1
|
Cheng Y, Wan W. Strong linkage between nutrient-cycling functional gene diversity and ecosystem multifunctionality during winter composting with pig manure and fallen leaves. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161529. [PMID: 36634774 DOI: 10.1016/j.scitotenv.2023.161529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Microorganisms play important roles in element transformation and display distinct compositional changes during composting. However, little is known about the linkage between nutrient-cycling functional gene diversity and compost ecosystem multifunctionality (EMF). This study performed winter composting with pig manure and fallen leaves and evaluated the distribution patterns and ecological roles of multiple functional genes involved in nutrient cycles. Physicochemical properties and enzyme activities presented large fluctuations during composting. Absolute abundance, composition, and diversity of functional genes participating in carbon, nitrogen, phosphorus, and sulfur cycles presented distinct dynamic changes. Stronger linkage was found between enzyme activities and temperature than other physicochemical factors, whereas total nitrogen rather than other physicochemical factors displayed closer linkage with functional gene composition and diversity. EMF targeting key nutrient (i.e., carbon, nitrogen, phosphorus, and sulfur) cycles was significantly positively correlated with temperature and notably negatively correlated with functional gene diversity. Enzyme activities rather than functional gene diversity showed a greater potential effect on phosphorus availability. Consequently, the available phosphorus (AP) content increased from initial 0.50 g/kg to final 1.43 g/kg. To our knowledge, this is the first study that deciphered ecological roles of nutrient-cycling functional gene diversity during composting, and the final compost can serve as a potential phosphorus fertilizer.
Collapse
Affiliation(s)
- Yarui Cheng
- College of Chemistry and Environmental Engineering, Hanjiang Normal University, Shiyan 442000, PR China
| | - Wenjie Wan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, PR China.
| |
Collapse
|
2
|
Chai G, Wang D, Zhang Y, Wang H, Li J, Jing X, Meng H, Wang Z, Guo Y, Jiang C, Li H, Lin Y. Effects of organic substrates on sulfate-reducing microcosms treating acid mine drainage: Performance dynamics and microbial community comparison. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117148. [PMID: 36584458 DOI: 10.1016/j.jenvman.2022.117148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Bioremediation techniques utilizing sulfate-reducing bacteria (SRB) for acid mine drainage (AMD) treatment have attracted growing attention in recent years, yet substrate bioavailability for SRB is a key factor influencing treatment effectiveness and long-term stability. This study investigated the effects of external organic substrates, including four complex organic wastes (i.e., sugarcane bagasse, straw compost, shrimp shell (SS), and crab shell (CS)) and a small-molecule organic acid (i.e., propionate), on AMD removal performance and associated microbial communities during the 30-day operation of sulfate-reducing microcosms. The results showed that the pH values increased in all five microcosms, while CS exhibited the highest neutralization ability and a maximum alkalinity generation of 1507 mg/L (as CaCO3). Sulfate reduction was more effective in SS and CS microcosms, with sulfate removal efficiencies of 95.6% and 86.0%, respectively. All sulfate-reducing microcosms could remove heavy metals to different degrees, with the highest removal rate of >99.0% observed for aluminum. The removal efficiency of manganese, the most recalcitrant metal, was the highest (96%) in the CS microcosm. Correspondingly, SRB was more abundant in the CS and SS microcosms as revealed by sequencing analysis, while Desulfotomaculum was the dominant SRB in the CS microcosm, accounting for 10.8% of total effective bacterial sequences. Higher abundances of functional genes involved in fermentation and sulfur cycle were identified in CS and SS microcosms. This study suggests that complex organic wastes such as CS and SS could create and maintain preferable micro-environments for active growth and metabolism of functional microorganisms, thus offering a cost-efficient, stable, and environmental-friendly solution for AMD treatment and management.
Collapse
Affiliation(s)
- Guodong Chai
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Dongqi Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; Shaanxi Key Laboratory of Water Resources and Environment, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Yitong Zhang
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Hui Wang
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Jiake Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Xiaosheng Jing
- Zhongsheng Environmental Technology Development Co., Ltd., Xi'an, Shaanxi, 710054, China
| | - Haiyu Meng
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Zhe Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Yuan Guo
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Chunbo Jiang
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Huaien Li
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China.
| | - Yishan Lin
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
3
|
Lin Y, Grembi JA, Goots SS, Sebastian A, Albert I, Brennan RA. Advantageous microbial community development and improved performance of pilot-scale field systems treating high-risk acid mine drainage with crab shell. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126665. [PMID: 34351284 DOI: 10.1016/j.jhazmat.2021.126665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/25/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Microbial communities are crucial to the effectiveness and stability of bioremediation systems treating acid mine drainage (AMD); however, little research has addressed how they correlate to system performance under changing environmental conditions. In this study, 16S rRNA gene sequencing and quantitative PCR (qPCR) were used to characterize microbial communities within different substrate combinations of crab shell (CS) and spent mushroom compost (SMC) and their association with chemical performance in pilot-scale vertical flow ponds (VFPs) treating high risk AMD in central Pennsylvania over 643 days of operation. As compared to a control containing SMC, VFPs containing CS sustained higher alkalinity, higher sulfate-reducing rates, and more thorough metals removal (>90% for Fe and Al, >50% for Mn and Zn). Correspondingly, CS VFPs supported the growth of microorganisms in key functional groups at increasing abundance and diversity over time, especially more diverse sulfate-reducing bacteria. Through changing seasonal and operational conditions over almost two years, the relative abundance of the core phyla shifted in all reactors, but the smallest changes in functional gene copies were observed in VFPs containing CS. These results suggest that the high diversity and stability of microbial communities associated with CS are consistent with effective AMD treatment.
Collapse
Affiliation(s)
- Yishan Lin
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA; State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Jessica A Grembi
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA; School of Medicine, Stanford University, Stanford, CA, USA
| | - Sara S Goots
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA; Calfee, Halter & Griswold, Cleveland, OH, USA
| | - Aswathy Sebastian
- Bioinformatics, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - István Albert
- Bioinformatics, Huck Institute of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Rachel A Brennan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|