | - Pedro Soares-Castro
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (P.S.-C.); (P.M.S.)
| | - Tanel Ilmjärv
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia; (M.J.); (T.I.); (M.K.)
| | - Pedro M. Santos
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (P.S.-C.); (P.M.S.)
| | - Atya Kapley
- Director’s Research Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India;
| | - Maia Kivisaar
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia; (M.J.); (T.I.); (M.K.)
| |
Collapse
|