1
|
Saberi M, Chikunova A, Ben Bdira F, Cramer-Blok A, Timmer M, Voskamp P, Ubbink M. Bimodal substrate binding in the active site of the glycosidase BcX. FEBS J 2024; 291:4222-4239. [PMID: 39185686 DOI: 10.1111/febs.17251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/02/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
Bacillus circulans xylanase (BcX) from the glycoside hydrolase family 11 degrades xylan through a retaining, double-displacement mechanism. The enzyme is thought to hydrolyze glycosidic bonds in a processive manner and has a large, active site cleft, with six subsites allowing the binding of six xylose units. Such an active site architecture suggests that oligomeric xylose substrates can bind in multiple ways. In the crystal structure of the catalytically inactive variant BcX E78Q, the substrate xylotriose is observed in the active site, as well as bound to the known secondary binding site and a third site on the protein surface. Nuclear magnetic resonance (NMR) titrations with xylose oligomers of different lengths yield nonlinear chemical shift trajectories for active site nuclei resonances, indicative of multiple binding orientations for these substrates for which binding and dissociation are in fast exchange on the NMR timescale, exchanging on the micro- to millisecond timescale. Active site binding can be modeled with a 2 : 1 model with dissociation constants in the low and high millimolar range. Extensive mutagenesis of active site residues indicates that tight binding occurs in the glycon binding site and is stabilized by Trp9 and the thumb region. Mutations F125A and W71A lead to large structural rearrangements. Binding at the glycon site is sensed throughout the active site, whereas the weak binding mostly affects the aglycon site. The interactions with the two active site locations are largely independent of each other and of binding at the secondary binding site.
Collapse
Affiliation(s)
- Mahin Saberi
- Leiden Institute of Chemistry, Leiden University, The Netherlands
| | | | - Fredj Ben Bdira
- Leiden Institute of Chemistry, Leiden University, The Netherlands
| | | | - Monika Timmer
- Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Patrick Voskamp
- Leiden Institute of Chemistry, Leiden University, The Netherlands
| | - Marcellus Ubbink
- Leiden Institute of Chemistry, Leiden University, The Netherlands
| |
Collapse
|
2
|
Briganti L, Manzine LR, de Mello Capetti CC, de Araújo EA, de Oliveira Arnoldi Pellegrini V, Guimaraes FEG, de Oliveira Neto M, Polikarpov I. Unravelling biochemical and structural features of Bacillus licheniformis GH5 mannanase using site-directed mutagenesis and high-resolution protein crystallography studies. Int J Biol Macromol 2024; 274:133182. [PMID: 38885857 DOI: 10.1016/j.ijbiomac.2024.133182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/20/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Glycoside hydrolase family 5 (GH5) encompasses enzymes with several different activities, including endo-1,4-β-mannosidases. These enzymes are involved in mannan degradation, and have a number of biotechnological applications, such as mannooligosaccharide prebiotics production, stain removal and dyes decolorization, to name a few. Despite the importance of GH5 enzymes, only a few members of subfamily 7 were structurally characterized. In the present work, biochemical and structural characterization of Bacillus licheniformis GH5 mannanase, BlMan5_7 were performed and the enzyme cleavage pattern was analyzed, showing that BlMan5_7 requires at least 5 occupied subsites to perform efficient hydrolysis. Additionally, crystallographic structure at 1.3 Å resolution was determined and mannoheptaose (M7) was docked into the active site to investigate the interactions between substrate and enzyme through molecular dynamic (MD) simulations, revealing the existence of a - 4 subsite, which might explain the generation of mannotetraose (M4) as an enzyme product. Biotechnological application of the enzyme in stain removal was investigated, demonstrating that BlMan5_7 addition to washing solution greatly improves mannan-based stain elimination.
Collapse
Affiliation(s)
- Lorenzo Briganti
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400 - Centro, São Carlos, SP 13560-970, Brazil
| | - Livia R Manzine
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400 - Centro, São Carlos, SP 13560-970, Brazil
| | - Caio Cesar de Mello Capetti
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400 - Centro, São Carlos, SP 13560-970, Brazil
| | - Evandro Ares de Araújo
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials, Campinas 13083-970, São Paulo, Brazil
| | | | - Francisco Eduardo Gontijo Guimaraes
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400 - Centro, São Carlos, SP 13560-970, Brazil
| | - Mario de Oliveira Neto
- Departamento de Física e Biofísica, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, Distrito de Rubião Jr. s/n, Botucatu 18618-000, SP, Brazil
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São Carlense 400 - Centro, São Carlos, SP 13560-970, Brazil.
| |
Collapse
|
3
|
Tai H, Guo Q, Zhao J, Liu Y, Yu H, Liu Y, Qu Y, Du G, Li R. A thermostable xylanase hydrolyzes several polysaccharides from Bacillus altitudinis JYY-02 showing promise for industrial applications. Carbohydr Res 2024; 538:109080. [PMID: 38513464 DOI: 10.1016/j.carres.2024.109080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/23/2024]
Abstract
Polysaccharides have attracted immense attention as the largest source of bioactive compounds. Its bioavailability and bioactivity can be improved by utilizing degradation enzymes to reduce their molecular weight and viscosity. In this study, a 654 bp gene encoding xylanase was screened from the genome of Bacillus altitudinis JYY-02 and overexpressed in Escherichia coli Rosetta (DE3). The recombinant xylanase with a molecular weight of 27.98 kDa was purified (11.7-fold) using Ni-NTA affinity chromatography, with a 43.6% final yield. Through molecular docking, Glu, Arg, Tyr, and Trp were found to be the main amino acids involved in the interaction between xylanase and xylobiose. The effects of pH, temperature, metal ions, and substrates on xylanase activity were determined, and the results showed that the highest catalytic activity was displayed at pH 6.5, 50 °C temperature, with Cu2+ as an activator and xylan as the substrate. The Km (substrate concentration that yields a half-maximal velocity) and Vmax (maximum velocity) of recombinant xylanase were 6.876 mg/mL and 10984.183 μmol/mg∙pr/min, respectively. The recombinant xylanase was thermostable, with 85% and 39% of the enzymatic activity retained after 1 h at 60 °C and 1 h at 90 °C, respectively. The recombinant xylanase demonstrated a significant clarifying effect on fruit juices.
Collapse
Affiliation(s)
- Hongzheng Tai
- College of Life Sciences, Qingdao University, Qingdao, 266071, PR China
| | - Qunqun Guo
- College of Life Sciences, Qingdao University, Qingdao, 266071, PR China
| | - Jiamin Zhao
- College of Life Sciences, Qingdao University, Qingdao, 266071, PR China
| | - Yandong Liu
- College of Life Sciences, Qingdao University, Qingdao, 266071, PR China
| | - Hao Yu
- College of Life Sciences, Qingdao University, Qingdao, 266071, PR China
| | - Yili Liu
- College of Life Sciences, Qingdao University, Qingdao, 266071, PR China
| | - Yifan Qu
- College of Life Sciences, Qingdao University, Qingdao, 266071, PR China
| | - Guicai Du
- College of Life Sciences, Qingdao University, Qingdao, 266071, PR China.
| | - Ronggui Li
- College of Life Sciences, Qingdao University, Qingdao, 266071, PR China.
| |
Collapse
|
4
|
Kim JH, Chi WJ. Molecular and Biochemical Characterization of Xylanase Produced by Streptomyces viridodiastaticus MS9, a Newly Isolated Soil Bacterium. J Microbiol Biotechnol 2024; 34:176-184. [PMID: 38037397 PMCID: PMC10840471 DOI: 10.4014/jmb.2309.09029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
A xylan-degrading bacterial strain, MS9, was recently isolated from soil samples collected in Namhae, Gyeongsangnam-do, Republic of Korea. This strain was identified as a variant of Streptomyces viridodiastaticus NBRC13106T based on 16S rRNA gene sequencing, DNA-DNA hybridization analysis, and other chemotaxonomic characteristics, and was named S. viridodiastaticus MS9 (=KCTC29014= DSM42055). In this study, we aimed to investigate the molecular and biochemical characteristics of a xylanase (XynCvir) identified from S. viridodiastaticus MS9. XynCvir (molecular weight ≍ 21 kDa) was purified from a modified Luria-Bertani medium, in which cell growth and xylanase production considerably increased after addition of xylan. Thin layer chromatography of xylan-hydrolysate showed that XynCvir is an endo-(1,4)-β-xylanase that degrades xylan into a series of xylooligosaccharides, ultimately converting it to xylobiose. The Km and Vmax values of XynCvir for beechwood xylan were 1.13 mg/ml and 270.3 U/mg, respectively. Only one protein (GHF93985.1, 242 amino acids) containing an amino acid sequence identical to the amino-terminal sequence of XynCvir was identified in the genome of S. viridodiastaticus. GHF93985.1 with the twin-arginine translocation signal peptide is cleaved between Ala-50 and Ala-51 to form the mature protein (21.1 kDa; 192 amino acids), which has the same amino-terminal sequence (ATTITTNQT) and molecular weight as XynCvir, indicating GHF93985.1 corresponds to XynCvir. Since none of the 100 open reading frames most homologous to GHF93985.1 listed in GenBank have been identified for their biochemical functions, our findings greatly contribute to the understanding of their biochemical characteristics.
Collapse
Affiliation(s)
- Jong-Hee Kim
- Department of Food and Nutrition, Seoil University, Seoul 02192, Republic of Korea
| | - Won-Jae Chi
- Species Diversity Research Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea
| |
Collapse
|
5
|
Structural and biochemical analysis reveals how ferulic acid improves catalytic efficiency of Humicola grisea xylanase. Sci Rep 2022; 12:11409. [PMID: 35794132 PMCID: PMC9259647 DOI: 10.1038/s41598-022-15175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Humicolagrisea var. thermoidea is an aerobic and thermophilic fungus that secretes the GH11 xylanase HXYN2 in the presence of sugarcane bagasse. In this study, HXYN2 was expressed in Pichiapastoris and characterized biochemically and structurally in the presence of beechwood xylan substrate and ferulic acid (FA). HXYN2 is a thermally stable protein, as indicated by circular dichroism, with greater activity in the range of 40–50 °C and pH 5.0–9.0, with optimal temperature and pH of 50 °C and 6.0, respectively. FA resulted in a 75% increase in enzyme activity and a 2.5-fold increase in catalytic velocity, catalytic efficiency, and catalytic rate constant (kcat), with no alteration in enzyme affinity for the substrate. Fluorescence quenching indicated that FA forms a complex with HXYN2 interacting with solvent-exposed tryptophan residues. The binding constants ranged from moderate (pH 7.0 and 9.0) to strong (pH 4.0) affinity. Isothermal titration calorimetry, structural models and molecular docking suggested that hydrogen bonds and hydrophobic interactions occur in the aglycone region inducing conformational changes in the active site driven by initial and final enthalpy- and entropy processes, respectively. These results indicate a potential for biotechnological application for HXYN2, such as in the bioconversion of plant residues rich in ferulic acid.
Collapse
|
6
|
Li X, Kouzounis D, Kabel MA, de Vries RP. GH10 and GH11 endoxylanases in Penicillium subrubescens: comparative characterization and synergy with GH51, GH54, GH62 α-L-arabinofuranosidases from the same fungus. N Biotechnol 2022; 70:84-92. [PMID: 35597447 DOI: 10.1016/j.nbt.2022.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/25/2022]
Abstract
Penicillium subrubescens has an expanded set of genes encoding putative endoxylanases (PsXLNs) compared to most other Penicillia and other fungi. In this study, all GH10 and GH11 PsXLNs were produced heterologously in Pichia pastoris and characterized. They were active towards beech wood xylan (BWX) and wheat flour arabinoxylan (WAX), and showed stability over a wide pH range. Additionally, PsXLNs released distinct oligosaccharides from WAX, and showed significant cooperative action with P. subrubescens α-L-arabinofuranosidases (PsABFs) from GH51 or GH54 for WAX degradation, giving insight into a more diverse XLN and ABF system for the efficient degradation of complex hemicelluloses. Homology modelling analysis pointed out differences in the catalytic center of PsXLNs, which are discussed in view of the different modes of action observed. These findings facilitate understanding of structural requirements for substrate recognition to contribute to recombinant XLN engineering for biotechnological applications.
Collapse
Affiliation(s)
- Xinxin Li
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Dimitrios Kouzounis
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Mirjam A Kabel
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
7
|
Kojima K, Sunagawa N, Yoshimi Y, Tryfona T, Samejima M, Dupree P, Igarashi K. Acetylated xylan degradation by glycoside hydrolase family 10 and 11 xylanases from the white-rot fungus <i>Phanerochaete chrysosporium</i>. J Appl Glycosci (1999) 2022; 69:35-43. [PMID: 35891899 PMCID: PMC9276525 DOI: 10.5458/jag.jag.jag-2021_0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Endo-type xylanases are key enzymes in microbial xylanolytic systems, and xylanases belonging to glycoside hydrolase (GH) families 10 or 11 are the major enzymes degrading xylan in nature. These enzymes have typically been characterized using xylan prepared by alkaline extraction, which removes acetyl sidechains from the substrate, and thus the effect of acetyl groups on xylan degradation remains unclear. Here, we compare the ability of GH10 and 11 xylanases, PcXyn10A and PcXyn11B, from the white-rot basidiomycete Phanerochaete chrysosporium to degrade acetylated and deacetylated xylan from various plants. Product quantification revealed that PcXyn10A effectively degraded both acetylated xylan extracted from Arabidopsis thaliana and the deacetylated xylan obtained by alkaline treatment, generating xylooligosaccharides. In contrast, PcXyn11B showed limited activity towards acetyl xylan, but showed significantly increased activity after deacetylation of the xylan. Polysaccharide analysis using carbohydrate gel electrophoresis showed that PcXyn11B generated a broad range of products from native acetylated xylans extracted from birch wood and rice straw, including large residual xylooligosaccharides, while non-acetylated xylan from Japanese cedar was readily degraded into xylooligosaccharides. These results suggest that the degradability of native xylan by GH11 xylanases is highly dependent on the extent of acetyl group substitution. Analysis of 31 fungal genomes in the Carbohydrate-Active enZymes database indicated that the presence of GH11 xylanases is correlated to that of carbohydrate esterase (CE) family 1 acetyl xylan esterases (AXEs), while this is not the case for GH10 xylanases. These findings may imply co-evolution of GH11 xylanases and CE1 AXEs.
Collapse
Affiliation(s)
- Keisuke Kojima
- Department of Biomaterial Sciences, The University of Tokyo
| | - Naoki Sunagawa
- Department of Biomaterial Sciences, The University of Tokyo
| | | | | | | | - Paul Dupree
- Department of Biochemistry, University of Cambridge
| | | |
Collapse
|
8
|
Kadowaki MAS, Briganti L, Evangelista DE, Echevarría-Poza A, Tryfona T, Pellegrini VOA, Nakayama DG, Dupree P, Polikarpov I. Unlocking the structural features for the xylobiohydrolase activity of an unusual GH11 member identified in a compost-derived consortium. Biotechnol Bioeng 2021; 118:4052-4064. [PMID: 34232504 DOI: 10.1002/bit.27880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 11/08/2022]
Abstract
The heteropolysaccharide xylan is a valuable source of sustainable chemicals and materials from renewable biomass sources. A complete hydrolysis of this major hemicellulose component requires a diverse set of enzymes including endo-β-1,4-xylanases, β-xylosidases, acetylxylan esterases, α-l-arabinofuranosidases, and α-glucuronidases. Notably, the most studied xylanases from glycoside hydrolase family 11 (GH11) have exclusively been endo-β-1,4- and β-1,3-xylanases. However, a recent analysis of a metatranscriptome library from a microbial lignocellulose community revealed GH11 enzymes capable of releasing solely xylobiose from xylan. Although initial biochemical studies clearly indicated their xylobiohydrolase mode of action, the structural features that drive this new activity still remained unclear. It was also not clear whether the enzymes acted on the reducing or nonreducing end of the substrate. Here, we solved the crystal structure of MetXyn11 in the apo and xylobiose-bound forms. The structure of MetXyn11 revealed the molecular features that explain the observed pattern on xylooligosaccharides released by this nonreducing end xylobiohydrolase.
Collapse
Affiliation(s)
- Marco A S Kadowaki
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil.,PhotoBioCatalysis-Biomass transformation Lab (BTL), École Interfacultaire de Bioingénieurs (EIB), Université Libre de Bruxelles, Brussels, Belgium
| | - Lorenzo Briganti
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Danilo E Evangelista
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil.,Instituto de Criminalística de Andradina, Superintendência da Polícia Técnico Científica de São Paulo, Andradina, São Paulo, Brazil
| | | | - Theodora Tryfona
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Vanessa O A Pellegrini
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Darlan G Nakayama
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Igor Polikarpov
- Grupo de Biotecnologia Molecular, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|