1
|
Yuan P, Chen Z, Xu M, Cai W, Liu Z, Sun D. Microbial cell factories using Paenibacillus: status and perspectives. Crit Rev Biotechnol 2024; 44:1386-1402. [PMID: 38105503 DOI: 10.1080/07388551.2023.2289342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/03/2023] [Accepted: 04/22/2023] [Indexed: 12/19/2023]
Abstract
Considered a "Generally Recognized As Safe" (GRAS) bacterium, the plant growth-promoting rhizobacterium Paenibacillus has been widely applied in: agriculture, medicine, industry, and environmental remediation. Paenibacillus species not only accelerate plant growth and degrade toxic substances in wastewater and soil but also produce industrially-relevant enzymes and antimicrobial peptides. Due to a lack of genetic manipulation tools and methods, exploitation of the bioresources of naturally isolated Paenibacillus species has long been limited. Genetic manipulation tools and methods continue to improve in Paenibacillus, such as shuttle plasmids, promoters, and genetic tools of CRISPR. Furthermore, genetic transformation systems develop gradually, including: penicillin-mediated transformation, electroporation, and magnesium amino acid-mediated transformation. As genetic manipulation methods of homologous recombination and CRISPR-mediated editing system have developed gradually, Paenibacillus has come to be regarded as a promising microbial chassis for biomanufacturing, expanding its application scope, such as: industrial enzymes, bioremediation and bioadsorption, surfactants, and antibacterial agents. In this review, we describe the applications of Paenibacillus bioproducts, and then discuss recent advances and future challenges in the development of genetic manipulation systems in this genus. This work highlights the potential of Paenibacillus as a new microbial chassis for mining bioresources.
Collapse
Affiliation(s)
- Panhong Yuan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Ziyan Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Mengtao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Wenfeng Cai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Zhizhi Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Dongchang Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Wendisch VF, Brito LF, Passaglia LM. Genome-based analyses to learn from and about Paenibacillus sonchi genomovar Riograndensis SBR5T. Genet Mol Biol 2024; 46:e20230115. [PMID: 38224489 PMCID: PMC10789242 DOI: 10.1590/1678-4685-gmb-2023-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/20/2023] [Indexed: 01/17/2024] Open
Abstract
Paenibacillus sonchi genomovar Riograndensis SBR5T is a plant growth-promoting rhizobacterium (PGPR) isolated in the Brazilian state of Rio Grande do Sul from the rhizosphere of Triticum aestivum. It fixes nitrogen, produces siderophores as well as the phytohormone indole-3-acetic acid, solubilizes phosphate and displays antagonist activity against Listeria monocytogenes and Pectobacterium carotovorum. Comprehensive omics analysis and the development of genetic tools are key to characterizing and engineering such non-model microorganisms. Therefore, the complete genome of SBR5T was sequenced, and shown to encode 6,705 proteins, 87 tRNAs, and 27 rRNAs and it enabled a landscape transcriptome analysis that unveiled conserved transcriptional and translational patterns and characterized operon structures and riboswitches. The pangenome of P. sonchi species is open with a stable core pangenome. At the same time, the analysis of genes coding for nitrogenases revealed that the trait of nitrogen fixation is sparse within the Paenibacillaceae family and the presence of Fe-only nitrogenase in the P. sonchi group was exclusive to SBR5T. The development of genetic tools for SBR5T enabled genetic transformation, plasmid construction for constitutive and inducible gene expression, and gene repression using the CRISPRi system. Altogether, the work with P. sonchi can guide the study of non-model bacteria with economic potential.
Collapse
Affiliation(s)
- Volker F. Wendisch
- Bielefeld University, Faculty of Biology, Genetics of Prokaryotes, Bielefeld, Germany
- Bielefeld University, Center for Biotechnology (CeBiTec), Bielefeld, Germany
| | - Luciana F. Brito
- Norwegian University of Science and Technology, Department of Biotechnology and Food Science, Trondheim, Norway
| | - Luciane M.P. Passaglia
- Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Genética e Biologia Molecular, Instituto de Biociências, Departamento de Genética, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Volke DC, Orsi E, Nikel PI. Emergent CRISPR-Cas-based technologies for engineering non-model bacteria. Curr Opin Microbiol 2023; 75:102353. [PMID: 37413959 DOI: 10.1016/j.mib.2023.102353] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins (Cas) technologies brought a transformative change in the way bacterial genomes are edited, and a plethora of studies contributed to developing multiple tools based on these approaches. Prokaryotic biotechnology benefited from the implementation of such genome engineering strategies, with an increasing number of non-model bacterial species becoming genetically tractable. In this review, we summarize the recent trends in engineering non-model microbes using CRISPR-Cas technologies, discussing their potential in supporting cell factory design towards biotechnological applications. These efforts include, among other examples, genome modifications as well as tunable transcriptional regulation (both positive and negative). Moreover, we examine how CRISPR-Cas toolkits for engineering non-model organisms enabled the exploitation of emergent biotechnological processes (e.g. native and synthetic assimilation of one-carbon substrates). Finally, we discuss our slant on the future of bacterial genome engineering for domesticating non-model organisms in light of the most recent advances in the ever-expanding CRISPR-Cas field.
Collapse
Affiliation(s)
- Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
4
|
Zárate-Chaves CA, Audran C, Medina Culma CA, Escalon A, Javegny S, Gagnevin L, Thomas E, Pimparé LL, López CE, Jacobs JM, Noël LD, Koebnik R, Bernal AJ, Szurek B. CRISPRi in Xanthomonas demonstrates functional convergence of transcription activator-like effectors in two divergent pathogens. THE NEW PHYTOLOGIST 2023; 238:1593-1604. [PMID: 36764921 DOI: 10.1111/nph.18808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Functional analysis of large gene families in plant pathogens can be cumbersome using classical insertional mutagenesis. Additionally, Cas9 toxicity has limited the application of CRISPR-Cas9 for directed mutagenesis in bacteria. Here, we successfully applied a CRISPR interference strategy to investigate the cryptic role of the transcription activator-like effector (tale) multigene family in several plant-pathogenic Xanthomonas bacterial species, owing to their contribution to pathogen virulence. Single guide RNAs (sgRNAs) designed against Xanthomonas phaseoli pv manihotis tale conserved gene sequences efficiently silenced expression of all tales, with concomitant decrease in virulence and TALE-induced host gene expression. The system is readily translatable to other Xanthomonas species infecting rice, citrus, Brassica, and cassava, silencing up to 16 tales in a given strain using a single sgRNA. Complementation with plasmid-borne designer tales lacking the sgRNA-targeted sequence restored molecular and virulence phenotypes in all pathosystems. Our results evidenced that X. campestris pv campestris CN08 tales are relevant for symptom development in cauliflower. They also show that the MeSWEET10a sugar transporter is surprisingly targeted by the nonvascular cassava pathogen X. cassavae, highlighting a new example of TALE functional convergence between phylogenetically distant Xanthomonas. Overall, this novel technology provides a platform for discovery and rapid functional understanding of highly conserved gene families.
Collapse
Affiliation(s)
| | - Corinne Audran
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, 31326, France
| | - César Augusto Medina Culma
- Laboratorio de interacciones moleculares de microorganismos agrícolas (LIMMA), Universidad de los Andes, Bogotá, 111711, Colombia
| | - Aline Escalon
- CIRAD, UMR PVBMT, Saint-Pierre, 97410, La Réunion, France
| | | | - Lionel Gagnevin
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| | - Emilie Thomas
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| | - Léa-Lou Pimparé
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| | - Camilo E López
- Manihot Biotec, Departamento de Biología, Universidad Nacional de Colombia, Bogotá, 111321, Colombia
| | - Jonathan M Jacobs
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, 43210-1358, USA
| | - Laurent D Noël
- LIPME, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, 31326, France
| | - Ralf Koebnik
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| | - Adriana Jimena Bernal
- Laboratorio de interacciones moleculares de microorganismos agrícolas (LIMMA), Universidad de los Andes, Bogotá, 111711, Colombia
| | - Boris Szurek
- PHIM, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, 34394, France
| |
Collapse
|
5
|
Call SN, Andrews LB. CRISPR-Based Approaches for Gene Regulation in Non-Model Bacteria. Front Genome Ed 2022; 4:892304. [PMID: 35813973 PMCID: PMC9260158 DOI: 10.3389/fgeed.2022.892304] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 01/08/2023] Open
Abstract
CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) have become ubiquitous approaches to control gene expression in bacteria due to their simple design and effectiveness. By regulating transcription of a target gene(s), CRISPRi/a can dynamically engineer cellular metabolism, implement transcriptional regulation circuitry, or elucidate genotype-phenotype relationships from smaller targeted libraries up to whole genome-wide libraries. While CRISPRi/a has been primarily established in the model bacteria Escherichia coli and Bacillus subtilis, a growing numbering of studies have demonstrated the extension of these tools to other species of bacteria (here broadly referred to as non-model bacteria). In this mini-review, we discuss the challenges that contribute to the slower creation of CRISPRi/a tools in diverse, non-model bacteria and summarize the current state of these approaches across bacterial phyla. We find that despite the potential difficulties in establishing novel CRISPRi/a in non-model microbes, over 190 recent examples across eight bacterial phyla have been reported in the literature. Most studies have focused on tool development or used these CRISPRi/a approaches to interrogate gene function, with fewer examples applying CRISPRi/a gene regulation for metabolic engineering or high-throughput screens and selections. To date, most CRISPRi/a reports have been developed for common strains of non-model bacterial species, suggesting barriers remain to establish these genetic tools in undomesticated bacteria. More efficient and generalizable methods will help realize the immense potential of programmable CRISPR-based transcriptional control in diverse bacteria.
Collapse
Affiliation(s)
- Stephanie N. Call
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - Lauren B. Andrews
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
6
|
Schultenkämper K, Gütle DD, López MG, Keller LB, Zhang L, Einsle O, Jacquot JP, Wendisch VF. Interrogating the Role of the Two Distinct Fructose-Bisphosphate Aldolases of Bacillus methanolicus by Site-Directed Mutagenesis of Key Amino Acids and Gene Repression by CRISPR Interference. Front Microbiol 2021; 12:669220. [PMID: 33995334 PMCID: PMC8119897 DOI: 10.3389/fmicb.2021.669220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
The Gram-positive Bacillus methanolicus shows plasmid-dependent methylotrophy. This facultative ribulose monophosphate (RuMP) cycle methylotroph possesses two fructose bisphosphate aldolases (FBA) with distinct kinetic properties. The chromosomally encoded FBAC is the major glycolytic aldolase. The gene for the major gluconeogenic aldolase FBAP is found on the natural plasmid pBM19 and is induced during methylotrophic growth. The crystal structures of both enzymes were solved at 2.2 Å and 2.0 Å, respectively, and they suggested amino acid residue 51 to be crucial for binding fructose-1,6-bisphosphate (FBP) as substrate and amino acid residue 140 for active site zinc atom coordination. As FBAC and FBAP differed at these positions, site-directed mutagenesis (SDM) was performed to exchange one or both amino acid residues of the respective proteins. The aldol cleavage reaction was negatively affected by the amino acid exchanges that led to a complete loss of glycolytic activity of FBAP. However, both FBAC and FBAP maintained gluconeogenic aldol condensation activity, and the amino acid exchanges improved the catalytic efficiency of the major glycolytic aldolase FBAC in gluconeogenic direction at least 3-fold. These results confirmed the importance of the structural differences between FBAC and FBAP concerning their distinct enzymatic properties. In order to investigate the physiological roles of both aldolases, the expression of their genes was repressed individually by CRISPR interference (CRISPRi). The fba C RNA levels were reduced by CRISPRi, but concomitantly the fba P RNA levels were increased. Vice versa, a similar compensatory increase of the fba C RNA levels was observed when fba P was repressed by CRISPRi. In addition, targeting fba P decreased tkt P RNA levels since both genes are cotranscribed in a bicistronic operon. However, reduced tkt P RNA levels were not compensated for by increased RNA levels of the chromosomal transketolase gene tkt C.
Collapse
Affiliation(s)
- Kerstin Schultenkämper
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | | | - Marina Gil López
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Laura B Keller
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Lin Zhang
- Institute for Biochemistry, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Oliver Einsle
- Institute for Biochemistry, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
7
|
Brito LF, López MG, Straube L, Passaglia LMP, Wendisch VF. Inorganic Phosphate Solubilization by Rhizosphere Bacterium Paenibacillus sonchi: Gene Expression and Physiological Functions. Front Microbiol 2020; 11:588605. [PMID: 33424789 PMCID: PMC7793946 DOI: 10.3389/fmicb.2020.588605] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Due to the importance of phosphorus (P) in agriculture, crop inoculation with phosphate-solubilizing bacteria is a relevant subject of study. Paenibacillus sonchi genomovar Riograndensis SBR5 is a promising candidate for crop inoculation, as it can fix nitrogen and excrete ammonium at a remarkably high rate. However, its trait of phosphate solubilization (PS) has not yet been studied in detail. Here, differential gene expression and functional analyses were performed to characterize PS in this bacterium. SBR5 was cultivated with two distinct P sources: NaH2PO4 as soluble phosphate source (SPi) and hydroxyapatite as insoluble phosphate source (IPi). Total RNA of SBR5 cultivated in those two conditions was isolated and sequenced, and bacterial growth and product formation were monitored. In the IPi medium, the expression of 68 genes was upregulated, whereas 100 genes were downregulated. Among those, genes involved in carbon metabolism, including those coding for subunits of 2-oxoglutarate dehydrogenase, were identified. Quantitation of organic acids showed that the production of tricarboxylic acid cycle-derived organic acids was reduced in IPi condition, whereas acetate and gluconate were overproduced. Increased concentrations of proline, trehalose, and glycine betaine revealed active osmoprotection during growth in IPi. The cultivation with hydroxyapatite also caused the reduction in the motility of SBR5 cells as a response to Pi depletion at the beginning of its growth. SBR5 was able to solubilize hydroxyapatite, which suggests that this organism is a promising phosphate-solubilizing bacterium. Our findings are the initial step in the elucidation of the PS process in P. sonchi SBR5 and will be a valuable groundwork for further studies of this organism as a plant growth-promoting rhizobacterium.
Collapse
Affiliation(s)
- Luciana F. Brito
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Marina Gil López
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Lucas Straube
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | | | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
8
|
Kugler P, Fröhlich D, Wendisch VF. Development of a Biosensor for Crotonobetaine-CoA Ligase Screening Based on the Elucidation of Escherichia coli Carnitine Metabolism. ACS Synth Biol 2020; 9:2460-2471. [PMID: 32794733 DOI: 10.1021/acssynbio.0c00234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
l-Carnitine is essential in the intermediary metabolism of eukaryotes and is involved in the β-oxidation of medium- and long-chain fatty acids; thus, it has applications for medicinal purposes and as a dietary supplement. In addition, l-carnitine plays roles in bacterial physiology and metabolism, which have been exploited by the industry to develop biotechnological carnitine production processes. Here, on the basis of studies of l-carnitine metabolism in Escherichia coli and its activation by the transcriptional activator CaiF, a biosensor was developed. It expresses a fluorescent reporter gene that responds in a dose-dependent manner to crotonobetainyl-CoA, which is an intermediate of l-carnitine metabolism in E. coli and is proposed to be a coactivator of CaiF. Moreover, a dual-input biosensor for l-carnitine and crotonobetaine was developed. As an application of the biosensor, potential homologues of the betaine:CoA ligase CaiC from Citrobacter freundii, Proteus mirabilis, and Arcobacter marinus were screened and shown to be functionally active CaiC variants. These variants and the developed biosensor may be valuable for improving l-carnitine production processes.
Collapse
Affiliation(s)
- Pierre Kugler
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Deborah Fröhlich
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|