1
|
Wani AK, Chopra C, Ansari MA, Dar MA, Américo-Pinheiro JHP, Singh R. Characterization of thermostable carboxypeptidase from high-altitude hot spring metagenome. Int J Biol Macromol 2024; 276:133974. [PMID: 39029824 DOI: 10.1016/j.ijbiomac.2024.133974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
This study explored the metagenome of the Pir Panjal Hot Spring (PPHS) to identify thermostable hydrolases. The carboxypeptidase (CarP) gene was successfully amplified and cloned into Escherichia coli DH5-α cells, followed by expression in E. coli BL21-DE3 cells. The CarP enzyme was comprehensively characterized in vitro. Sequencing analysis revealed an open reading frame encoding a functional protein of 504 amino acids, with a molecular weight of 58.65 kDa and an isoelectric point of 4.81. The CarP protein was purified using Ni-His affinity chromatography, and the experimental molecular weight matched in silico predictions. The enzyme exhibited significant thermostability and alkaliphilic properties, with optimal activity at 70 °C and pH 10.0. Additionally, the presence of Zn+2 ions at concentrations of 5 and 10 mmol/L enhanced protease activity by 1.4 and 1.5-fold, respectively. This study reports the discovery of a novel, multifunctional, and thermostable CarP from hot-spring metagenomes. The enzyme's stability against high temperatures, metal ions, surfactants, and inhibitors, along with its specific substrate interactions, highlights its potential for various biotechnological applications.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, Punjab, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, Punjab, India
| | - Mushtaq Ahmad Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudasir A Dar
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, 212013, China
| | - Juliana Heloisa Pinê Américo-Pinheiro
- São Paulo State University (UNESP), School of Agricultural Sciences, Botucatu, Department of Forest Science, Soils and Environment, Ave. Universitária, 3780, Botucatu, SP 18610-034, Brazil; Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP 08230-030, Brazil.
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, Punjab, India.
| |
Collapse
|
2
|
Zheng X, Wu F, Zhao L, Zhou H, Zhou Z, Jia Z, Shi F. Exploration of Protease Resources in the Gut of Omnivorous Gryllotalpa orientalis (Orthoptera: Gryllotalpidae). BIOLOGY 2024; 13:650. [PMID: 39336078 PMCID: PMC11428641 DOI: 10.3390/biology13090650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024]
Abstract
An insect's gut microbiome is an essential "organ" in their life cycle, playing a crucial role by aiding food digestion and nutrient absorption. This study employed both culture-independent and culture-dependent methods to explore the protease resources present in the gut of the omnivorous insect Gryllotalpa orientalis. The findings revealed that the gut extract of G. orientalis contained a diverse array of proteases, including cysteine proteases, pepsin, serine proteases, and trypsin, as well as some unidentified proteases. Furthermore, the protease gene htpX, derived from gut bacterium Priestia megaterium DX-3, has been cloned and recombinantly expressed. The recombinant DX-3-htpX protease exhibited a 61.9-fold increase in fermentation level compared to the DX-3 protease. This protease was characterized as a neutral, heat-resistant metalloprotease with an M48 peptidase domain, and it was observed that the binding of Ca2+ to the recombinant protease resulted in the formation of the largest active pocket. This study provides technical support for further development and utilization of functional protein resources in insect gut.
Collapse
Affiliation(s)
- Xiang Zheng
- Laboratory of Enzyme Preparation, Hebei Research Institute of Microbiology Co., Ltd., Baoding 071051, China
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Fangtong Wu
- Laboratory of Enzyme Preparation, Hebei Research Institute of Microbiology Co., Ltd., Baoding 071051, China
| | - Lu Zhao
- Laboratory of Enzyme Preparation, Hebei Research Institute of Microbiology Co., Ltd., Baoding 071051, China
| | - He Zhou
- Laboratory of Enzyme Preparation, Hebei Research Institute of Microbiology Co., Ltd., Baoding 071051, China
| | - Zhijun Zhou
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Zhenhua Jia
- Laboratory of Enzyme Preparation, Hebei Research Institute of Microbiology Co., Ltd., Baoding 071051, China
- Institute of Biology, Hebei Academy of Sciences, Shijiazhuang 050052, China
| | - Fuming Shi
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
3
|
Irazoqui JM, Santiago GM, Mainez ME, Amadio AF, Eberhardt MF. Enzymes for production of whey protein hydrolysates and other value-added products. Appl Microbiol Biotechnol 2024; 108:354. [PMID: 38819482 PMCID: PMC11142983 DOI: 10.1007/s00253-024-13117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 06/01/2024]
Abstract
Whey is a byproduct of dairy industries, the aqueous portion which separates from cheese during the coagulation of milk. It represents approximately 85-95% of milk's volume and retains much of its nutrients, including functional proteins and peptides, lipids, lactose, minerals, and vitamins. Due to its composition, mainly proteins and lactose, it can be considered a raw material for value-added products. Whey-derived products are often used to supplement food, as they have shown several physiological effects on the body. Whey protein hydrolysates are reported to have different activities, including antihypertensive, antioxidant, antithrombotic, opioid, antimicrobial, cytomodulatory, and immuno-modulatory. On the other hand, galactooligosaccharides obtained from lactose can be used as prebiotic for beneficial microorganisms for the human gastrointestinal tract. All these compounds can be obtained through physicochemical, microbial, or enzymatic treatments. Particularly, enzymatic processes have the advantage of being highly selective, more stable than chemical transformations, and less polluting, making that the global enzyme market grow at accelerated rates. The sources and different products associated with the most used enzymes are particularly highlighted in this review. Moreover, we discuss metagenomics as a tool to identify novel proteolytic enzymes, from both cultivable and uncultivable microorganisms, which are expected to have new interesting activities. Finally enzymes for the transformation of whey sugar are reviewed. In this sense, carbozymes with ß-galactosidase activity are capable of lactose hydrolysis, to obtain free monomers, and transgalactosylation for prebiotics production. KEY POINTS: • Whey can be used to obtain value-added products efficiently through enzymatic treatments • Proteases transform whey proteins into biopeptides with physiological activities • Lactose can be transformed into prebiotic compounds using ß-galactosidases.
Collapse
Affiliation(s)
- José Matías Irazoqui
- Instituto de Investigación de La Cadena Láctea (CONICET-INTA), 2300, Rafaela, Argentina
| | | | | | - Ariel Fernando Amadio
- Instituto de Investigación de La Cadena Láctea (CONICET-INTA), 2300, Rafaela, Argentina
| | | |
Collapse
|
4
|
Hao M, Shi C, Gong W, Liu J, Meng X, Liu F, Lu F, Zhang H. Heterologous expression and characterization of an M4 family extracellular metalloprotease for detergent application. J GEN APPL MICROBIOL 2024; 69:309-317. [PMID: 37880082 DOI: 10.2323/jgam.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Proteolytic enzymes stand out as the most widely employed category utilized in manufacturing industry. A new protease was separated from Planococcus sp.11815 strain and named as nprS-15615 in this research. The gene of this protease has not been reported, and its enzymatic properties have been studied for the first time. To enhance enzyme production, the Planococcus sp. protease gene was expressed in Bacillus licheniformis 2709. The expression level of nprS-15615 was observed under the control of regulatory elements PaprE. nprS-15615 protease activity reached 1186.24±32.87 U/mL after 48 hours of cultivation in shake flasks which was nearly four times the output of the original bacteria (291.38±25.73U/mL). The optimum temperature and pH of the recombinant protease were 30 ℃ and 8.0, respectively.The enzyme exhibited the highest capacity for hydrolyzing casein and demonstrated resilience towards a NaCl concentration of 10.0% (wt/v). Furthermore, in the presence of 0.5% surfactants, the recombinant protease activity can maintain above 75%, and with the existence of 0.5% liquid detergents, there was basically no loss of enzyme activity which indicated that nprS-15615 had good compatibility with surfactants and liquid detergents. In addition, npS-15615 performed well in the washing experiment, and the washing effect at 20 ℃ can be significantly improved by adding crude enzyme solution in the washing process.
Collapse
Affiliation(s)
- Man Hao
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| | - Chaoshuo Shi
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| | - Weifeng Gong
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| | - Jia Liu
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| | - Xiangxin Meng
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| | - Fufeng Liu
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| | - Fuping Lu
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| | - Huitu Zhang
- Laboratory of Applied Microbiology and Enzyme Engineering, College of Biotechnology, Tianjin University of Science & Technology
| |
Collapse
|
5
|
Yao H, Liu S, Liu T, Ren D, Zhou Z, Yang Q, Mao J. Microbial-derived salt-tolerant proteases and their applications in high-salt traditional soybean fermented foods: a review. BIORESOUR BIOPROCESS 2023; 10:82. [PMID: 38647906 PMCID: PMC10992980 DOI: 10.1186/s40643-023-00704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/31/2023] [Indexed: 04/25/2024] Open
Abstract
Different microorganisms can produce different proteases, which can adapt to different industrial requirements such as pH, temperature, and pressure. Salt-tolerant proteases (STPs) from microorganisms exhibit higher salt tolerance, wider adaptability, and more efficient catalytic ability under extreme conditions compared to conventional proteases. These unique enzymes hold great promise for applications in various industries including food, medicine, environmental protection, agriculture, detergents, dyes, and others. Scientific studies on microbial-derived STPs have been widely reported, but there has been little systematic review of microbial-derived STPs and their application in high-salt conventional soybean fermentable foods. This review presents the STP-producing microbial species and their selection methods, and summarizes and analyzes the salt tolerance mechanisms of the microorganisms. It also outlines various techniques for the isolation and purification of STPs from microorganisms and discusses the salt tolerance mechanisms of STPs. Furthermore, this review demonstrates the contribution of modern biotechnology in the screening of novel microbial-derived STPs and their improvement in salt tolerance. It highlights the potential applications and commercial value of salt-tolerant microorganisms and STPs in high-salt traditional soy fermented foods. The review ends with concluding remarks on the challenges and future directions for microbial-derived STPs. This review provides valuable insights into the separation, purification, performance enhancement, and application of microbial-derived STPs in traditional fermented foods.
Collapse
Affiliation(s)
- Hongli Yao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Department of Biology and Food Engineering, Bozhou University, Bozhou, 236800, Anhui, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Tiantian Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China.
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China.
| |
Collapse
|
6
|
Wani AK, Akhtar N, Naqash N, Rahayu F, Djajadi D, Chopra C, Singh R, Mulla SI, Sher F, Américo-Pinheiro JHP. Discovering untapped microbial communities through metagenomics for microplastic remediation: recent advances, challenges, and way forward. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:81450-81473. [PMID: 36637649 PMCID: PMC9838310 DOI: 10.1007/s11356-023-25192-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/04/2023] [Indexed: 06/01/2023]
Abstract
Microplastics (MPs) are ubiquitous pollutants persisting almost everywhere in the environment. With the increase in anthropogenic activities, MP accumulation is increasing enormously in aquatic, marine, and terrestrial ecosystems. Owing to the slow degradation of plastics, MPs show an increased biomagnification probability of persistent, bioaccumulative, and toxic substances thereby creating a threat to environmental biota. Thus, remediation of MP-pollutants requires efficient strategies to circumvent the mobilization of contaminants leaching into the water, soil, and ultimately to human beings. Over the years, several microorganisms have been characterized by the potential to degrade different plastic polymers through enzymatic actions. Metagenomics (MGs) is an effective way to discover novel microbial communities and access their functional genetics for the exploration and characterization of plastic-degrading microbial consortia and enzymes. MGs in combination with metatranscriptomics and metabolomics approaches are a powerful tool to identify and select remediation-efficient microbes in situ. Advancement in bioinformatics and sequencing tools allows rapid screening, mining, and prediction of genes that are capable of polymer degradation. This review comprehensively summarizes the growing threat of microplastics around the world and highlights the role of MGs and computational biology in building effective response strategies for MP remediation.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Nafiaah Naqash
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Farida Rahayu
- Research Center for Applied Microbiology, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Djajadi Djajadi
- Research Center for Horticulture and Plantation, National Research Innovation Agency, Bogor, 16111, Indonesia
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bengaluru, 560064, Karnataka, India
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Juliana Heloisa Pinê Américo-Pinheiro
- Department of Forest Science, Soils and Environment, School of Agronomic Sciences, São Paulo State University (UNESP), Ave. Universitária, 3780, Botucatu, SP, 18610-034, Brazil.
- Graduate Program in Environmental Sciences, Brazil University, Street Carolina Fonseca, 584, São Paulo, SP, 08230-030, Brazil.
| |
Collapse
|
7
|
Irazoqui JM, Eberhardt MF, Santiago GM, Amadio AF. Characterization of novel proteases identified by metagenomic analysis from dairy stabilization ponds. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12591-4. [PMID: 37231159 DOI: 10.1007/s00253-023-12591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
Cheese whey is the main by-product of dairy industries. It is used as a raw material for other value-added products, like whey protein concentrate. By using enzymes, this product can be further treated to obtain new higher value products, like whey protein hydrolysates. Proteases (EC: 3.4) represent a large segment of industrial enzymes, since they are used in several industries, including food. In this work, we describe three novel enzymes identified using a metagenomic approach. Metagenomic DNA from dairy industry stabilization ponds were sequenced, and the predicted genes were compared against the MEROPS database, focusing on families commercially used to produce whey protein hydrolysates. From a total of 849 candidates, 10 were selected for cloning and expression and three showed activities with both the chromogenic substrate, azocasein, and whey proteins. Particularly, Pr05, an enzyme from the yet uncultured phylum Patescibacteria, showed activity that is comparable to a commercial protease. All these novel enzymes could represent an alternative for dairy industries to produce value-added products from industrial by-products. KEY POINTS: • Over 19,000 proteases were predicted in a sequence-based metagenomic analysis. • Three proteases were successfully expressed and showed activity with whey proteins. • The enzyme Pr05 showed hydrolysis profiles of interest for food industry.
Collapse
Affiliation(s)
- José Matías Irazoqui
- Instituto de Investigación de La Cadena Láctea (CONICET-INTA), 2300, Rafaela, Argentina
| | | | | | - Ariel Fernando Amadio
- Instituto de Investigación de La Cadena Láctea (CONICET-INTA), 2300, Rafaela, Argentina
| |
Collapse
|
8
|
Yao H, Liu S, Liu T, Ren D, Yang Q, Zhou Z, Mao J. Screening of marine sediment-derived microorganisms and their bioactive metabolites: a review. World J Microbiol Biotechnol 2023; 39:172. [PMID: 37115432 DOI: 10.1007/s11274-023-03621-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Marine sediments are one of the largest habitats on Earth, and their unique ecology, such as high salinity, high pressure, and hypoxia, may activate certain silent genes in marine microbes, resulting in microbes, enzymes, active products, and specific metabolic pathways that can adapt to these specific ecological environments. Marine sediment-derived microorganisms and their bioactive metabolites are of great significance and have potential commercial development prospects for food, pharmaceutical, chemical industries, agriculture, environmental protection and human nutrition and health. In recent years, although there have been numerous scientific reports surrounding marine sediment-derived microorganisms and their bioactive metabolites, a comprehensive review of their research progress is lacking. This paper presents the development and renewal of traditional culture-dependent and omics analysis techniques and their application to the screening of marine sediment-derived microorganisms producing bioactive substances. It also highlights recent research advances in the last five years surrounding the types, functional properties and potential applications of bioactive metabolites produced by marine sediment-derived microorganisms. These bioactive metabolites mainly include antibiotics, enzymes, enzyme inhibitors, sugars, proteins, peptides, and some other small molecule metabolites. In addition, the review ends with concluding remarks on the challenges and future directions for marine sediment-derived microorganisms and their bioactive metabolites. The review report not only helps to deepen the understanding of marine sediment-derived microorganisms and their bioactive metabolites, but also provides some useful information for the exploitation and utilization of marine microbial resources and the mining of new compounds with potential functional properties.
Collapse
Affiliation(s)
- Hongli Yao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Department of Biology and Food Engineering, Bozhou University, Bozhou, 236800, Anhui, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Tiantian Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China.
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China.
| |
Collapse
|
9
|
Ariaeenejad S, Kavousi K, Mamaghani ASA, Ghasemitabesh R, Hosseini Salekdeh G. Simultaneous hydrolysis of various protein-rich industrial wastes by a naturally evolved protease from tannery wastewater microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152796. [PMID: 34986419 DOI: 10.1016/j.scitotenv.2021.152796] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Elimination of protein-rich waste materials is one of the vital environmental protection requirements. Using of non-naturally occurring chemicals for their remediation properties can potentially induce new pollutants. Therefore, enzymes encoded in the genomes of microorganisms evolved in the same environment can be considered suitable alternatives to chemicals. Identification of efficient proteases that can hydrolyze recalcitrant, protein-rich wastes produced by various industrial processes has been widely welcomed as an eco-friendly waste management strategy. In this direction, we attempted to screen a thermo-halo-alkali-stable metagenome-derived protease (PersiProtease1) from tannery wastewater. The PersiProtease1 exhibited high pH stability over a wide range and at 1 h in pH 11.0 maintained 87.59% activity. The enzyme possessed high thermal stability while retaining 76.64% activity after 1 h at 90 °C. Moreover, 65.34% of the initial activity of the enzyme remained in the presence of 6 M NaCl, showing tolerance against high salinity. The presence of various metal ions, inhibitors, and organic solvents did not remarkably inhibit the activity of the discovered protease. The PersiProtease1 was extracted from the tannery wastewater microbiota and efficiently applied for biodegradation of real sample tannery wastewater protein, chicken feathers, whey protein, dehairing sheepskins, and waste X-ray films. PersiProtease1 proved its enormous potential in simultaneous biodegradation of solid and liquid protein-rich industrial wastes based on the results.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Atefeh Sheykh Abdollahzadeh Mamaghani
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Rezvaneh Ghasemitabesh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran; Department of Molecular Sciences, Macquarie University, Sydney 2109, NSW, Australia.
| |
Collapse
|
10
|
Tatta ER, Imchen M, Moopantakath J, Kumavath R. Bioprospecting of microbial enzymes: current trends in industry and healthcare. Appl Microbiol Biotechnol 2022; 106:1813-1835. [PMID: 35254498 DOI: 10.1007/s00253-022-11859-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/15/2022] [Accepted: 02/26/2022] [Indexed: 12/13/2022]
Abstract
Microbial enzymes have an indispensable role in producing foods, pharmaceuticals, and other commercial goods. Many novel enzymes have been reported from all domains of life, such as plants, microbes, and animals. Nonetheless, industrially desirable enzymes of microbial origin are limited. This review article discusses the classifications, applications, sources, and challenges of most demanded industrial enzymes such as pectinases, cellulase, lipase, and protease. In addition, the production of novel enzymes through protein engineering technologies such as directed evolution, rational, and de novo design, for the improvement of existing industrial enzymes is also explored. We have also explored the role of metagenomics, nanotechnology, OMICs, and machine learning approaches in the bioprospecting of novel enzymes. Overall, this review covers the basics of biocatalysts in industrial and healthcare applications and provides an overview of existing microbial enzyme optimization tools. KEY POINTS: • Microbial bioactive molecules are vital for therapeutic and industrial applications. • High-throughput OMIC is the most proficient approach for novel enzyme discovery. • Comprehensive databases and efficient machine learning models are the need of the hour to fast forward de novo enzyme design and discovery.
Collapse
Affiliation(s)
- Eswar Rao Tatta
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO.), Kasaragod, Kerala, 671320, India
| | - Madangchanok Imchen
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO.), Kasaragod, Kerala, 671320, India
| | - Jamseel Moopantakath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO.), Kasaragod, Kerala, 671320, India
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Tejaswini Hills, Periya (PO.), Kasaragod, Kerala, 671320, India.
| |
Collapse
|
11
|
|
12
|
Jia DX, Sun CY, Jin YT, Liu ZQ, Zheng YG, Li M, Wang HY, Chen DS. Properties of d-allulose 3-epimerase mined from Novibacillus thermophilus and its application to synthesis of d-allulose. Enzyme Microb Technol 2021; 148:109816. [PMID: 34116747 DOI: 10.1016/j.enzmictec.2021.109816] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/15/2021] [Accepted: 05/01/2021] [Indexed: 01/20/2023]
Affiliation(s)
- Dong-Xu Jia
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China
| | - Chen-Yi Sun
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China
| | - Yi-Ting Jin
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China.
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, PR China
| | - Mian Li
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua, 324032, PR China
| | - Hong-Yan Wang
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua, 324032, PR China
| | - De-Shui Chen
- Zhejiang Huakang Pharmaceutical Co., Ltd., Kaihua, 324032, PR China
| |
Collapse
|
13
|
Two-step functional screen on multiple proteinaceous substrates reveals temperature-robust proteases with a broad-substrate range. Appl Microbiol Biotechnol 2021; 105:3195-3209. [PMID: 33770243 PMCID: PMC8053189 DOI: 10.1007/s00253-021-11235-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/15/2021] [Accepted: 03/14/2021] [Indexed: 01/21/2023]
Abstract
Abstract To support the bio-based industry in development of environment-friendly processes and products, an optimal toolbox of biocatalysts is key. Although functional screen of (meta)genomic libraries may potentially contribute to identifying new enzymes, the discovery of new enzymes meeting industry compliance demands is still challenging. This is particularly noticeable in the case of proteases, for which the reports of metagenome-derived proteases with industrial applicability are surprisingly limited. Indeed, proteolytic clones have been typically assessed by its sole activity on casein or skim milk and limited to mild screening conditions. Here, we demonstrate the use of six industry-relevant animal and plant by-products, namely bone, feather, blood meals, gelatin, gluten, and zein, as complementary substrates in functional screens and show the utility of temperature as a screening parameter to potentially discover new broad-substrate range and robust proteases for the biorefinery industry. By targeting 340,000 clones from two libraries of pooled isolates of mesophilic and thermophilic marine bacteria and two libraries of microbial communities inhabiting marine environments, we identified proteases in four of eleven selected clones that showed activity against all substrates herein tested after prolonged incubation at 55 °C. Following sequencing, in silico analysis and recombinant expression in Escherichia coli, one functional protease, 58% identical at sequence level to previously reported homologs, was found to readily hydrolyze highly insoluble zein at temperatures up to 50 °C and pH 9–11. It is derived from a bacterial group whose ability to degrade zein was unknown. This study reports a two-step screen resulting in identification of a new marine metagenome-derived protease with zein-hydrolytic properties at common biomass processing temperatures that could be useful for the modern biorefinery industry. Key points • A two-step multi-substrate strategy for discovery of robust proteases. • Feasible approach for shortening enzyme optimization to industrial demands. • A new temperature-tolerant protease efficiently hydrolyzes insoluble zein. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11235-9.
Collapse
|