1
|
Zhan Y, Hu H, Yu Y, Chen C, Zhang J, Jarnda KV, Ding P. Therapeutic strategies for drug-resistant Pseudomonas aeruginosa: Metal and metal oxide nanoparticles. J Biomed Mater Res A 2024; 112:1343-1363. [PMID: 38291785 DOI: 10.1002/jbm.a.37677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/25/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Pseudomonas aeruginosa (PA) is a widely prevalent opportunistic pathogen. Multiple resistant strains of PA have emerged from excessive or inappropriate use of antibiotics, making their eradication increasingly difficult. Therefore, the search for highly efficient and secure novel antimicrobial agents is crucial. According to reports, there is an increasing exploration of nanometals for antibacterial purposes. The antibacterial mechanisms involving the nanomaterials themselves, the release of ions, and the induced oxidative stress causing leakage and damage to biomolecules are widely accepted. Additionally, the study of the cytotoxicity of metal nanoparticles is crucial for their antibacterial applications. This article summarizes the types of metal nanomaterials and metal oxide nanomaterials that can be used against PA, their respective unique antibacterial mechanisms, cytotoxicity, and efforts made to improve antibacterial performance and reduce toxicity, including combination therapy with other materials and antibiotics, as well as green synthesis approaches.
Collapse
Affiliation(s)
- Yujuan Zhan
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Huiting Hu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Ying Yu
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Cuimei Chen
- School of Public Health, Xiangnan University, Chenzhou, Hunan, China
| | - Jingwen Zhang
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Kermue Vasco Jarnda
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| | - Ping Ding
- Xiang Ya School of Public Health, Central South University, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Changsha, Hunan, China
| |
Collapse
|
2
|
Tungare K, Gupta J, Bhori M, Garse S, Kadam A, Jha P, Jobby R, Amanullah M, Vijayakumar S. Nanomaterial in controlling biofilms and virulence of microbial pathogens. Microb Pathog 2024; 192:106722. [PMID: 38815775 DOI: 10.1016/j.micpath.2024.106722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The escalating threat of antimicrobial resistance (AMR) poses a grave concern to global public health, exacerbated by the alarming shortage of effective antibiotics in the pipeline. Biofilms, intricate populations of bacteria encased in self-produced matrices, pose a significant challenge to treatment, as they enhance resistance to antibiotics and contribute to the persistence of organisms. Amid these challenges, nanotechnology emerges as a promising domain in the fight against biofilms. Nanomaterials, with their unique properties at the nanoscale, offer innovative antibacterial modalities not present in traditional defensive mechanisms. This comprehensive review focuses on the potential of nanotechnology in combating biofilms, focusing on green-synthesized nanoparticles and their associated anti-biofilm potential. The review encompasses various aspects of nanoparticle-mediated biofilm inhibition, including mechanisms of action. The diverse mechanisms of action of green-synthesized nanoparticles offer valuable insights into their potential applications in addressing AMR and improving treatment outcomes, highlighting novel strategies in the ongoing battle against infectious diseases.
Collapse
Affiliation(s)
- Kanchanlata Tungare
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India.
| | - Juhi Gupta
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India
| | - Mustansir Bhori
- Inveniolife Technology PVT LTD, Office No.118, Grow More Tower, Plot No.5, Sector 2, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Samiksha Garse
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India
| | - Aayushi Kadam
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada; Anatek Services PVT LTD, 10, Sai Chamber, Near Santacruz Railway Bridge, Sen Nagar, Santacruz East, Mumbai, Maharashtra, 400055, India
| | - Pamela Jha
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Mumbai, Maharashtra, India
| | - Renitta Jobby
- Amity Institute of Biotechnology, Amity University, Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Navi Mumbai, Maharashtra, 410206, India; Amity Centre of Excellence in Astrobiology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Navi Mumbai, Maharashtra, 410206, India
| | - Mohammed Amanullah
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia, 61421
| | - Sekar Vijayakumar
- Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India; Marine College, Shandong University, Weihai, 264209, PR China
| |
Collapse
|
3
|
Bekasova O. Properties and potential applications of bioconjugates of R-phycoerythrin with Ag° or CdS nanoparticle synthesized in its tunnel cavity: A review. Int J Biol Macromol 2024; 255:128181. [PMID: 37977463 DOI: 10.1016/j.ijbiomac.2023.128181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/09/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Green synthesis is a promising method for the preparation of nanoparticles (NPs) due to its simplicity, low cost, low toxicity, and environmental friendliness. Biosynthesized NPs exhibit multifunctional activity, good biocompatibility, and higher anticancer and antibacterial activity compared to chemically synthesized NPs. R-phycoerythrin, a photosynthetic light-harvesting pigment of protein nature (M.w. 290 kDa), is an attractive platform for the synthesis of small sizes NPs due to its structural features, non-toxicity, water solubility. Photosensitive bioconjugates of R-phycoerythrin with NPs were prepared by synthesizing Ag° and CdS NPs in tunnel cavities of R-phycoerythrin (3.5 × 6.0 nm) isolated from the red seaweed Callithamnion rubosum. The review is devoted to the physical processes and chemical reactions that occur in the native protein macromolecule of a complex structure during the synthesis of a NP in its cavity. The influence of Ago and CdS NPs on the electronic processes caused by the absorption of photons, leading to reversible and irreversible changes in R-phycoerythrin has been analyzed. Properties of R-phycoerythrin bioconjugates Ag° and CdS with NPs combined with the literature data suggest potential applications of Ag°⋅PE and CdS⋅PE bioconjugates for cancer diagnosis, treatment, and monitoring as well as for realizing theranostic strategy in the future. The use of these bioconjugates in anticancer therapy may have synergistic effects since both R-phycoerythrin and NPs induce cancer cell death.
Collapse
Affiliation(s)
- Olga Bekasova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninskiy pr. 33, Moscow 119071, Russian Federation.
| |
Collapse
|
4
|
Current Knowledge on the Oxidative-Stress-Mediated Antimicrobial Properties of Metal-Based Nanoparticles. Microorganisms 2022; 10:microorganisms10020437. [PMID: 35208891 PMCID: PMC8877623 DOI: 10.3390/microorganisms10020437] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/30/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022] Open
Abstract
The emergence of multidrug-resistant (MDR) bacteria in recent years has been alarming and represents a major public health problem. The development of effective antimicrobial agents remains a key challenge. Nanotechnologies have provided opportunities for the use of nanomaterials as components in the development of antibacterial agents. Indeed, metal-based nanoparticles (NPs) show an effective role in targeting and killing bacteria via different mechanisms, such as attraction to the bacterial surface, destabilization of the bacterial cell wall and membrane, and the induction of a toxic mechanism mediated by a burst of oxidative stress (e.g., the production of reactive oxygen species (ROS)). Considering the lack of new antimicrobial drugs with novel mechanisms of action, the induction of oxidative stress represents a valuable and powerful antimicrobial strategy to fight MDR bacteria. Consequently, it is of particular interest to determine and precisely characterize whether NPs are able to induce oxidative stress in such bacteria. This highlights the particular interest that NPs represent for the development of future antibacterial drugs. Therefore, this review aims to provide an update on the latest advances in research focusing on the study and characterization of the induction of oxidative-stress-mediated antimicrobial mechanisms by metal-based NPs.
Collapse
|
5
|
Enzymatic Synthesis and Antimicrobial Activity of Oligomer Analogues of Medicinal Biopolymers from Comfrey and Other Species of the Boraginaceae Family. Pharmaceutics 2022; 14:pharmaceutics14010115. [PMID: 35057011 PMCID: PMC8779701 DOI: 10.3390/pharmaceutics14010115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 11/17/2022] Open
Abstract
This study reports the first enzymatic synthesis leading to several oligomer analogues of poly[3-(3,4-dihydroxyphenyl)glyceric acid]. This biopolymer, extracted from plants of the Boraginaceae family has shown a wide spectrum of pharmacological properties, including antimicrobial activity. Enzymatic ring opening polymerization of 2-methoxycarbonyl-3-(3,4-dibenzyloxyphenyl)oxirane (MDBPO) using lipase from Candida rugosa leads to formation of poly[2-methoxycarbonyl-3-(3,4-dibenzyloxyphenyl)oxirane] (PMDBPO), with a degree of polymerization up to 5. Catalytic debenzylation of PMDBPO using H2 on Pd/C yields poly[2-methoxycarbonyl-3-(3,4-dihydroxyphenyl)oxirane] (PMDHPO) without loss in molecular mass. Antibacterial assessment of natural polyethers from different species of Boraginaceae family Symhytum asperum, S. caucasicum,S. grandiflorum, Anchusa italica, Cynoglossum officinale, and synthetic polymers, poly[2-methoxycarbonyl-3-(3,4-dimethoxyphenyl)oxirane (PMDMPO) and PMDHPO, reveals that only the synthetic analogue produced in this study (PMDHPO) exhibits a promising antimicrobial activity against pathogenic strains S.aureus ATCC 25923 and E.coli ATCC 25922 the minimum inhibitory concentration (MIC) being 100 µg/mL.
Collapse
|
6
|
Das P, Ghosh S, Nayak B. Phyto-fabricated Nanoparticles and Their Anti-biofilm Activity: Progress and Current Status. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.739286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biofilm is the self-synthesized, mucus-like extracellular polymeric matrix that acts as a key virulence factor in various pathogenic microorganisms, thereby posing a serious threat to human health. It has been estimated that around 80% of hospital-acquired infections are associated with biofilms which are found to be present on both biotic and abiotic surfaces. Antibiotics, the current mainstream treatment strategy for biofilms are often found to be futile in the eradication of these complex structures, and to date, there is no effective therapeutic strategy established against biofilm infections. In this regard, nanotechnology can provide a potential platform for the alleviation of this problem owing to its unique size-dependent properties. Accordingly, various novel strategies are being developed for the synthesis of different types of nanoparticles. Bio-nanotechnology is a division of nanotechnology which is gaining significant attention due to its ability to synthesize nanoparticles of various compositions and sizes using biotic sources. It utilizes the rich biodiversity of various biological components which are biocompatible for the synthesis of nanoparticles. Additionally, the biogenic nanoparticles are eco-friendly, cost-effective, and relatively less toxic when compared to chemically or physically synthesized alternatives. Biogenic synthesis of nanoparticles is a bottom-top methodology in which the nanoparticles are formed due to the presence of biological components (plant extract and microbial enzymes) which act as stabilizing and reducing agents. These biosynthesized nanoparticles exhibit anti-biofilm activity via various mechanisms such as ROS production, inhibiting quorum sensing, inhibiting EPS production, etc. This review will provide an insight into the application of various biogenic sources for nanoparticle synthesis. Furthermore, we have highlighted the potential of phytosynthesized nanoparticles as a promising antibiofilm agent as well as elucidated their antibacterial and antibiofilm mechanism.
Collapse
|
7
|
Gallo G, Schillaci D. Bacterial metal nanoparticles to develop new weapons against bacterial biofilms and infections. Appl Microbiol Biotechnol 2021; 105:5357-5366. [PMID: 34184105 DOI: 10.1007/s00253-021-11418-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023]
Abstract
The widespread use of antibiotics has resulted in the outbreak and spread of antibiotic-resistant pathogens. Bacterial antibiotic resistance may develop at cellular and community levels. In the latter case, it is based on tolerance which implicates the shift from a free-living form of life (i.e., planktonic) to a sessile multi-stratified community (i.e., biofilm). Metal nanoparticles (MNPs) have been shown to be promising candidates as antimicrobial agents. MNPs are able to interact with and penetrate bacterial biofilms, thus, resulting effective antibiofilm compounds. Another interesting aspect is the possibility of using plants, fungi, yeasts, and bacteria to obtain biogenic MNPs (BMNP). Bacteria are able to grow in presence of many different toxic heavy metal ions thanks to different metal resistance gene clusters that allow a variety of biochemical counters (formation of harmless complexes, efflux, precipitation, reduction, etc.). The formation of BMNPs by bacterial cells could be, in most cases, just a consequence of metal detoxification mechanisms. This review focuses on BMNPs from bacterial origin that may represent a good source of compounds with a broad spectrum of activity against common Gram-positive and Gram-negative pathogens and bacterial biofilms thereof. In particular, the state of art on BMNP synthesis by bacteria is presented and potential applications in the fight against biofilm-associated infections and resistant pathogens are highlighted. In addition, critical aspects on BMNP bacterial synthesis and utilization are commented.Key points• New antimicrobials to fight antibiotic-resistant pathogens are urgently needed.• Biogenic metal nanoparticles can efficiently hit biofilm-forming pathogens.• Metal-nanoparticle composition could confer specific antibiofilm activity.
Collapse
Affiliation(s)
- Giuseppe Gallo
- Laboratory of Molecular Microbiology and Biotechnology, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, ed. 16, 90128, Palermo, Italy.
| | - Domenico Schillaci
- Laboratory of Microbiology and Biologic Assays, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Via Archirafi, 32, 90123, Palermo, Italy
| |
Collapse
|
8
|
Aboelmaati MG, Abdel Gaber SA, Soliman WE, Elkhatib WF, Abdelhameed AM, Sahyon HA, El-Kemary M. Biogenic and biocompatible silver nanoparticles for an apoptotic anti-ovarian activity and as polydopamine-functionalized antibiotic carrier for an augmented antibiofilm activity. Colloids Surf B Biointerfaces 2021; 206:111935. [PMID: 34252691 DOI: 10.1016/j.colsurfb.2021.111935] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/09/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022]
Abstract
Silver nanoparticles (AgNPs) could be employed in the combat against COVID-19, yet are associated with toxicities. In this study, biogenic and biocompatible AgNPs using the agro-waste, non-edible Hibiscus sabdariffa stem were synthesized. Under optimized reaction conditions, synthesized green AgNPs were crystalline, face cubic centered, spherical with a diameter of around 17 nm and a surface charge of -20 mV. Their murine lethal dose 50 (LD50) was 4 folds higher than the chemical AgNPs. Furthermore, they were more murine hepato- and nephro-tolerated than chemical counterparts due to activation of Nrf-2 and HO-1 pathway. They exerted an apoptotic anti-ovarian cancer activity with IC50 value 6 times more than the normal cell line. Being functionalized with polydopamine and conjugated to either moxifloxacin or gatifloxacin, the conjugates exerted an augmented antibiofilm activity against Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii biofilms that was significantly higher than antibiotic alone or functionalized AgNPs suggesting a synergistic activity. In conclusion, this study introduced a facile one-pot synthesis of biogenic and biocompatible AgNPs with preferential anti-cancer activity and could be utilized as antibiotic delivery system for a successful eradication of Gram-negative biofilms.
Collapse
Affiliation(s)
- Mohamed G Aboelmaati
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Sara A Abdel Gaber
- Nanomedicine Department, Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Wafaa E Soliman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Alhofuf, Al-Ahsa, 31982, Saudi Arabia; Department of Microbiology and Immunology, Faculty of Pharmacy, Delta University of Science and Technology, Gamasa, Mansoura, 11152, Egypt
| | - Walid F Elkhatib
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo, 11566, Egypt; Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
| | - Amr M Abdelhameed
- Institute of Global Public Health and Human Ecology, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, Cairo, 11835, Egypt
| | - Heba A Sahyon
- Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| | - Maged El-Kemary
- Institute of Nanoscience and Nanotechnology, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
9
|
Padilla-Cruz AL, Garza-Cervantes JA, Vasto-Anzaldo XG, García-Rivas G, León-Buitimea A, Morones-Ramírez JR. Synthesis and design of Ag-Fe bimetallic nanoparticles as antimicrobial synergistic combination therapies against clinically relevant pathogens. Sci Rep 2021; 11:5351. [PMID: 33674678 PMCID: PMC7935916 DOI: 10.1038/s41598-021-84768-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
The inappropriate use of antibiotics and the inadequate control of infections have led to the emergence of drug-resistant strains. In recent years, metallo-pharmaceutics and metallic nanoparticles have been proposed as potential alternative antimicrobials due to their broad-spectrum antimicrobial properties. Moreover, recent findings have shown that combinations of transition metal compounds can exhibit synergistic antimicrobial properties. Therefore, the synthesis and design of bimetallic nanoparticles is a field worth exploring to harness the interactions between groups of metals and organic complex structures found in different microbial targets, towards the development of more efficient combinatorial antimicrobials composed of synergistic metals. In this study, we present a green synthesis of Ag–Fe bimetallic nanoparticles using an aqueous extract from the leaves of Gardenia jasminoides. The characterization of the nanoparticles demonstrated that the synthesis methodology produces homogenously distributed core–shell Ag–Fe structures with spherical shapes and average diameter sizes of 13 nm (± 6.3 nm). The Ag–Fe bimetallic nanoparticles showed magnetic and antimicrobial properties; the latter were evaluated against six different, clinically relevant multi-drug-resistant microbial strains. The Ag–Fe bimetallic nanoparticles exhibited an antimicrobial (bactericidal) synergistic effect between the two metals composing the bimetallic nanoparticles compared to the effects of the mono-metallic nanoparticles against yeast and both Gram-positive and Gram-negative multidrug-resistant bacteria. Our results provide insight towards the design of bimetallic nanoparticles, synthesized through green chemistry methodologies, to develop synergistic combinatorial antimicrobials with possible applications in both industrial processes and the treatment of infections caused by clinically relevant drug-resistant strains.
Collapse
Affiliation(s)
- A L Padilla-Cruz
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Av. Universidad S/N. CD. Universitaria, San Nicolás de Los Garza, NL, 66455, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación E Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca, Nuevo León, 66629, México
| | - J A Garza-Cervantes
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Av. Universidad S/N. CD. Universitaria, San Nicolás de Los Garza, NL, 66455, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación E Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca, Nuevo León, 66629, México
| | - X G Vasto-Anzaldo
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Av. Universidad S/N. CD. Universitaria, San Nicolás de Los Garza, NL, 66455, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación E Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca, Nuevo León, 66629, México
| | - Gerardo García-Rivas
- Cátedra de Cardiología Y Medicina Vascular, Escuela de Medicina. Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico.,Centro de Investigación Biomédica, Hospital Zambrano-Hellion, Tecnologico de Monterrey, San Pedro Garza-García, Nuevo León, Mexico
| | - A León-Buitimea
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Av. Universidad S/N. CD. Universitaria, San Nicolás de Los Garza, NL, 66455, Mexico.,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación E Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca, Nuevo León, 66629, México
| | - J R Morones-Ramírez
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Químicas, Av. Universidad S/N. CD. Universitaria, San Nicolás de Los Garza, NL, 66455, Mexico. .,Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación E Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, Apodaca, Nuevo León, 66629, México.
| |
Collapse
|
10
|
Presentato A, Armetta F, Spinella A, Chillura Martino DF, Alduina R, Saladino ML. Formulation of Mesoporous Silica Nanoparticles for Controlled Release of Antimicrobials for Stone Preventive Conservation. Front Chem 2020; 8:699. [PMID: 32974275 PMCID: PMC7471835 DOI: 10.3389/fchem.2020.00699] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/07/2020] [Indexed: 12/21/2022] Open
Abstract
The biotic deterioration of artifacts of archaeological and artistic interest mostly relies on the action of microorganisms capable of thriving under the most disparate environmental conditions. Thus, to attenuate biodeterioration phenomena, biocides can be used by the restorers to prevent or slow down the microbial growth. However, several factors such as biocide half-life, its wash-out because of environmental conditions, and its limited time of action make necessary its application repeatedly, leading to negative economic implications. Sound and successful treatments are represented by controlled release systems (CRSs) based on porous materials. Here, we report on the design and development of a CRS system based on mesoporous silica nanoparticles (MSNs), as a carrier, and loaded with a biocide. MSNs, with a diameter of 55 nm and cylindrical pores of ca. 3-8 nm arranged as parallel arrays concerning the NP diameter, and with 422 m2/g of specific surface area were synthesized by the sol-gel method assisted by oil in water emulsion. Biocide loading and release were carried out in water and monitored by UV-Vis Spectroscopy; in addition, microbiological assay was performed using as control the MCM-41 mesoporous silica loaded with the same biocide. The role of specific supramolecular interaction in regulating the release is discussed. Further, we demonstrated that this innovative formulation was useful in inhibiting the in vitro growth of Kocuria rhizophila, an environmental Gram-positive bacterial strain. Besides, the CRS here prepared reduced the bacterial biomass contaminating a real case study (i.e., stone derived from the Santa Margherita cave located in Sicily, Italy), after several months of treatment thus opening for innovative treatments of deteriorated stone artifacts.
Collapse
Affiliation(s)
- Alessandro Presentato
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy
| | - Francesco Armetta
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy
| | - Alberto Spinella
- Advanced Technologies Network (ATeN) Center, University of Palermo, Palermo, Italy
| | - Delia Francesca Chillura Martino
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy.,Advanced Technologies Network (ATeN) Center, University of Palermo, Palermo, Italy
| | - Rosa Alduina
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy
| | - Maria Luisa Saladino
- Department of Biological, Chemical, and Pharmaceutical Sciences and Technology (STEBICEF), University of Palermo, Palermo, Italy
| |
Collapse
|