Liu X, An L, Ren S, Zhou Y, Peng W. Comparative Proteomic Analysis Reveals Antibacterial Mechanism of Patrinia scabiosaefolia Against Methicillin Resistant Staphylococcus epidermidis.
Infect Drug Resist 2022;
15:883-893. [PMID:
35281570 PMCID:
PMC8912936 DOI:
10.2147/idr.s350715]
[Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/21/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose
As a kind of opportunist pathogen, Staphylococcus epidermidis (MRSE) can cause nosocomial infections and easily evolve into resistant bacteria. Among these, methicillin-resistant Staphylococcus epidermidis (MRSE) exhibit significantly higher rates. Our previous study showed that Patrinia scabiosaefolia (PS) possessed strong antibacterial activity against MRSE. However, the mechanism of PS against MRSE is not clear.
Methods
Here, a tandem mass tag-based (TMT) proteomic analysis was performed to elucidate the potential mechanism of PS against MRSE. We compared the differential expression proteins of MRSE under PS stress.
Results
Based on a fold change of >1.2 or < 1/1.2 (with p value set at <0.05), a total of 248 proteins (128 up-regulated proteins, 120 down-regulated proteins) were identified. Bioinformatic analysis showed that proteins including arginine deiminase (arcA), ornithine carbamoyltransferase (arcB) and carbamate kinase (arcC), serine–tRNA ligase (serS), phenylalanine–tRNA ligase beta and subunit (pheT), DltD (dlt), d-alanyl carrier protein (dlt), accumulation-associated protein (SasG), serine-aspartate repeat-containing protein C (SdrC) and hemin transport system permease protein HrtB (VraG) played important roles in mechanism of PS against MRSE.
Conclusion
In summary, these results indicated that arginine deiminase pathway (ADI) pathway, protein synthesis, cell wall synthesis, biofilm formation and uptake of iron were related to mechanisms of PS against MRSE. Our findings provide an insight into the the mechanism of PS against MRSE, and may be valuable in offering new targets to develop more anti-MRSE drugs.
Collapse