1
|
Pang C, Liu S, Zhang G, Zhou J, Du G, Li J. Improving the catalytic efficiency of Pseudomonas aeruginosa lipoxygenase by semi-rational design. Enzyme Microb Technol 2023; 162:110120. [DOI: 10.1016/j.enzmictec.2022.110120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
|
2
|
Pang C, Zhang G, Liu S, Zhou J, Li J, Du G. Engineering sigma factors and chaperones for enhanced heterologous lipoxygenase production in Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:105. [PMID: 36217152 PMCID: PMC9552429 DOI: 10.1186/s13068-022-02206-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lipoxygenase (EC. 1.13.11.12, LOX) can catalyze the addition of oxygen into polyunsaturated fatty acids to produce hydroperoxides, which are widely used in the food, chemical, and pharmaceutical industries. In recent years, the heterologous production of LOX by Escherichia coli has attracted extensive attention. However, overexpressed recombinant LOX in E. coli aggregates and forms insoluble inclusion bodies owing to protein misfolding. RESULTS In this study, a split green fluorescent protein-based screening method was developed to screen sigma (σ) factors and molecular chaperones for soluble LOX expression. Three mutant libraries of Skp, GroES, and RpoH was analyzed using the high-throughput screening method developed herein, and a series of mutants with significantly higher yield of soluble heterologous LOX were obtained. The soluble expression level of LOX in the isolated mutants increased by 4.2- to 5.3-fold. Further, the highest LOX activity (up to 6240 ± 269 U·g-DCW-1) was observed in E. coli REopt, with the regulatory factor mutants, RpoH and GroES. Based on RNA-Seq analysis of the selected strains, E. coli Eopt, E. coli Sopt, E. coli Ropt, and wild type, amino acid substitutions in σ factors and molecular chaperones regulated the expression level of genes related to gene replication, recombination, and repair. Furthermore, the regulatory factor mutants were identified to be beneficial to the soluble expression of two other heterologous proteins, amylase and bone morphological protein 12. CONCLUSION In this study, a high-throughput screening method was developed for improved soluble LOX expression. The obtained positive mutants of the regulatory factor were analyzed and employed for the expression of other heterologous proteins, thus providing a potential solution for the inclusion-body protein.
Collapse
Affiliation(s)
- Cuiping Pang
- grid.258151.a0000 0001 0708 1323National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China ,grid.258151.a0000 0001 0708 1323Science Center for Future Foods, Jiangnan University, Wuxi, 214122 China
| | - Guoqiang Zhang
- grid.258151.a0000 0001 0708 1323National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China ,grid.258151.a0000 0001 0708 1323Science Center for Future Foods, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Song Liu
- grid.258151.a0000 0001 0708 1323National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China ,grid.258151.a0000 0001 0708 1323Science Center for Future Foods, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Jingwen Zhou
- grid.258151.a0000 0001 0708 1323National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China ,grid.258151.a0000 0001 0708 1323Science Center for Future Foods, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Jianghua Li
- grid.258151.a0000 0001 0708 1323Science Center for Future Foods, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China ,grid.258151.a0000 0001 0708 1323Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| | - Guocheng Du
- grid.258151.a0000 0001 0708 1323Science Center for Future Foods, Jiangnan University, Wuxi, 214122 China ,grid.258151.a0000 0001 0708 1323School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China ,grid.258151.a0000 0001 0708 1323Engineering Research Center of Ministry of Education On Food Synthetic Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122 Jiangsu China
| |
Collapse
|
3
|
Pang C, Liu S, Zhang G, Zhou J, Du G, Li J. Enhancing extracellular production of lipoxygenase in Escherichia coli by signal peptides and autolysis system. Microb Cell Fact 2022; 21:42. [PMID: 35305645 PMCID: PMC8933919 DOI: 10.1186/s12934-022-01772-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Background Lipoxygenase (LOX) is a non-heme iron containing dioxygenase that is widely used to improve food quality and produce active drug intermediates and biodiesel. Escherichia coli is one of the most widely used host microorganisms for recombinant protein expression; however, its weak extracellular secretion ability precludes its effective production of recombinant proteins into the extracellular environment. To facilitate subsequent characterization and application of LOX, improving its secretion efficiency from E. coli is a major challenge that needs to be solved. Results Several strategies were adopted to improve the extracellular secretion of LOX based on the signal peptides and cell wall permeability of E. coli. Here, we studied the effect of signal peptides on LOX secretion, which increased the secretory capacity for LOX marginally. Although surfactants could increase the permeability of the cell membrane to promote LOX secretion, the extracellular LOX yield could not meet the requirements of industrialization production. Subsequently, an autolysis system was constructed in E. coli based on the bacteriophage lysis gene ΦX174-E to enhance the production of extracellular proteins. Thus, the extracellular production of LOX was achieved and the content of inclusion bodies in the cell was reduced by optimizing cell lysis conditions. The extracellular LOX yield reached 368 ± 1.4 U mL−1 in a 5-L bioreactor under optimized lysis conditions that is, an induction time and temperature, and arabinose concentration of 5 h, 25 °C, and 0.6 mM, respectively. Conclusions In this study, the different signal peptides and cell autolysis system were developed and characterized for extracellular LOX production in E. coli. Finally, the cell autolysis system presented a slight advantage on extracellular LOX yield, which also provides reference for other protein extracellular production. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01772-x.
Collapse
|
4
|
Shang F, Wang H, Zhang D, Wang W, Yu J, Xue T. Construction of an AI-2 quorum sensing induced heterologous protein expression system in Escherichia coli. PeerJ 2021; 9:e12497. [PMID: 34820206 PMCID: PMC8603832 DOI: 10.7717/peerj.12497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022] Open
Abstract
Background The pET expression system based on T7 promoter which is induced by isopropyl-β-D-1-thiogalactopyranoside (IPTG) is by far the most commonly used system for production of heterogeneous proteins in Escherichia coli. However, this system was limited by obvious drawbacks including the host toxicity and metabolic burden imposed by the presence of IPTG. Methods In this study, we incorporated the autoinducer-2 (AI-2) quorum sensing system to realize autoinduction of the pET expression system. The autoinduction expression vector pXWZ1 was constructed by inserting the lsr promoter regions into the pET28a(+) vector. The expression efficiency of the reporter genes gfpuv and lacZ by the pXWZ1 and pET28a(+) vectors were compared. Results The results showed that the expression levels of the both report genes in the cells transformed with pXWZ1 without any addition of exogenous inducer were higher than that transformed with pET28a(+) vectors by the induction of IPTG. Conclusion This new auto-induction system will exclude the limitations of the IPTG induction including toxic to host and increasing formation of inclusion body and will become a more economical and convenient tool for recombinant protein expression.
Collapse
Affiliation(s)
- Fei Shang
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| | - Hui Wang
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| | - Dan Zhang
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| | - Wenhui Wang
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| | - Jiangliu Yu
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| | - Ting Xue
- Anhui Agricultural University, School of Life Sciences, Hefei, Anhui, China
| |
Collapse
|
5
|
Liu S, Lyu Y, Yu S, Cheng J, Zhou J. Efficient Production of Orientin and Vitexin from Luteolin and Apigenin Using Coupled Catalysis of Glycosyltransferase and Sucrose Synthase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6578-6587. [PMID: 34061537 DOI: 10.1021/acs.jafc.1c00602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Orientin and vitexin are flavone 8-C-glycosides that exhibit many biological characteristics. This study aimed to establish a two-enzyme-coupled catalytic strategy to enhance the biosynthesis of orientin and vitexin from apigenin and luteolin, respectively. The C-glucosyltransferase (TcCGT1) gene from Trollius chinensis was cloned and expressed in Escherichia coli BL21(DE3). The optimal activity of TcCGT1 was achieved at pH 9.0 and 37 °C. TcCGT1 was relatively stable over the pH range of 7.0-10.0 at a temperature lower than 45 °C. The coupled catalytic strategy of TcCGT1 and different sucrose synthases was adopted to enhance the production of orientin and vitexin. By optimizing the coupling reaction conditions, orientin and vitexin production successfully achieved 2324.4 and 5524.1 mg/L with a yield of 91.4 and 89.3% (mol/mol), respectively. The coupled catalytic strategy proposed in this study might serve as a promising candidate for the large-scale production of orientin and vitexin in the future.
Collapse
Affiliation(s)
- Shike Liu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yunbin Lyu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jie Cheng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|