1
|
Carnicero-Mayo Y, Sáenz de Miera LE, Ferrero MÁ, Navasa N, Casqueiro J. Modeling Dynamics of Human Gut Microbiota Derived from Gluten Metabolism: Obtention, Maintenance and Characterization of Complex Microbial Communities. Int J Mol Sci 2024; 25:4013. [PMID: 38612823 PMCID: PMC11012253 DOI: 10.3390/ijms25074013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Western diets are rich in gluten-containing products, which are frequently poorly digested. The human large intestine harbors microorganisms able to metabolize undigested gluten fragments that have escaped digestion by human enzymatic activities. The aim of this work was obtaining and culturing complex human gut microbial communities derived from gluten metabolism to model the dynamics of healthy human large intestine microbiota associated with different gluten forms. For this purpose, stool samples from six healthy volunteers were inoculated in media containing predigested gluten or predigested gluten plus non-digested gluten. Passages were carried out every 24 h for 15 days in the same medium and community composition along time was studied via V3-V4 16S rDNA sequencing. Diverse microbial communities were successfully obtained. Moreover, communities were shown to be maintained in culture with stable composition for 14 days. Under non-digested gluten presence, communities were enriched in members of Bacillota, such as Lachnospiraceae, Clostridiaceae, Streptococcaceae, Peptoniphilaceae, Selenomonadaceae or Erysipelotrichaceae, and members of Actinomycetota, such as Bifidobacteriaceae and Eggerthellaceae. Contrarily, communities exposed to digested gluten were enriched in Pseudomonadota. Hence, this study shows a method for culture and stable maintenance of gut communities derived from gluten metabolism. This method enables the analysis of microbial metabolism of gluten in the gut from a community perspective.
Collapse
Affiliation(s)
- Yaiza Carnicero-Mayo
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24007 León, Spain;
| | - Luis E. Sáenz de Miera
- Área de Genética, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24007 León, Spain;
| | - Miguel Ángel Ferrero
- Área de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad de León, 24007 León, Spain; (M.Á.F.); (N.N.)
| | - Nicolás Navasa
- Área de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad de León, 24007 León, Spain; (M.Á.F.); (N.N.)
| | - Javier Casqueiro
- Área de Microbiología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24007 León, Spain;
| |
Collapse
|
2
|
Lee GY, Jung MJ, Kim BM, Jun JY. Identification and Growth Characteristics of a Gluten-Degrading Bacterium from Wheat Grains for Gluten-Degrading Enzyme Production. Microorganisms 2023; 11:2884. [PMID: 38138028 PMCID: PMC10745415 DOI: 10.3390/microorganisms11122884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Immunogenic peptides from wheat gluten can be produced during digestion, which are difficult to digest by gastrointestinal proteases and negatively affect immune responses in humans. Gluten intolerance is a problem in countries where wheat is a staple food, and a gluten-free diet is commonly recommended for its treatment and prevention. Enzyme approaches for degradation of the peptides can be considered as a strategy for its prevention. Here, we isolated a gluten-degrading bacterium, Bacillus amyloliquefaciens subsp. plantarum, from wheat grains. The culture conditions for enzyme production or microbial use were considered based on gluten decomposition patterns. Additionally, the pH range for the activity of the crude enzyme was investigated. The bacterium production of gluten-degrading enzymes was temperature-dependent within 25 °C to 45 °C, and the production time decreased with increasing culture temperature. However, it was markedly decreased with increasing biofilm formation. The bacterium decomposed high-molecular-weight glutenin proteins first, followed by gliadin proteins, regardless of the culture temperature. Western blotting with an anti-gliadin antibody revealed that the bacterium decomposed immunogenic proteins related to α/β-gliadins. The crude enzyme was active in the pH ranges of 5 to 8, and enzyme production was increased by adding gliadin into the culture medium. In this study, the potential of the B. amyloliquefaciens subsp. plantarum for gluten-degrading enzyme production was demonstrated. If further studies for purification of the enzyme specific to the immunogenic peptides and its characteristics are conducted, it may contribute as a strategy for prevention of gluten intolerance.
Collapse
Affiliation(s)
| | | | | | - Joon-Young Jun
- Food Convergence Research Division, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; (G.-Y.L.); (M.-J.J.); (B.-M.K.)
| |
Collapse
|
3
|
Yasir M, Alkhaldy AA, Soliman SA, Turkistani SA, Azhar EI. Metagenomic Insights into the Microbiome and Resistance Genes of Traditional Fermented Foods in Arabia. Foods 2023; 12:3342. [PMID: 37761051 PMCID: PMC10528461 DOI: 10.3390/foods12183342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
This study uncovered microbial communities and evaluated the microbiological safety of traditional fermented foods consumed in the Arab region. Samples of dairy and non-dairy fermented foods-mish, jibneh, zabadi, and pickles-were collected from local markets in Saudi Arabia. Using the MiSeq system, samples were sequenced using 16S amplicons and shotgun metagenomics. Alpha and beta diversity indicated inter- and intra-variation in the studied fermented foods' bacterial communities. In the case of mish, the replicates were clustered. Twenty-one genera were found to be significantly different (FDR < 0.05) in abundance in pairwise comparison of fermented foods. Five high-quality, metagenome-assembled genomes (MAGs) of Lactococcus lactis, Lactobacillus helveticus, Pseudoalteromonas nigrifaciens, Streptococcus thermophiles, and Lactobacillus acetotolerans were retrieved from the shotgun sequencing representing the dominant taxa in the studied fermented foods. Additionally, 33 genes that cause antimicrobial resistance (ARGs) against ten different antibiotic classes were detected. Metabolic pathways were abundant in the studied metagenomes, such as amino acid metabolism, carbohydrate metabolism, cofactors, and vitamin biosynthesis. Metagenomic evaluation of Arabian fermented foods, including the identification of probiotics, pathogenic bacteria, and ARGs, illustrates the importance of microbiological analysis in evaluating their health effects.
Collapse
Affiliation(s)
- Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Areej A. Alkhaldy
- Clinical Nutrition Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | | | - Esam I. Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
4
|
Kyoui D, Saito Y, Takahashi A, Tanaka G, Yoshida R, Maegaki Y, Kawarai T, Ogihara H, Suzuki C. Antibacterial Activity of Hexanol Vapor In Vitro and on the Surface of Vegetables. Foods 2023; 12:3097. [PMID: 37628096 PMCID: PMC10453283 DOI: 10.3390/foods12163097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Hexanol is a volatile alcohol and a major component of plant essential oils (EOs). However, the antibacterial activity of hexanol vapor has not been well studied. This study aimed to evaluate the antibacterial activity of hexanol. In this study, seven food-related bacteria were exposed to 1-, 2- or 3-hexanol vapor on agar media to evaluate their growth. Additionally, the total viable counts in three vegetables when exposed to 1-hexanol vapor were measured. The results showed that 1-hexanol exhibited antibacterial effects against Gram-negative bacteria but did not affect Gram-positive bacteria. However, compounds 2- and 3-hexanol did not show antimicrobial activity against any bacteria. For the vegetables, exposure to 1-hexanol vapor decreased the total viable bacterial counts in cabbage and carrot and inhibited bacterial growth in eggplants. In cabbage, 1-hexanol vapor at concentrations over 50 ppm decreased the total viable count within 72 h, and 25 ppm of vapor showed bacteriostatic activity for 168 h. However, 1-hexanol vapor also caused discoloration in cabbage. In summary, 1-hexanol has the potential to act as an antibacterial agent, but further studies are required for practical use. Moreover, the study results may help determine the antimicrobial activity of various EOs in the future.
Collapse
Affiliation(s)
- Daisuke Kyoui
- Laboratory of Food Microbiology, Department of Food Science and Technology, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 2520880, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Dewala S, Bodkhe R, Nimonkar Y, Prakash OM, Ahuja V, Makharia GK, Shouche YS. Human small-intestinal gluten-degrading bacteria and its potential implication in celiac disease. J Biosci 2023; 48:18. [PMID: 37309172 DOI: 10.1007/s12038-023-00337-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2023] [Indexed: 08/30/2023]
Abstract
Celiac disease (CeD) is an immune-mediated chronic disorder triggered by the ingestion of wheat gluten in genetically predisposed individuals. Gluten is a major food ingredient, infamously containing proline and glutamine-rich domains that are highly resistant to digestion by mammalian proteolytic enzymes. Thus, adhering to a gluten-free diet (GFD) is the only known treatment for CeD, albeit with many complications. Therefore, any therapy that eliminates the gluten immunogenic part before it reaches the small intestine is highly desirable. Probiotic therapy containing gluten-degrading bacteria (GDB) and their protease enzymes are possibly new approaches to treating CeD. Our study aimed to identify novel GDB from the duodenal biopsy of the first-degree relative (FDR) subjects (relatives of diseased individuals who are healthy but susceptible to celiac disease) with the potential to reduce gluten immunogenicity. Using the gluten agar plate technique, bacterial strains Brevibacterium casei NAB46 and Staphylococcus arlettae R2AA77 displaying glutenase activity were screened, identified, and characterized. Whole-genome sequencing found gluten-degrading prolyl endopeptidase (PEP) in the B. casei NAB46 genome and glutamyl endopeptidase (GEP) in the S. arlettae R2AA77 genome. Partially purified PEP has a specific activity of 1.15 U/mg, while GEP has a specific activity of 0.84 U/mg, which are, respectively, 6- and 9-fold times higher after concentrating the enzymes. Our results showed that these enzymes could hydrolyse immunotoxic gliadin peptides recognized in western blot using an anti-gliadin antibody. Additionally, a docking model was proposed for representative gliadin peptide PQPQLPYPQPQLP in the active site of the enzymes, where the residues of the N-terminal peptide extensively interact with the catalytic domain of the enzymes. These bacteria and their associated glutenase enzymes efficiently neutralize gliadin immunogenic epitopes, opening possibilities for their application as a dietary supplement in treating CeD patients.
Collapse
|
6
|
Danilova IV, Rudakova NL, Vasilyeva YA, Gilmutdinova AI, Diadkina IV, Khasanov DI, Sharipova MR. Optimization of Electroporation Conditions for Bacillus pumilus 3–19 Strain. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Olivares M, Flor-Duro A, Sanz Y. Manipulation of the gut microbiome in gluten-intolerance. Curr Opin Clin Nutr Metab Care 2021; 24:536-542. [PMID: 34622826 DOI: 10.1097/mco.0000000000000791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Gluten is a complex mixture of highly immunogenic glutamine- and proline-rich proteins found in some cereals. In celiac disease (CeD), gluten triggers an autoimmune response due to its interaction with the human leukocyte antigen heterodimers that confer the genetic risk. The involvement of gluten in other disorders has also been investigated, but its role beyond CeD is still unclear. Here, we review the most recent evidence of the involvement of gluten in diseases and the opportunities of manipulating the gut microbiota to treat or prevent gluten-related conditions. RECENT FINDINGS Most of the new studies have been conducted in the context of CeD, where important evidence has been gained on associations between the gut microbiota, genotype, and environmental factors such as breastfeeding and antibiotics. The role of the microbiota has been investigated in several prospective, observational and interventional studies with probiotics, which together showed that the gut microbiota could be targeted to ameliorate and aid in the prevention of CeD development. SUMMARY Several studies have evidenced how genetic and environmental factors influence the gut microbiome with consequences in CeD. These findings could inspire the development of microbiota modulation strategies to support the prevention or treatment of CeD.
Collapse
Affiliation(s)
- Marta Olivares
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Valencia, Spain
| | | | | |
Collapse
|
8
|
Kõiv V, Tenson T. Gluten-degrading bacteria: availability and applications. Appl Microbiol Biotechnol 2021; 105:3045-3059. [PMID: 33837830 PMCID: PMC8053163 DOI: 10.1007/s00253-021-11263-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/18/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022]
Abstract
Gluten is a mixture of storage proteins in wheat and occurs in smaller amounts in other cereal grains. It provides favorable structure to bakery products but unfortunately causes disease conditions with increasing prevalence. In the human gastrointestinal tract, gluten is cleaved into proline and gluten rich peptides that are not degraded further. These peptides trigger immune responses that might lead to celiac disease, wheat allergy, and non-celiac gluten sensitivity. The main treatment option is a gluten-free diet. Alternatively, using enzymes or microorganisms with gluten-degrading properties might alleviate the disease. These components can be used during food production or could be introduced into the digestive tract as food supplements. In addition, natural food from the environment is known to enrich the microbial communities in gut and natural environmental microbial communities have high potential to degrade gluten. It remains to be investigated if food and environment-induced changes in the gut microbiome could contribute to the triggering of gluten-related diseases. KEY POINTS: • Wheat proteins, gluten, are incompletely digested in human digestive tract leading to gluten intolerance. • The only efficient treatment of gluten intolerance is life-long gluten-free diet. • Environmental bacteria acquired together with food could be source of gluten-degrading bacteria detoxifying undigested gluten peptides.
Collapse
Affiliation(s)
- Viia Kõiv
- Institute of Technology, University of Tartu, Tartu, Estonia.
| | - Tanel Tenson
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|