1
|
Fan P, Kim M, Liu G, Zhai Y, Liu T, Driver JD, Jeong KC. The Gut Microbiota of Newborn Calves and Influence of Potential Probiotics on Reducing Diarrheic Disease by Inhibition of Pathogen Colonization. Front Microbiol 2021; 12:772863. [PMID: 34745079 PMCID: PMC8567051 DOI: 10.3389/fmicb.2021.772863] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/30/2021] [Indexed: 01/17/2023] Open
Abstract
Calf diarrhea is one of the most concerning challenges facing both the dairy and beef cattle industry. Maintaining healthy gut microbiota is essential for preventing gastrointestinal disorders. Here, we observed significantly less bacterial richness in the abnormal feces with watery or hemorrhagic morphology compared to the normal solid feces. The normal solid feces showed high relative abundances of Osllospiraceae, Christensenellaceae, Barnesiella, and Lactobacillus, while the abnormal feces contained more bacterial taxa of Negativicutes, Tyzzerella, Parasutterella, Veillonella, Fusobacterium, and Campylobacter. Healthy calves had extensive bacterial-bacterial correlations, with negative correlation between Lactobacillus and potential diarrheagenic Escherichia coli-Shigella, but not in the abnormal feces. We isolated Lactobacillus species (L. reuteri, L. johnsonii, L. amylovorus, and L. animalis), with L. reuteri being the most abundant, from the healthy gut microbiota. Isolated Lactobacillus strains inhibited pathogenic strains including E. coli K88 and Salmonella Typhimurium. These findings indicate the importance of a diverse gut microbiota in newborn calf’s health and provide multiple potential probiotics that suppress pathogen colonization in the gastrointestinal tract to prevent calf diarrhea.
Collapse
Affiliation(s)
- Peixin Fan
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Miju Kim
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Grace Liu
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Yuting Zhai
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Ting Liu
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Joseph Danny Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Kwangcheol C Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
2
|
Hornik B, Czarny J, Staninska-Pięta J, Wolko Ł, Cyplik P, Piotrowska-Cyplik A. The Raw Milk Microbiota from Semi-Subsistence Farms Characteristics by NGS Analysis Method. Molecules 2021; 26:5029. [PMID: 34443615 PMCID: PMC8402136 DOI: 10.3390/molecules26165029] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/05/2021] [Accepted: 08/16/2021] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to analyze the microbiome of raw milk obtained from three semi-subsistence farms (A, B, and C) located in the Kuyavian-Pomeranian Voivodeship in Poland. The composition of drinking milk was assessed on the basis of 16S rRNA gene sequencing using the Ion Torrent platform. Based on the conducted research, significant changes in the composition of the milk microbiome were found depending on its place of origin. Bacteria belonging to the Bacillus (17.0%), Corynebacterium (12.0%) and Escherichia-Shigella (11.0%) genera were dominant in the milk collected from farm A. In the case of the milk from farm B, the dominant bacteria belonged to the Acinetobacter genus (21.0%), whereas in the sample from farm C, Escherichia-Shigella (24.8%) and Bacillus (10.3%) dominated the microbiome. An analysis was performed using the PICRUSt tool (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) in order to generate a profile of genes responsible for bacterial metabolism. The conducted analysis confirmed the diversity of the profile of genes responsible for bacterial metabolism in all the tested samples. On the other hand, simultaneous analysis of six KEGG Orthologs (KO), which participated in beta-lactam resistance responsible for antibiotic resistance of bacteria, demonstrated that there is no significant relationship between the predicted occurrence of these orthologs and the place of existence of microorganisms. Therefore, it can be supposed that bacterial resistance to beta-lactam antibiotics occurs regardless of the environmental niche, and that the antibiotic resistance maintained in the population is a factor that shapes the functional structure of the microbial consortia.
Collapse
Affiliation(s)
- Bartosz Hornik
- Institute of Forensic Genetics, Al. Mickiewicza 3/4, 85-071 Bydgoszcz, Poland; (B.H.); (J.C.)
| | - Jakub Czarny
- Institute of Forensic Genetics, Al. Mickiewicza 3/4, 85-071 Bydgoszcz, Poland; (B.H.); (J.C.)
| | - Justyna Staninska-Pięta
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland;
| | - Łukasz Wolko
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland;
| | - Paweł Cyplik
- Department Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland;
| | - Agnieszka Piotrowska-Cyplik
- Department of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland;
| |
Collapse
|