1
|
Liu S, Quan L, Yang M, Wang D, Wang YZ. Regulation of cellulase production via calcium signaling in Trichoderma reesei under PEG8000 stress. Appl Microbiol Biotechnol 2024; 108:178. [PMID: 38276978 PMCID: PMC10817842 DOI: 10.1007/s00253-023-12901-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 01/27/2024]
Abstract
In this study, the effect of polyethylene glycol 8000 (PEG8000) stress on cellulase biosynthesis in Trichoderma reesei CICC2626 via calcium signaling was investigated, and a plausible mechanism by which intracellular Ca2+ regulates the transcription of cellulase genes was proposed. The results indicated that the total cellulase (filter paper-hydrolyzing activity [FPase]), endoglucanase (carboxymethyl cellulase activity [CMCase]), and β-glucosidase activities of the strain were 1.3-, 1.2-, and 1.3-fold higher than those of the control (no PEG8000 addition) at a final concentration of 1.5% (w/v) PEG8000. Moreover, the transcriptional levels of cellulase genes, protein concentrations, and biomass increased. With the synergistic use of commercial cellulase and T. reesei CICC2626 cellulase to hydrolyze alkali-pretreated rice straw, the released reducing sugar concentration reached 372.7 mg/g, and the cellulose content (22.7%, 0.32 g) was significantly lower than the initial content (62.5%, 1.88 g). Transcriptome data showed that 12 lignocellulose degradation-related genes were significantly upregulated in the presence of 1.5% PEG8000. Furthermore, the addition of Ca2+ inhibitors and deletion of crz1 (calcineurin-responsive zinc finger 1-encoding gene, which is related to the calcium signaling pathway) demonstrated that calcium signaling plays a dominant role in PEG8000-induced cellulase genes overexpression. These results revealed a link between PEG8000 induction and calcium signaling transduction in T. reesei CICC2626. Moreover, this study also provides a novel inducer for enhanced cellulase production. KEY POINTS: • Cellulase biosynthesis in Trichoderma reesei could be enhanced by PEG8000 • PEG8000 could induce a cytosolic Ca2+ burst in Trichoderma reesei • The activated calcium signaling was involved in cellulase biosynthesis.
Collapse
Affiliation(s)
- Shuai Liu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Lin Quan
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Mei Yang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Dan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, China
| | - Yong-Zhong Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
2
|
Shi L, Ren A, Zhu J, Liu R, Zhao M. Research Progress on Edible Fungi Genetic System. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 184:269-284. [PMID: 35364695 DOI: 10.1007/10_2021_192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In order to obtain strains with targeted changes in genetic characteristics, molecular biology and genetic engineering techniques are used to integrate target gene fragments into the vector and transform them into recipient cells. Due to the different target genes and functional elements on the transformation plasmids, gene silencing, gene knockout, and gene overexpression can be carried out, which provides a new way to study the gene function of edible fungi. At present, the cloning vectors used in the transformation of edible fungi are modified by bacterial plasmids, among which pCAMBIA-1300 plasmid and pAN7 plasmid are the two most commonly used basic vectors. On this basis, some basic elements such as promoters, selective marker genes, and reporter genes were added to construct silencing vectors, knockout vectors, and overexpression vectors. At the same time, different expression vector systems are needed for different transformation methods. In this chapter, the main elements of the genetic system (promoters, screening markers), the current main genetic transformation methods (Agrobacterium-mediated transformation, liposome transformation, electroporation method), and the specific application of transformation were systematically summarized, which provides a reference for the study of the genetic system of edible fungi.
Collapse
Affiliation(s)
- Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Improvement of Lignocellulolytic Enzyme Production Mediated by Calcium Signaling in Bacillus subtilis Z2 under Graphene Oxide Stress. Appl Environ Microbiol 2022; 88:e0096022. [PMID: 36121214 PMCID: PMC9552604 DOI: 10.1128/aem.00960-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An increase in exoenzyme production can be enhanced by environmental stresses such as graphene oxide (GO) stress, but the link between the two events is still unclear. In this work, the effect of GO as an environmental stress factor on exoenzyme (lignocellulolytic enzyme, amylase, peptidase, and protease) biosynthesis was investigated in Bacillus subtilis Z2, and a plausible mechanism by which cytosolic Ca2+ regulates lignocellulolytic enzyme production in B. subtilis Z2 subjected to GO stress was proposed. The filter paper-hydrolyzing (FPase [representing total cellulase]), carboxymethylcellulase (CMCase [representing endoglucanase]), and β-glucosidase activities and extracellular protein concentration of the wild-type strain under 10 μg/mL GO stress were 1.37-, 1.64-, 1.24-, and 1.16-fold those of the control (without GO stress), respectively. Correspondingly, the transcription levels of lignocellulolytic enzyme genes, cytosolic Ca2+ level, and biomass concentration of B. subtilis were all increased. With lignocellulolytic enzyme from B. subtilis used to hydrolyze alkali-pretreated rice straw, the released reducing sugar concentration reached 265.53 mg/g, and the removal rates of cellulose, hemicellulose, and lignin were 52.4%, 30.1%, and 7.5%, respectively. Furthermore, transcriptome data revealed that intracellular Ca2+ homeostasis played a key role in regulating the levels of gene transcription related to the synthesis of lignocellulolytic enzymes and exoenzymes. Finally, the use of Ca2+ inhibitors (LaCl3 and EDTA) and deletion of spcF (a calmodulin-like protein gene) further demonstrated that the overexpression of those genes was regulated via calcium signaling in B. subtilis subjected to GO stress. IMPORTANCE To effectively convert lignocellulose into fermentable sugars, high lignocellulolytic enzyme loading is needed. Graphene oxide (GO) has been shown to promote exoenzyme (lignocellulolytic enzyme, amylase, peptidase, and protease) production in some microorganisms; however, the regulatory mechanism of the biosynthesis of lignocellulolytic enzymes under GO stress remains unclear. In this work, the lignocellulolytic enzyme production of B. subtilis under GO stress was investigated, and the potential mechanism by which B. subtilis enhanced lignocellulolytic enzyme production through the calcium signaling pathway under GO stress was proposed. This work revealed the role of calcium signaling in the production of enzymes under external environmental stress and provided a direction to facilitate lignocellulolytic enzyme production by B. subtilis.
Collapse
|
4
|
Han X, Wang Z, Shi L, Zhu J, Shi L, Ren A, Zhao M. Phospholipase D and phosphatidic acid mediate regulation in the biosynthesis of spermidine and ganoderic acids by activating
GlMyb
in
Ganoderma lucidum
under heat stress. Environ Microbiol 2022; 24:5345-5361. [DOI: 10.1111/1462-2920.16211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaofei Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Zi Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Lingyan Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences Nanjing Agricultural University Nanjing Jiangsu China
| |
Collapse
|
5
|
Han J, Wang S, Chen X, Liu R, Zhu J, Shi L, Ren A, Zhao M. NAD+-dependent Glsirt1 has a key role on secondary metabolism in Ganoderma lucidum. Microbiol Res 2022; 258:126992. [DOI: 10.1016/j.micres.2022.126992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/22/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
|
6
|
Chen M, Shen Y, Lin L, Wei W, Wei D. Mn2+ modulates the production of mMycophenolic aAcid in Penicillium brevicompactum NRRL864 via rReactive oOxygen sSpecies signaling and the investigation of pb-pho. Fungal Biol 2022; 126:461-470. [DOI: 10.1016/j.funbio.2022.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022]
|
7
|
Lian LD, Shi LY, Zhu J, Liu R, Shi L, Ren A, Yu HS, Zhao MW. GlSwi6 Positively Regulates Cellulase and Xylanase Activities through Intracellular Ca2+ Signaling in Ganoderma lucidum. J Fungi (Basel) 2022; 8:jof8020187. [PMID: 35205940 PMCID: PMC8877461 DOI: 10.3390/jof8020187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/23/2022] Open
Abstract
Ganoderma lucidum is a white-rot fungus that produces a range of lignocellulolytic enzymes to decompose lignin and cellulose. The mitogen-activated protein kinase (MAPK) pathway has been implicated in xylanases and cellulases production. As the downstream transcription factor of Slt2-MAPK, the function of Swi6 in G. lucidum has not been fully studied. In this study, the transcription factor GlSwi6 in G. lucidum was characterized and shown to significantly positively regulate cellulases and xylanases production. Knockdown of the GlSwi6 gene decreased the activities of cellulases and xylanases by approximately 31%~38% and 54%~60% compared with those of the wild-type (WT) strain, respectively. Besides, GlSwi6 can be alternatively spliced into two isoforms, GlSwi6A and GlSwi6B, and overexpression of GlSwi6B increased the activities of cellulase and xylanase by approximately 50% and 60%, respectively. Further study indicates that the existence of GlSwi6B significantly increased the concentration of cytosolic Ca2+. Our study indicated that GlSwi6 promotes the activities of cellulase and xylanase by regulating the Ca2+ signaling. These results connected the GlSwi6 and Ca2+ signaling in the regulation of cellulose degradation, and provide an insight for further improvement of cellulase or xylanase activities in G. lucidum as well as other fungi.
Collapse
|
8
|
Sukumaran RK, Christopher M, Kooloth-Valappil P, Sreeja-Raju A, Mathew RM, Sankar M, Puthiyamadam A, Adarsh VP, Aswathi A, Rebinro V, Abraham A, Pandey A. Addressing challenges in production of cellulases for biomass hydrolysis: Targeted interventions into the genetics of cellulase producing fungi. BIORESOURCE TECHNOLOGY 2021; 329:124746. [PMID: 33610429 DOI: 10.1016/j.biortech.2021.124746] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Lignocellulosic materials are the favoured feedstock for biorefineries due to their abundant availability and non-completion with food. Biobased technologies for refining these materials are limited mainly by the cost of biomass hydrolyzing enzymes, typically sourced from filamentous fungi. Therefore, considerable efforts have been directed at improving the quantity and quality of secreted lignocellulose degrading enzymes from fungi in order to attain overall economic viability. Process improvements and media engineering probably have reached their thresholds and further production enhancements require modifying the fungal metabolism to improve production and secretion of these enzymes. This review focusses on the types and mechanisms of action of known fungal biomass degrading enzymes, our current understanding of the genetic control exerted on their expression, and possible routes for intervention, especially on modulating catabolite repression, transcriptional regulators, signal transduction, secretion pathways etc., in order to improve enzyme productivity, activity and stability.
Collapse
Affiliation(s)
- Rajeev K Sukumaran
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| | - Meera Christopher
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Prajeesh Kooloth-Valappil
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - AthiraRaj Sreeja-Raju
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Reshma M Mathew
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Meena Sankar
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Anoop Puthiyamadam
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Velayudhanpillai-Prasannakumari Adarsh
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Aswathi Aswathi
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Valan Rebinro
- Centre for Biofuels, Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Amith Abraham
- Department of Chemical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| |
Collapse
|
9
|
Wang T, Wang Y, Chen C, Ren A, Yu H, Zhao M. Effect of the heme oxygenase gene on mycelial growth and polysaccharide synthesis in Ganoderma lucidum. J Basic Microbiol 2021; 61:253-264. [PMID: 33543807 DOI: 10.1002/jobm.202000622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/23/2020] [Accepted: 01/24/2021] [Indexed: 11/06/2022]
Abstract
The heme oxygenase gene has antioxidant and cytoprotective effects in organisms, but no related research has been conducted in Ganoderma lucidum. For the first time, we cloned the HMX1 gene in G. lucidum. The CDS is 1092 bp in length and encodes 363 amino acids. The HMX1 protein was prokaryotically expressed and purified, and the enzyme activity of the purified protein was measured. The value of Km was 0.699 μM, and Vm was 81.9 nmol BV h-1 nmol-1 protein. By constructing the silencing vector pAN7-dual-HMX1i, the transformants HMX1i1 and HMX1i2 were obtained. Compared with the wild-type (WT), the average growth rate of HMX1i1 and HMX1i2 decreased by 31% and 23%, respectively, and the mycelium biomass decreased by 53% and 48%, respectively. Compared with the WT, the extracellular polysaccharide content of HMX1i1 and HMX1i2 increased by 59% and 51%, and the intracellular polysaccharide content increased by 24% and 22%, respectively. These results indicate that the HMX1 gene affects mycelial growth and polysaccharide synthesis in G. lucidum.
Collapse
Affiliation(s)
- Ting Wang
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental MicrobiologM, yinistry of Agriculture, Nanjing, Jiangsu, China
| | - Yihong Wang
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental MicrobiologM, yinistry of Agriculture, Nanjing, Jiangsu, China
| | - Chen Chen
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental MicrobiologM, yinistry of Agriculture, Nanjing, Jiangsu, China
| | - Ang Ren
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental MicrobiologM, yinistry of Agriculture, Nanjing, Jiangsu, China
| | - Hanshou Yu
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental MicrobiologM, yinistry of Agriculture, Nanjing, Jiangsu, China
| | - Mingwen Zhao
- Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural Environmental MicrobiologM, yinistry of Agriculture, Nanjing, Jiangsu, China
| |
Collapse
|