1
|
Martín JF, Liras P. Diamine Fungal Inducers of Secondary Metabolism: 1,3-Diaminopropane and Spermidine Trigger Enzymes Involved in β-Alanine and Pantothenic Acid Biosynthesis, Precursors of Phosphopantetheine in the Activation of Multidomain Enzymes. Antibiotics (Basel) 2024; 13:826. [PMID: 39335000 PMCID: PMC11428646 DOI: 10.3390/antibiotics13090826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The biosynthesis of antibiotics and other secondary metabolites (also named special metabolites) is regulated by multiple regulatory networks and cascades that act by binding transcriptional factors to the promoter regions of different biosynthetic gene clusters. The binding affinity of transcriptional factors is frequently modulated by their interaction with specific ligand molecules. In the last decades, it was found that the biosynthesis of penicillin is induced by two different molecules, 1,3-diaminopropane and spermidine, but not by putrescine (1,4-diaminobutane) or spermine. 1,3-diaminopropane and spermidine induce the expression of penicillin biosynthetic genes in Penicillium chrysogenum. Proteomic studies clearly identified two different proteins that respond to the addition to cultures of these inducers and are involved in β-alanine and pantothenic acid biosynthesis. These compounds are intermediates in the biosynthesis of phosphopantetheine that is required for the activation of non-ribosomal peptide synthetases, polyketide synthases, and fatty acid synthases. These large-size multidomain enzymes are inactive in the "apo" form and are activated by covalent addition of the phosphopantetheine prosthetic group by phosphopantetheinyl transferases. Both 1,3-diaminopropane and spermidine have a similar effect on the biosynthesis of cephalosporin by Acremonium chrysogenum and lovastatin by Aspergillus terreus, suggesting that this is a common regulatory mechanism in the biosynthesis of bioactive secondary metabolites/natural products.
Collapse
Affiliation(s)
- Juan Francisco Martín
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| | - Paloma Liras
- Departamento de Biología Molecular, Área de Microbiología, Universidad de León, 24071 León, Spain
| |
Collapse
|
2
|
Hou X, Liu L, Xu D, Lai D, Zhou L. Involvement of LaeA and Velvet Proteins in Regulating the Production of Mycotoxins and Other Fungal Secondary Metabolites. J Fungi (Basel) 2024; 10:561. [PMID: 39194887 DOI: 10.3390/jof10080561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/29/2024] Open
Abstract
Fungi are rich sources of secondary metabolites of agrochemical, pharmaceutical, and food importance, such as mycotoxins, antibiotics, and antitumor agents. Secondary metabolites play vital roles in fungal pathogenesis, growth and development, oxidative status modulation, and adaptation/resistance to various environmental stresses. LaeA contains an S-adenosylmethionine binding site and displays methyltransferase activity. The members of velvet proteins include VeA, VelB, VelC, VelD and VosA for each member with a velvet domain. LaeA and velvet proteins can form multimeric complexes such as VosA-VelB and VelB-VeA-LaeA. They belong to global regulators and are mainly impacted by light. One of their most important functions is to regulate gene expressions that are responsible for secondary metabolite biosynthesis. The aim of this mini-review is to represent the newest cognition of the biosynthetic regulation of mycotoxins and other fungal secondary metabolites by LaeA and velvet proteins. In most cases, LaeA and velvet proteins positively regulate production of fungal secondary metabolites. The regulated fungal species mainly belong to the toxigenic fungi from the genera of Alternaria, Aspergillus, Botrytis, Fusarium, Magnaporthe, Monascus, and Penicillium for the production of mycotoxins. We can control secondary metabolite production to inhibit the production of harmful mycotoxins while promoting the production of useful metabolites by global regulation of LaeA and velvet proteins in fungi. Furthermore, the regulation by LaeA and velvet proteins should be a practical strategy in activating silent biosynthetic gene clusters (BGCs) in fungi to obtain previously undiscovered metabolites.
Collapse
Affiliation(s)
- Xuwen Hou
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Liyao Liu
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dan Xu
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Daowan Lai
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ligang Zhou
- MOA Key Lab of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Sadowska A, Osiński P, Roztocka A, Kaczmarz-Chojnacka K, Zapora E, Sawicka D, Car H. Statins-From Fungi to Pharmacy. Int J Mol Sci 2023; 25:466. [PMID: 38203637 PMCID: PMC10779115 DOI: 10.3390/ijms25010466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Statins have been used in the treatment of hyperlipidemia, both as monotherapy and in combination therapy. Natural fermentation processes of fungi such as Monascus spp., Penicillium spp., Aspergillus terreus, and Pleurotus ostreatus have given rise to natural statins. Compactin (mevastatin), the original naturally occurring statin, is the primary biotransformation substrate in the manufacturing process of marketed drugs. Statins are classified into natural, semi-synthetic derivatives of natural statins, and synthetic ones. Synthetic statins differ from natural statins in their structural composition, with the only common feature being the HMG-CoA-like moiety responsible for suppressing HMG-CoA reductase. Statins do not differ significantly regarding their pleiotropic and adverse effects, but their characteristics depend on their pharmacokinetic parameters and chemical properties. This paper focuses on describing the processes of obtaining natural statins, detailing the pharmacokinetics of available statins, divided into natural and synthetic, and indicating their pleiotropic effects.
Collapse
Affiliation(s)
- Anna Sadowska
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (D.S.); (H.C.)
| | - Patryk Osiński
- Student’s Pharmacological Club, Lazarski University, Świeradowska 43, 02-662 Warsaw, Poland; (P.O.); (A.R.); (K.K.-C.)
| | - Alicja Roztocka
- Student’s Pharmacological Club, Lazarski University, Świeradowska 43, 02-662 Warsaw, Poland; (P.O.); (A.R.); (K.K.-C.)
| | - Karolina Kaczmarz-Chojnacka
- Student’s Pharmacological Club, Lazarski University, Świeradowska 43, 02-662 Warsaw, Poland; (P.O.); (A.R.); (K.K.-C.)
| | - Ewa Zapora
- Department of Silviculture and Forest Use, Institute of Forest Sciences, Bialystok University of Technology, Wiejska 45E, 15351 Bialystok, Poland;
| | - Diana Sawicka
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (D.S.); (H.C.)
| | - Halina Car
- Department of Experimental Pharmacology, Medical University of Bialystok, Szpitalna 37, 15-295 Bialystok, Poland; (D.S.); (H.C.)
| |
Collapse
|
4
|
Liu X, Li RQ, Zeng QX, Li YQ, Chen XA. A Novel Zn 2Cys 6 Transcription Factor, TopC, Positively Regulates Trichodin A and Asperpyridone A Biosynthesis in Tolypocladium ophioglossoides. Microorganisms 2023; 11:2578. [PMID: 37894236 PMCID: PMC10609478 DOI: 10.3390/microorganisms11102578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Asperpyridone A represents an unusual class of pyridone alkaloids with demonstrated potential for hypoglycemic activity, primarily by promoting glucose consumption in HepG2 cells. Trichodin A, initially isolated from the marine fungus Trichoderma sp. strain MF106, exhibits notable antibiotic activities against Staphylococcus epidermidis. Despite their pharmacological significance, the regulatory mechanisms governing their biosynthesis have remained elusive. In this investigation, we initiated the activation of a latent gene cluster, denoted as "top", through the overexpression of the Zn2Cys6 transcription factor TopC in Tolypocladium ophioglossoides. The activation of the top cluster led to the biosynthesis of asperpyridone A, pyridoxatin, and trichodin A. Our study also elucidated that the regulator TopC exerts precise control over the biosynthesis of asperpyridone A and trichodin A through the detection of protein-nucleic acid interactions. Moreover, by complementing these findings with gene deletions involving topA and topH, we proposed a comprehensive biosynthesis pathway for asperpyridone A and trichodin A in T. ophioglossoides.
Collapse
Affiliation(s)
- Xiang Liu
- School of Medicine and the Children’s Hospital, Zhejiang University, Hangzhou 310058, China; (X.L.); (R.-Q.L.)
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Rui-Qi Li
- School of Medicine and the Children’s Hospital, Zhejiang University, Hangzhou 310058, China; (X.L.); (R.-Q.L.)
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Qing-Xin Zeng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Xin-Ai Chen
- School of Medicine and the Children’s Hospital, Zhejiang University, Hangzhou 310058, China; (X.L.); (R.-Q.L.)
- Institute of Pharmaceutical Biotechnology, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
5
|
Wongkhieo S, Tangmesupphaisan W, Siriwaseree J, Aramsirirujiwet Y, Wiriyajitsomboon P, Kaewgrajang T, Pumloifa S, Paemanee A, Kuaprasert B, Choowongkomon K, Chester AH, Swainson NM. In vitro cholesterol lowering activity of Ganoderma australe mycelia based on mass spectrometry, synchrotron Fourier-transform infrared analysis and liver-spheroid bioactivity. Sci Rep 2023; 13:13619. [PMID: 37604902 PMCID: PMC10442327 DOI: 10.1038/s41598-023-40861-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
Mycelia were cultivated from a Thai wild mushroom identified as Ganoderma australe based on polymerase chain reaction (PCR) and morphological analyses. The mycelial extracts were examined for their active ingredients using a liquid chromatography-tandem mass spectrometry (LC‒MS/MS) method. This revealed the presence of lovastatin and tentative compounds including p-coumaric, nicotinamide, gamma-aminobutyric acid, choline, nucleosides, amino acids, and saccharides. The extracts had an inhibitory effect on the activity of HMG-CoA reductase in a concentration-dependent manner. At 2.5 mg/mL, the G. australe extracts did not interfere with the viability of HepG2 spheroids, but their biochemical composition was altered as determined by Fourier-transform infrared (FTIR) spectroscopy. The lipid profile of the spheroids treated with the mycelial extract was distinct from that of the control and the 5 µM lovastatin treatment, corresponding with the production of cholesterol by the spheroids. The mycelia of G. australe increased the percentage of high-density lipoprotein (HDL) production to 71.35 ± 2.74%, compared to the control and lovastatin-treated spheroids (33.26 ± 3.15% and 32.13 ± 3.24%, respectively). This study revealed the superior effect of natural compound mixtures to pure lovastatin, and the potential use of Thailand's wild G. australe as a functional food to prevent or alleviate hypercholesterolemia.
Collapse
Affiliation(s)
- Sudthirak Wongkhieo
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | | | - Jeeraprapa Siriwaseree
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Yaovapa Aramsirirujiwet
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | | | - Tharnrat Kaewgrajang
- Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan Rd, Lat Yao, Chatuchak, Bangkok, 10900, Thailand
| | - Saifa Pumloifa
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Atchara Paemanee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Buabarn Kuaprasert
- Research Facility Department, Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Adrian H Chester
- Heart Science Centre, Magdi Yacoub Institute, Harefield, UK
- National Heart and Lung Institute (NHLI), Imperial College London, London, UK
| | - Napachanok M Swainson
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
6
|
Zhang Y, Wang X, Ran Y, Zhang KQ, Li GH. AfLaeA, a Global Regulator of Mycelial Growth, Chlamydospore Production, Pathogenicity, Secondary Metabolism, and Energy Metabolism in the Nematode-Trapping Fungus Arthrobotrys flagrans. Microbiol Spectr 2023; 11:e0018623. [PMID: 37358432 PMCID: PMC10434191 DOI: 10.1128/spectrum.00186-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/15/2023] [Indexed: 06/27/2023] Open
Abstract
Arthrobotrys flagrans (Duddingtonia flagrans) is a typical nematode-trapping fungus which has been used for nematode biocontrol. The global regulator LaeA is widely distributed in filamentous fungi and plays a crucial role in secondary metabolism and development in addition to pathogenicity in fungal pathogens. In this study, the chromosome-level genome of A. flagrans CBS 565.50 was sequenced and homologous sequences of LaeA were identified in A. flagrans. A. flagrans LaeA (AfLaeA) knockout resulted in slower hyphal growth and a smoother hyphal surface. Importantly, deletion of AfLaeA resulted in the absence of chlamydospores and attenuated glycogen and lipid accumulation in hyphae. Similarly, disruption of the AfLaeA gene led to fewer traps and electron-dense bodies, lower protease activity, and a delay in capturing nematodes. The AfLaeA gene had a large effect on the secondary metabolism of A. flagrans, and both the deletion and overexpression of AfLaeA could yield new compounds, whereas some compounds were lost due to the absence of the AfLaeA. Protein-protein interactions between AfLaeA and another eight proteins were detected. Furthermore, transcriptome data analysis showed that 17.77% and 35.51% of the genes were influenced by the AfLaeA gene on days 3 and 7, respectively. AfLaeA gene deletion resulted in the higher expression level of the artA gene cluster, and multiple differentially expressed genes involved in glycogen and lipid synthesis and metabolism showed opposite expression patterns in wild-type and ΔAfLaeA strains. In summary, our results provide novel insights into the functions of AfLaeA in mycelial growth, chlamydospore production, pathogenicity, secondary metabolism, and energy metabolism in A. flagrans. IMPORTANCE The regulation of biological functions, such as the secondary metabolism, development, and pathogenicity of LaeA, has been reported in multiple fungi. But to date, no study on LaeA in nematode-trapping fungi has been reported. Moreover, it has not been investigated whether or not LaeA is involved in energy metabolism and chlamydospore formation has not been investigated. Especially in the formation mechanism of chlamydospores, several transcription factors and signaling pathways are involved in the production of chlamydospores, but the mechanism of chlamydospore formation from an epigenetic perspective has not been revealed. Concurrently, an understanding of protein-protein interactions will provide a broader perspective on the regulatory mechanism of AfLaeA in A. flagrans. This finding is critical for understanding the regulatory role of AfLaeA in the biocontrol fungus A. flagrans and establishes a foundation for developing high-efficiency nematode biocontrol agents.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Xin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Yuan Ran
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| | - Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
7
|
Zhgun AA. Fungal BGCs for Production of Secondary Metabolites: Main Types, Central Roles in Strain Improvement, and Regulation According to the Piano Principle. Int J Mol Sci 2023; 24:11184. [PMID: 37446362 PMCID: PMC10342363 DOI: 10.3390/ijms241311184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Filamentous fungi are one of the most important producers of secondary metabolites. Some of them can have a toxic effect on the human body, leading to diseases. On the other hand, they are widely used as pharmaceutically significant drugs, such as antibiotics, statins, and immunosuppressants. A single fungus species in response to various signals can produce 100 or more secondary metabolites. Such signaling is possible due to the coordinated regulation of several dozen biosynthetic gene clusters (BGCs), which are mosaically localized in different regions of fungal chromosomes. Their regulation includes several levels, from pathway-specific regulators, whose genes are localized inside BGCs, to global regulators of the cell (taking into account changes in pH, carbon consumption, etc.) and global regulators of secondary metabolism (affecting epigenetic changes driven by velvet family proteins, LaeA, etc.). In addition, various low-molecular-weight substances can have a mediating effect on such regulatory processes. This review is devoted to a critical analysis of the available data on the "turning on" and "off" of the biosynthesis of secondary metabolites in response to signals in filamentous fungi. To describe the ongoing processes, the model of "piano regulation" is proposed, whereby pressing a certain key (signal) leads to the extraction of a certain sound from the "musical instrument of the fungus cell", which is expressed in the production of a specific secondary metabolite.
Collapse
Affiliation(s)
- Alexander A Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky Prosp. 33-2, 119071 Moscow, Russia
| |
Collapse
|
8
|
Efremenko E, Senko O, Stepanov N, Aslanli A, Maslova O, Lyagin I. Quorum Sensing as a Trigger That Improves Characteristics of Microbial Biocatalysts. Microorganisms 2023; 11:1395. [PMID: 37374897 DOI: 10.3390/microorganisms11061395] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Quorum sensing (QS) of various microorganisms (bacteria, fungi, microalgae) today attracts the attention of researchers mainly from the point of view of clarifying the biochemical basics of this general biological phenomenon, establishing chemical compounds that regulate it, and studying the mechanisms of its realization. Such information is primarily aimed at its use in solving environmental problems and the development of effective antimicrobial agents. This review is oriented on other aspects of the application of such knowledge; in particular, it discusses the role of QS in the elaboration of various prospective biocatalytic systems for different biotechnological processes carried out under aerobic and anaerobic conditions (synthesis of enzymes, polysaccharides, organic acids, etc.). Particular attention is paid to the biotechnological aspects of QS application and the use of biocatalysts, which have a heterogeneous microbial composition. The priorities of how to trigger a quorum response in immobilized cells to maintain their long-term productive and stable metabolic functioning are also discussed. There are several approaches that can be realized: increase in cell concentration, introduction of inductors for synthesis of QS-molecules, addition of QS-molecules, and provoking competition between the participants of heterogeneous biocatalysts, etc.).
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Olga Senko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Nikolay Stepanov
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Aysel Aslanli
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Olga Maslova
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| |
Collapse
|
9
|
Ramadan AMAA, Shehata RM, El-Sheikh HH, Ameen F, Stephenson SL, Zidan SAH, Al-Bedak OAM. Exploitation of Sugarcane Bagasse and Environmentally Sustainable Production, Purification, Characterization, and Application of Lovastatin by Aspergillus terreus AUMC 15760 under Solid-State Conditions. Molecules 2023; 28:molecules28104048. [PMID: 37241788 DOI: 10.3390/molecules28104048] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Using the internal transcribed spacer (ITS) region for identification, three strains of Aspergillus terreus were identified and designated AUMC 15760, AUMC 15762, and AUMC 15763 for the Assiut University Mycological Centre culture collection. The ability of the three strains to manufacture lovastatin in solid-state fermentation (SSF) using wheat bran was assessed using gas chromatography-mass spectroscopy (GC-MS). The most potent strain was strain AUMC 15760, which was chosen to ferment nine types of lignocellulosic waste (barley bran, bean hay, date palm leaves, flax seeds, orange peels, rice straw, soy bean, sugarcane bagasse, and wheat bran), with sugarcane bagasse turning out to be the best substrate. After 10 days at pH 6.0 at 25 °C using sodium nitrate as the nitrogen source and a moisture content of 70%, the lovastatin output reached its maximum quantity (18.2 mg/g substrate). The medication was produced in lactone form as a white powder in its purest form using column chromatography. In-depth spectroscopy examination, including 1H, 13C-NMR, HR-ESI-MS, optical density, and LC-MS/MS analysis, as well as a comparison of the physical and spectroscopic data with published data, were used to identify the medication. At an IC50 of 69.536 ± 5.73 µM, the purified lovastatin displayed DPPH activity. Staphylococcus aureus and Staphylococcus epidermidis had MICs of 1.25 mg/mL, whereas Candida albicans and Candida glabrata had MICs of 2.5 mg/mL and 5.0 mg/mL, respectively, against pure lovastatin. As a component of sustainable development, this study offers a green (environmentally friendly) method for using sugarcane bagasse waste to produce valuable chemicals and value-added commodities.
Collapse
Affiliation(s)
- Ahmed M A A Ramadan
- Department of Botany & Microbiology, Faculty of Science, Al Azhar University, Cairo 11511, Egypt
| | - Reda M Shehata
- Department of Botany & Microbiology, Faculty of Science, Al Azhar University, Cairo 11511, Egypt
- The Regional Center for Mycology and Biotechnology (RCMB), Al Azhar University, Cairo 11511, Egypt
| | - Hussein H El-Sheikh
- Department of Botany & Microbiology, Faculty of Science, Al Azhar University, Cairo 11511, Egypt
- The Regional Center for Mycology and Biotechnology (RCMB), Al Azhar University, Cairo 11511, Egypt
| | - Fuad Ameen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Steven L Stephenson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Sabry A H Zidan
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | | |
Collapse
|
10
|
Pérez-Sánchez A, Mejía A, Miranda-Labra RU, Barrios-González J. Role of AtYap1 in the reactive oxygen species regulation of lovastatin production in Aspergillus terreus. Appl Microbiol Biotechnol 2023; 107:1439-1451. [PMID: 36683058 DOI: 10.1007/s00253-023-12382-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/24/2023]
Abstract
Lovastatin has great medical and economic importance, and its production in Aspergillus terreus is positively regulated at transcriptional level, by reactive oxygen species (ROS) generated during idiophase. To investigate the role of the transcription factor Yap1 in the regulation of lovastatin biosynthesis by ROS, an orthologue of yap1 was identified in A. terreus TUB F-514 and knocked down (silenced) by RNAi. Results confirmed that the selected knockdown strain (Siyap1) showed decreased yap1 expression in both culture systems (submerged and solid-state fermentation). Transformants showed higher sensitivity to oxidative stress. Interestingly, knockdown mutant showed higher ROS levels in idiophase and an important increase in lovastatin production in submerged and solid-state fermentations: 60 and 70% increase, respectively. Furthermore, sporulation also increased by 600%. This suggested that AtYap1 was functioning as a negative regulator of the biosynthetic genes, and that lack of AtYap1 in the mutants would be derepressing these genes and could explain increased production. However, we have shown that lovastatin production is proportional to ROS levels, so ROS increase in the mutants alone could also be the cause of production increase. In this work, when ROS levels were decreased with antioxidant, to the levels shown by the parental strain, the lovastatin production and kinetics were similar to the ones of the parental strain. This means that AtYap1 does not regulate lovastatin biosynthetic genes, and that production increase observed in the knockdown strain was an indirect effect caused by ROS increase. This conclusion is compared with studies on other secondary metabolites produced by other fungal species. KEY POINTS: • ROS regulates lovastatin biosynthesis at transcriptional level, in solid-state, and in submerged fermentations. • ATyap1 knockdown mutants showed important lovastatin production increases (60 and 70%) and higher ROS levels. • When ROS were decreased in the silenced mutant to the parental strain's level, lovastatin kinetics were identical to the parental strain's.
Collapse
Affiliation(s)
- Ailed Pérez-Sánchez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana - Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Leyes de Reforma, Iztapalapa, 09340, Ciudad de México, México
| | - Armando Mejía
- Departamento de Biotecnología, Universidad Autónoma Metropolitana - Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Leyes de Reforma, Iztapalapa, 09340, Ciudad de México, México
| | - Roxana Uri Miranda-Labra
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana - Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Leyes de Reforma, Iztapalapa, 09340, Ciudad de México, México
| | - Javier Barrios-González
- Departamento de Biotecnología, Universidad Autónoma Metropolitana - Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Leyes de Reforma, Iztapalapa, 09340, Ciudad de México, México.
| |
Collapse
|
11
|
Kontoyiannis DP. Statin Use and Aspergillosis Risk-More than Meets the Eye? Clin Infect Dis 2023; 76:368. [PMID: 36049031 DOI: 10.1093/cid/ciac710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd, Unit 1460, Houston, TX 77030, USA
| |
Collapse
|
12
|
Whole genome sequence characterization of Aspergillus terreus ATCC 20541 and genome comparison of the fungi A. terreus. Sci Rep 2023; 13:194. [PMID: 36604572 PMCID: PMC9814666 DOI: 10.1038/s41598-022-27311-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Aspergillus terreus is well-known for lovastatin and itaconic acid production with biomedical and commercial importance. The mechanisms of metabolite formation have been extensively studied to improve their yield through genetic engineering. However, the combined repertoire of carbohydrate-active enzymes (CAZymes), cytochrome P450s (CYP) enzymes, and secondary metabolites (SMs) in the different A. terreus strains has not been well studied yet, especially with respect to the presence of biosynthetic gene clusters (BGCs). Here we present a 30 Mb whole genome sequence of A. terreus ATCC 20541 in which we predicted 10,410 protein-coding genes. We compared the CAZymes, CYPs enzyme, and SMs across eleven A. terreus strains, and the results indicate that all strains have rich pectin degradation enzyme and CYP52 families. The lovastatin BGC of lovI was linked with lovF in A. terreus ATCC 20541, and the phenomenon was not found in the other strains. A. terreus ATCC 20541 lacked a non-ribosomal peptide synthetase (AnaPS) participating in acetylaszonalenin production, which was a conserved protein in the ten other strains. Our results present a comprehensive analysis of CAZymes, CYPs enzyme, and SM diversities in A. terreus strains and will facilitate further research in the function of BGCs associated with valuable SMs.
Collapse
|
13
|
Boruta T, Ścigaczewska A, Bizukojć M. Production of secondary metabolites in stirred tank bioreactor co-cultures of Streptomyces noursei and Aspergillus terreus. Front Bioeng Biotechnol 2022; 10:1011220. [PMID: 36246390 PMCID: PMC9557299 DOI: 10.3389/fbioe.2022.1011220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
The focus of the study was to characterize the bioprocess kinetics and secondary metabolites production in the novel microbial co-cultivation system involving Streptomyces noursei ATCC 11455 (the producer of an antifungal substance known as nystatin) and Aspergillus terreus ATCC 20542 (the source of lovastatin, a cholesterol-lowering drug). The investigated “A. terreus vs. S. noursei” stirred tank bioreactor co-cultures allowed for the concurrent development and observable biosynthetic activity of both species. In total, the production profiles of 50 secondary metabolites were monitored over the course of the study. The co-cultures were found to be effective in terms of enhancing the biosynthesis of several metabolic products, including mevinolinic acid, an acidic form of lovastatin. This work provided a methodological example of assessing the activity of a given strain in the co-culture by using the substrates which can be metabolized exclusively by this strain. Since S. noursei was shown to be incapable of lactose utilization, the observed changes in lactose levels were attributed to A. terreus and thus confirmed its viability. The study was complemented with the comparative microscopic observations of filamentous morphologies exhibited in the co-cultures and corresponding monocultures.
Collapse
|
14
|
Pérez-Sánchez A, Bibián ME, Barrios-González J. The Biosynthesis of Penicillin and Cephalosporin C are Regulated by ROS at Transcriptional Level. Curr Microbiol 2022; 79:243. [PMID: 35796838 DOI: 10.1007/s00284-022-02935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
In a recent work we showed that, besides lovastatin, ROS also accumulate during the production phase in Pencillium chrysogenum and in Acremonium chrysogenum, and that these ROS regulate the biosynthesis of penicillin and cephalosporin C. In the present study, we investigated the level at which this positive regulation is exerted. Internal ROS levels were manipulated, i.e., increased or decreased, in the production phase of the respective fermentations. Penicillin production decreased by 51.2% when internal ROS concentration was diminished by 50%, while a 62% production increase was observed when ROS were increased (62%). Similarly, Cephalosporin production decreased (35%) with antioxidants and increased (54.1%) with exogenous ROS. Expression analysis of the respective pcbAB genes, encoding the non-ribosomal peptide synthetase enzymes, was performed. Results showed down regulation of these genes in fermentations with lower ROS content, and upregulation in the cultures with higher ROS content, in both species. This showed that ROS regulation of penicillin in P. chrysogenum and of cephalosporin C in A. chrysogenum, is exerted at transcriptional level. In silico analysis of the pcbAB gene promoters in both species, suggested that this regulation could be mediated by stress-response transcription factors like Yap1, SrrA and/or MsnA, and/or by the Hap complex.
Collapse
Affiliation(s)
- A Pérez-Sánchez
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Rafael Atlixco No. 186. Col. Vicentina, Iztapalapa, C.P. 09340, Mexico City, Mexico
| | - M E Bibián
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Rafael Atlixco No. 186. Col. Vicentina, Iztapalapa, C.P. 09340, Mexico City, Mexico
| | - J Barrios-González
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. Rafael Atlixco No. 186. Col. Vicentina, Iztapalapa, C.P. 09340, Mexico City, Mexico.
| |
Collapse
|
15
|
Du X, Li H, Qi J, Chen C, Lu Y, Wang Y. Genome mining of secondary metabolites from a marine-derived Aspergillus terreus B12. Arch Microbiol 2021; 203:5621-5633. [PMID: 34459930 DOI: 10.1007/s00203-021-02548-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022]
Abstract
Owing to the prominent capabilities of bioconversion and biosynthesis, A. terreus has become attractive in biotechnical and pharmaceutical industry. In this work, an Aspergillus strain with potential antibacterial activities, was isolated from sponge in South China Sea. Based on the morphological and phylogenetic analysis, the strain was identified as A. terreus B12. Via the Illumina MiSeq sequencing platform, the complete genome was obtained, showing a genetic richness of biosynthetic gene clusters (BGCs), which might underpin the metabolic plasticity and adaptive resilience for the strain. Genome mining identified 67 BGCs, among which, 6 gene clusters could allocate to known BGCs (100% identity), corresponding to diverse metabolites like clavaric acid, dihydroisoflavipucine/isoflavipucine, dimethylcoprogen, alternariol, aspterric acid, and pyranonigrin E. Moreover, a range of compounds was isolated from B12 fermentation, e.g., terrein, butyrolactone I, terretonin A&E, acoapetaline B, and epi-aszonalenins A. Of note, acoapetaline B and epi-aszonalenins A, which had been respectively reported in plants and A. novofumigatus but with scarce information, was unexpectedly obtained from this species for the first time. The genomic and metabolic heterogeneity observed in strain B12, should be at least partially attributed to the genetic variability and biochemical diversity of A. terreus, which could be an interesting issue open to future efforts.
Collapse
Affiliation(s)
- Xinyang Du
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Huanhuan Li
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiangfeng Qi
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Chaoyi Chen
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuanyuan Lu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Ying Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
16
|
Xie J, Ye Y, Wu Z, Gou X, Peng T, Yuan X, Yang X, Zhang X, Peng Q. Screening of Key Fungal Strains in the Fermentation Process of the Chinese Medicinal Preparation "Lianzhifan Solution" Based on Metabolic Profiling and High-Throughput Sequencing Technology. Front Microbiol 2021; 12:727968. [PMID: 34497599 PMCID: PMC8420715 DOI: 10.3389/fmicb.2021.727968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jie Xie
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Yang Ye
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Ze Wu
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Xun Gou
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Tong Peng
- Keystonecare Technology (Chengdu) Co., Ltd., Chengdu, China
| | - Xuegang Yuan
- Department of Anorectal Surgery, The Sixth People's Hospital of Chengdu, Chengdu, China
| | - Xiangdong Yang
- Department of Anorectal, Chengdu Anorectal Hospital, Chengdu, China
| | - Xiaoyu Zhang
- College of Life Sciences, Sichuan Normal University, Chengdu, China
| | - Quekun Peng
- Department of Biotechnology, School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
17
|
Xie L, Zhu G, Shang J, Chen X, Zhang C, Ji X, Zhang Q, Wei Y. An overview on the biological activity and anti-cancer mechanism of lovastatin. Cell Signal 2021; 87:110122. [PMID: 34438015 DOI: 10.1016/j.cellsig.2021.110122] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
Lovastatin, a secondary metabolite isolated from fungi, is often used as a representative drug to reduce blood lipid concentration and treat hypercholesterolemia. Its structure is similar to that of HMG-CoA. Lovastatin inhibits the binding of the substrate to HMG-CoA reductase, and strongly competes with HMG-CoA reductase (HMGR), thereby exerting a hypolipidemic effect. Further, its safety has been confirmed in vivo and in vitro. Lovastatin also has anti-inflammatory, anti-cancer, and neuroprotective effects. Therefore, the biological activity of lovastatin, especially its anti-cancer effect, has garnered research attention. Several in vitro studies have confirmed that lovastatin has a significant inhibitory effect on cancer cell viability in a variety of cancers (such as breast, liver, cervical, lung, and colon cancer). At the same time, lovastatin can also increase the sensitivity of some types of cancer cells to chemotherapeutic drugs and strengthen their therapeutic effect. Lovastatin inhibits cell proliferation and regulates cancer cell signaling pathways, thereby inducing apoptosis and cell cycle arrest. This article reviews the structure, biosynthetic pathways, and applications of lovastatin, focusing on the anti-cancer effects and mechanisms of action.
Collapse
Affiliation(s)
- Liguo Xie
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Guodong Zhu
- Yunnan Minzu University, Library, Kunming 650500, China.
| | - Junjie Shang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xuemei Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Chunting Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xiuling Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Qi Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Yunlin Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
18
|
Zou Y, Houk KN. Mechanisms and Dynamics of Synthetic and Biosynthetic Formation of Delitschiapyrones: Solvent Control of Ambimodal Periselectivity. J Am Chem Soc 2021; 143:11734-11740. [PMID: 34297552 PMCID: PMC9307257 DOI: 10.1021/jacs.1c05293] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mechanism and dynamics for the formation of the delitschiapyrone family of natural products are studied by density functional theory (DFT) calculations and quasiclassical molecular dynamics simulations with DFT and xTB. In the uncatalyzed reaction, delitschiapyrones A and B are formed by Diels-Alder reactions through a single transition state and a post-transition state bifurcation that favors formation of delitschiapyrone B. In water and most likely in the enzyme, the acidic hydroxyquinone ionizes, and the resulting conjugate base undergoes cycloaddition preferentially to delitschiapyrone A. We demonstrate a new type of biosynthetic transformation and variable selectivity from a (4 + 2)/(4 + 3) ambimodal transition state.
Collapse
Affiliation(s)
- Yike Zou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
19
|
High-Yielding Lovastatin Producer Aspergillus terreus Shows Increased Resistance to Inhibitors of Polyamine Biosynthesis. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The biosynthesis of pharmaceutically significant secondary metabolites in filamentous fungi is a multistep process that depends on a wide range of various factors, one of which is the intracellular content of polyamines. We have previously shown that in Aspergillus terreus lovastatin high-yielding strain (HY) exogenous introduction of polyamines during fermentation can lead to an increase in the production of lovastatin by 20–45%. However, the molecular mechanisms of this phenomenon have not been elucidated. In this regard, we carried out an inhibitory analysis at the key stage of polyamine biosynthesis, the conversion of L-ornithine to putrescine by the enzyme ornithine decarboxylase (ODC). A. terreus HY strain showed upregulation of genes for biosynthesis of polyamines, 3–10-fold, and increased resistance compared to the original wild-type strain upon inhibition of ODC on synthetic medium with 5 mM α-difluoromethylornithine (DFMO), by 20–25%, and 5 mM 1-aminooxy-3-aminopropane (APA), by 40–45%. The data obtained indicate changes in the metabolism of polyamines in A. terreus HY strain. The observed phenomenon may have a universal character among fungal producers of secondary metabolites improved by classical methods, since previously the increased resistance to ODC inhibitors was also shown for Acremonium chrysogenum, a high-yielding producer of cephalosporin C.
Collapse
|